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Abstract: Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to
the traditional multistep and environmentally harmful chemical processes. Herein we report the
enzymatic synthesis of cladribine by a novel 2′-deoxyribosyltransferase (NDT)-based combined
biocatalyst. To this end, Lactobacillus delbrueckii NDT (LdNDT) was successfully immobilized through
a two-step immobilization methodology, including a covalent immobilization onto glutaraldehyde-
activated biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate.
The resulting immobilized derivative, SiGPEI 25000-LdNDT-Alg, displayed 98% retained activity and
was shown to be active and stable in a broad range of pH (5–9) and temperature (30–60 ◦C), but
also displayed an extremely high reusability (up to 2100 reuses without negligible loss of activity) in
the enzymatic production of cladribine. Finally, as a proof of concept, SiGPEI 25000-LdNDT-Alg was
successfully employed in the green production of cladribine at mg scale.

Keywords: biomimetic silica; enzyme immobilization; glutaraldehyde; entrapment; calcium alginate;
antineoplastic drug

1. Introduction

Cladribine (2-chloro-2′-deoxy-β-D-adenosine) is an FDA approved drug for the treat-
ment of hairy cell leukemia [1]. It has also recently received EMA approval for relapsing–
remitting multiple sclerosis (RRMS) treatment [2].

Traditionally, cladribine is synthesized by chemical methods that require multiple
reaction steps, the use of organic solvents, and removal of protecting groups, causing the
accumulation of racemic mixtures that affect further purification [3,4]. However, the use
of bioprocesses catalyzed by whole cells or enzymes has emerged as a green synthetic
alternative with multiple advantages, such as mild reaction conditions, high efficiency,
and regio-, stereo-, enantioselectivity [5–15]. In this sense, the transglycosylation reaction
catalyzed by nucleoside phosphorylases (NPs) or 2′-deoxyribosyltransferases (NDTs) is
the most studied biocatalytic methodology for the synthesis of nucleoside analogs (NAs)
up to date [5–15].
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Several factors such as low operational stability, short availability, the high cost of
recombinant enzymes, and difficult recovery have hindered the use of enzymes for indus-
trial applications [16]. Some of these drawbacks can be overcome by the immobilization
of the biocatalyst, which can improve enzyme properties, such as activity and specificity.
Additionally, it enables an easy product recovery and also increases the half-life of enzymes,
and allows for biocatalyst reusability [17–20].

In this regard, the use of silica-based matrixes in enzyme immobilization has started
to attract interest due to its nontoxicity, excellent biocompatibility, and stability over a wide
range of pressure, pH, and temperature [21–24]. Under mild conditions silica formation in
biogenic systems, is mediated by cationic proteins and peptides, but it can also be mediated
by a range of simple polyamine molecules [25,26]. Furthermore, entrapment methods are
also widely used for enzyme immobilization, and one of the most common supports is
alginate, a natural anionic biopolymer usually obtained from brown seaweed [27]. Because
of its biocompatibility, nontoxicity, and relatively low cost, alginate has been extensively
used for pharmaceutical and medical applications [28,29].

Herein we show the development of a highly stabilized biocatalyst for the production
of cladribine based on immobilization of 2′-deoxyribosyltransferase from Lactobacillus
delbrueckii (LdNDT) on modified silica-based matrixes through a two-step immobiliza-
tion methodology, including a covalent immobilization onto glutaraldehyde-activated
biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate
(Figure 1). Biochemical characterization of the immobilized derivatives, including the
effect of pH and temperature on enzyme activity and stability, as well as the biocatalysts
reusability, led us to select an optimal biocatalyst for further scale-up. Finally, the devel-
oped biocatalyst was successfully employed in the production of cladribine at mg scale
(1.8 mg) using a batch system with an airlift column.
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Type II NDT from Lactobacillus delbrueckii (LdNDT) was produced and purified as 

previously reported [30,31]. 

Figure 1. Schematic representation of the combined immobilization procedure, carried out in this work to obtain cladribine,
through the development of a highly stabilized biocatalyst. TMOS: tetramethylorthosilicate, PEI: Polyethyleneimine and
LdNDT: Recombinant NDT from Lactobacillus delbrueckii.

2. Materials and Methods
2.1. Materials

Nucleosides and bases were purchased from Sigma-Aldrich (USA). Culture media
compounds were obtained from Britania S.A. (CABA, Argentina). Polyethyleneimine
(PEI, MW 1.200–1.300, 25.000 and 70.000) was from Sigma Aldrich (St. Louis, MI, USA).
The HPLC grade solvents used were from Sintorgan S.A. (Villa Martelli, Argentina).
Cyanogen bromide (CNBr) activated Sepharose beads werepurchased from GE-Healthcare
(Uppsala, Sweden),tetramethylorthosilicate (TMOS) was purchased from Merck S.A. (Gern-
sheim, Germany) and sodium alginate was from Saporiti S.A.C.I.F.I.A (CABA, Argentina).
All other reagents were of analytical grade.

2.2. Production of LdNDT

Type II NDT from Lactobacillus delbrueckii (LdNDT) was produced and purified as
previously reported [30,31].



Biomolecules 2021, 11, 657 4 of 16

2.3. Standard Activity Assay for LdNDT

Biotransformation of cladribine from thymidine (Thd) and 2-chloroadenine (2-ChlAde)
was selected as standard reaction to evaluate enzymatic activity. To this effect, 10 µg
LdNDT (free or immobilized) were added to solution containing 1.5 mM Thd and 0.5 mM
2-ChlAde in 25 mM tris-HCl buffer, pH 7.0, at 50 ◦C and 200 rpm shaking speed. The
enzyme was inactivated by adding 100 µL of cold methanol in an ice-bath and heating
for 5 min at 100 ◦C. After centrifugation at 10,000 rpm for 3 min, the samples were half-
diluted with water and frozen at −20 ◦C. Nucleoside production was analyzed using
HPLC to measure quantitatively the reaction products, as described below. All of the
determinations were carried out in triplicate and the maximum error was less than 5%. In
such conditions, one unit of enzyme (U) was defined as the amount (mg) of enzyme that
produces 1 µmol/min (IU) of cladribine.

2.4. LdNDT Immobilization

TMOS was hydrolyzed with 1 mM HCl in 157:1000 (v/v) ratio. 10% (v/v) solutions of
PEI (Mw 1.200–1.300, 25.000 or 70.000, depending on the case) were prepared in 100 mM
sodium phosphate buffer (pH 8.0).

2.4.1. Biomimetic Silica Entrapment (SiBio)

For LdNDT entrapment in SiBio, 2.5 mL of freshly hydrolyzed TMOS, 2.5 mL of a
PEI solution (10%, v/v), and LdNDT solution containing 230 µg/mL were mixed. Instant
precipitation and subsequent enzyme entrapment wereobserved. The preparation was
centrifuged at 5000 rpm for 10 min and washed with NaCl 500 mM to eliminate proteins
ionically adsorbed to nanoparticle surface. Then, the SiBio biocatalyst was washed three
times with 25 mM sodium phosphate buffer (pH 7.0) until use.

2.4.2. Immobilization on Modified Biomimetic Silica Nanoparticles

To obtain biomimetic silica nanoparticles, 2.5 mL of freshly hydrolyzed TMOS was
added to 2.5 mL of a PEI solution (10%, v/v) and the preparation was mixed. The nanopar-
ticles formed were centrifuged at 5000 rpm for10 min and washed with 25 mM sodium
phosphate buffer (pH 7.0).

To obtain glyoxyl modified biomimetic silica support (SiGlx), 1 g of crude silica
was mixed in 0.28 mL of distilled water. Then, 32 mg of sodium hydroxide (NaOH)
previously dissolved in 0.5 mL of distilled water was added and subsequently 14 mg of
solid BH4Na was incorporated. Afterwards, 0.35 mL of glycidol was added drop by drop,
leaving it for 16 h at room temperature with gentle agitation. Finally, reactive groups were
activated by incubation for 2 h at room temperature with 15 mL of 10 mM NaIO4 solution.
It was recovered by centrifugation at 5000 rpm for 10 min, rinsed with distilled water,
and finally with 25 mM sodium phosphate buffer (pH 7.0). LdNDT immobilization on
SiGlx, was carried out at 4 ◦C using 0.5 g of support and 10 mL of enzyme in carbonate
buffer (0.1 M; pH 10.0). The mixtures were centrifuged for 15 min at 5000 rpm and
the supernatant was recovered for protein quantification several times to determine the
percentage of immobilization [32]. Finally, residual reactive groups were inactivated by
addition of BH4Na (1 mg/mL).

Glutaraldehyde-modified biomimetic silica nanoparticles (SiG) were synthesized
using, 1 g silica which was incubated with 20 mL of a glutaraldehyde solution (15%, v/v in
25 mM sodium phosphate buffer, pH 7.0) at 25 ◦C and agitation by inversion for overnight.
The SiG support was centrifuged and washed three times with 25 mM sodium phosphate
buffer (pH 7.0). For LdNDT immobilization, 0.5 g of SiG was mixed with 10 mL of enzyme
solution in 25 mM sodium phosphate buffer (pH 7.0) and incubation was performed at 4 ◦C.
The mixtures were centrifuged for 15 min at 5000 rpm and the supernatant was recovered
for protein quantification several times to determine the percentage of immobilization [32].

To carry out LdNDT immobilization by adsorption on the silica nanoparticles surface
and subsequently coating them with glutaraldehyde (SiAdsG), 0.5 g of crude silica was
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incubated with 10 mL of enzyme solution in 25 mM sodium phosphate buffer (pH 7.0) at
4 ◦C for 16 h. After incubation, the derivative was recovered by centrifugation and mixed
with glutaraldehyde 0.5% (v/v) in 25 mM sodium phosphate buffer (pH 7.0) at 25 ◦C for 1 h
to allow cross-linking reaction.

2.4.3. Cyanogen Bromide (CNBr) Immobilization

For CNBr immobilization, 10 mL of purified LdNDT in 25 mM sodium phosphate
buffer (pH 7.0) were added to 0.5 g of previously activated support. The mixture was stirred
gently for 2 h, at 4 ◦C and after that, the percentage of immobilization was calculated [32].
Then, the supernatant was removed and 20 mL of ethanolamine (1 M, pH 8.0) wasadded
for 2 h to block the cyanogen bromide groups on the support. Finally, the derivative was
washed twice with 25 mM sodium phosphate buffer (pH 7.0) and stored at 4 ◦C until use.

2.5. Biochemical Characterization of SiGPEI25000-LdNDT Derivative

To assay the effect of pH and temperature on biocatalyst activity, 33 mg SiGPEI25000-
LdNDT (10 µg of immobilized LdNDT) were incubated with 1 mL of reaction solution
containing 0.5 mM 2-ChlAde and 1.5 mM Thd at 200 rpm during different times. The effect
of pH on SiGPEI25000-LdNDT activity was tested using sodium acetate (pH 5.0) and tris-
HCl (pH 7.0 and 9.0), as reaction buffers (25 mM). Moreover, the temperature profile was
assessed across a 30–60 ◦C interval.

2.6. Derivative Entrapment in Alginate

There were 0.33 g SiGPEI25000-LdNDT derivative added to a 1 mL sodium alginate 6%
(p/v) in physiologic solution. The mixture was added drop-wise to a 30 mL stirred solution
of 0.3 M CaCl2 and incubated for 15 min at 25 ◦C [33]. The formed beads, SiGPEI25000-
LdNDT-Alg, were filtered and washed twice with 25 mM tris-HCl buffer (pH 7.0).

2.7. Surface Morphology Study

Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX)
analysis was made with a Philips 505 scanning electron microscope using an accelerating
voltage of 25 eV. The solid samples were metalized with gold. The chemical composition of
the materials was analyzed by X-ray scattering.

2.8. Thermal Inactivation and pH Stability

To study the thermal stability, the obtained biocatalysts SiGPEI25000-LdNDT and SiGPEI25000-
LdNDT-Alg were incubated at 30, 50 and 60 ◦C in 25 mM tris-HCl buffer (pH 7.0), for different
times during periods superior than 3000 h.

In a similar way, the effect of pH on biocatalysts stability was determined. SiGPEI25000-
LdNDT and SiGPEI25000-LdNDT-Alg were incubated at 30 ◦C in the presence of 25 mM
sodium acetate buffer (pH 5), 25 mM tris-HCl buffer (pH 7), or 25 mM tris-HCl buffer
(pH 9) at different times during 3300 h.

Residual activity in cladribine biosynthesis as previously described was determined.
Protein release was evaluated by Bradford and the amount of protein detected in super-
natant was determined.

2.9. Storage Stability and Operational Reusability

Storage stability was assayed by keeping SiGPEI25000-LdNDT and SiGPEI25000-LdNDT-
Alg biocatalysts in 25 mM tris-HCl buffer (pH 7.0) at 4 ◦C and determining its ability in
cladribine biosynthesis for 300 days, as previously described.

Furthermore, the reusability of SiGPEI25000-LdNDT and SiGPEI25000-LdNDT-Alg was
evaluated through successive standard cladribine biotransformations until 50% of initial
activity loss or matrix integrity loss. Each reuse was performed for 15 min under previously
optimized conditions.
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2.10. Bioprocess Scale-Up

A scale-up bioprocess was assayed, for cladribine biosynthesis, using a batch system
with an airlift column (H: 120 mm, D: 3.4 mm). Biosynthesis was carried out using 0.3 g of
SiGPEI25000-LdNDT-Alg in 10 mL of reaction medium, containing 0.5 mM 2-ChlAde and
1.5 mM Thd in 25 mM tris-HCl buffer (pH 7.0) at 30 ◦C.

2.11. Analytical Methods

Cladribine biosynthesis was quantitatively monitored by HPLC (Dionex, Ultimate
3000, Thermo Scientific) equipped with a UV detector (UV/Vis 156, Dionex) using a
Nucleosil 10 C18 100A column (10 µm, 300 mm × 4 mm). An isocratic mobile phase of
water/methanol (90:10, v/v) and a flow rate of 1.5 mL/min were used and evaluated at
265 nm. Retention times of thymine (Thm), Thd, 2-ChlAde, and 2-ChlAdo (cladribine)
were 3.3, 5.1, 12.2, and 26.8 min, respectively. Cladribine was characterized in multiple
reaction monitoring (MRM) mode using an AB5000 triple quadrupole mass spectrometer
(Applied Biosystems, San Jose, CA) equipped with an electrospray ionization source (ESI).
The ion ESI-mass spectrum of the product showed the peak of 2-ChlAdo [M+H]+: 286,
which were consistent with the molecular mass described for the product (average mass:
285.6873 and monoisotopic mass: 285.0629). The software Xcalibur 1.3 was used.

2.12. Molecular Modeling

As previously described type II NDT from Lactobacillus leichmannii, LlNDT (PDB
id 1F8X) was selected as structural template for homology modeling (98% of identity)
employing Swiss-Model server. Missing amino acids in all subunits were accomplished
throughout interactive molecular graphics program PyMOL [34]. Thd was manually
docked into LdNDT active site by means of structural best-fit superposition onto the
former nucleoside. The system was prepared and energy progressively refined in TIP3P
explicit solvent according to [35]. Moreover, 30 ns of unrestrained molecular dynamics
simulation were performed to achieve the most suitable LdNDT-Thd complex, according
to a previously described protocol [36]. Resulting trajectories were processed by module
implemented in AMBER16 [37].

2.13. Sustainability Impact

Green chemical parameters of the described bioprocesses were calculated to demon-
strate mass utilization efficiency. The environmental factor (E-Factor) is a measure of
the industrial environmental impact. Carbon efficiency (C-efficiency) and atom economy
(A-economy) are designed as parameters to evaluate the efficiency of synthetic reactions.
All the above-mentioned parameters were calculated as previously described [38].

3. Results and Discussion
3.1. Enzyme Immobilization Screening

As previously described, LdNDT is able to recognize many different purine analogs
and has high activity across a wide range of temperatures [31]. However, the use of soluble
enzymes in biocatalysis has many limitations because of the high cost of recombinant
enzymes, low stability, and the complicated downstream processing to recover the en-
zyme from the reaction media [39]. Based on this, enzyme immobilization emerges as an
alternative to overcome all these drawbacks, favoring product recovery and improving
biocatalyst reusability and stability. Therefore, LdNDT was selected as a candidate for
further immobilization studies.

The use of silica nanoparticles as a support for enzyme immobilization has attracted
considerable attention due to their biocompatibilty, low toxicity, and scalable availability.
The silica synthesized by diatoms is an interesting starting point for enzyme immobilization
since it occurs under mild conditions compatible with biological activity [26,40]. Biomimetic
or bio inspired silica is thein vitrosilica formation through reactions derived or similar to
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those occurring in vivo. It produces nanostructured particles and is carried out at close to
neutral pH and room temperature under aqueous conditions.

With this aim, LdNDT immobilization was assayed onto different biomimetic aminated
silica supports using several methodologies, such as biocatalyst entrapment on biomimetic
silica matrix (SiBio) [41], covalent immobilization onto silica nanoparticles functionalized
with glyoxyl (SiGlx) [10,42,43] or glutaraldehyde (SiG) [44–46], and ionic adsorption [47] onto
biomimetic silica nanoparticles followed by glutaraldehyde cross-linking (SiAdsG) [42,43,46].
Moreover, as a control of the immobilization process, LdNDT was also immobilized onto
agarose activated with cyanogen bromide (CNBr) [48], a well-known support used for enzyme
immobilization.

Due to the low immobilization percentages, together with a significant loss of catalytic
activity observed when LdNDT was immobilized in SiBio and SiGlx; the SiBio-LdNDT
and SiGlx-LdNDT derivatives were discarded after the initial screening (data not shown).
In contrast, the derivatives obtained after LdNDT immobilization on SiG, SiAdsG and CNBr
supports (SiG-LdNDT, SiAdsG-LdNDT, and CNBr-LdNDT) displayed high immobilization
percentages (50–100%), and also, a high retained activity (around 70–100%).

Since soluble LdNDT was stable at alkaline pH values for a period of 30 h [30], it was
not expected that pH 10 incubation onto silica functionalized with glyoxyl (SiGlx) led
to this drastic loss of activity. So, too deep into this unexpected side-effect and to try to
understand the effect of multipoint binding on enzyme activity, different 3D homology
models of both, LdNDT and complexed with Thd, were built.

As previously described, LdNDT is a homo-hexamer in solution, organized as a
trimer of dimers [30,31]. Each dimer displays two active sites formed by different amino
acids of both monomers. However, after seeing the exposed surface of lysines residues,
we could observe that there are two amino acids (Lys 48 and 62) present in a catalytic loop
(Figure 2). This highly mobile and flexible loop act as active site flap over, shielding it
from surrounding environment [6,7], and also contains a glutamine residue (Gln46) which
hydrogen bonds to N 3′and O 6′ from pyrimidine moiety.
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In this context, results reported by the H++ protonation predictor program (http:
//biophysics.cs.vt.edu/H++, accessed on 24 March 2021) (Table S1, Supplemental Mate-
rial) [48–50] displayed that both, Lys 48 and 62, are deprotonated at pH values required for
immobilization on glyoxyl agarose (pH 10–11). As a consequence, they can be involved
in the covalent linkages, reducing the mobility and flexibility of this catalytic loop and
avoiding the proper binding orientation of pyrimidine ring during the catalytic process,
which leads to a pronounced loss of activity.

In contrast, covalent immobilization onto SiG nanoparticles or CNBr agarose beads
displayed negligible effects on enzyme activity. According to Table S1, a pKa = 7 is deduced
for N-terminus, which is lined with an unipunctual immobilization through N-terminus
under immobilization conditions required for immobilization in SiG nanoparticles or CNBr
agarose (pH 7.0) [48–51]. Moreover, as shown in Table S1, Lys 48 and 62 residues are
not deprotonated at pH 7.0, which prevents the immobilization through these surface
Lys residues, which avoids the distortion of the active site architecture [6,7]. Since the
N-terminus is not involved in catalysis in LdNDT, and it is far from the active site, a high
activity loss was not expected for the unipunctual immobilization through N-terminus
(as corroborated for CNBr-LdNDT, SiG-LdNDT derivatives).

3.2. Synthesis of SiG Nanoparticles Using Several PEI Sizes

It is known that the amount of PEI adsorbed to the surface is known as the polymer
coating surface. The higher the molecular weight of the coating polymers, the larger coating
nanoparticle surface is obtained and a stabilizing force of the sílica is achieved [52]. Therefore,
the obtained silica nanoparticles using smaller PEI Mw could be less stabilizing than those
obtained with PEI of a larger size. Based on this, PEI of three different sizes (Mw 1.200–1.300,
25.000, and 70.000) were evaluated in the synthesis of glutaraldehyde-activated biomimetic
silica nanoparticles, obtaining SiGPEI1200-1300, SiGPEI25000 and SiGPEI70000 supports.

The immobilization of LdNDT was then tested using the obtained supports and the
biocatalytic capacity in cladribine biosynthesis of the derivatives SiGPEI1200-1300-LdNDT,
SiGPEI25000-LdNDT, and SiGPEI70000-LdNDT was compared with soluble LdNDT and CNBr-
LdNDT (Table 1).

Table 1. Covalent immobilization of LdNDT onto different supports.

Biocatalyst Immobilization (%) Specific Activity
(IU/mg) a Retained Activity (%)

LdNDT
230 µg b 70 2.9 ± 0.1 94

SiGPEI1200-1300-LdNDT

3.0 ± 0.1 97
15 µg b 100
95 µg b 97
230 µg b 83
470 µg b 50

SiGPEI25000-LdNDT

3.0 ± 0.1 97
15 µg b 99
95 µg b 97
230 µg b 88
470 µg b 55

SiGPEI70000-LdNDT

3.0 ± 0.1 97
15 µg b 98
95 µg b 97
230 µg b 81
470 µg b 50

a Reaction conditions: 0.01 mg of enzyme (soluble or immobilized) were incubated at 50 ◦C and 200 rpm for
15 min in 1 mL 25 mM tris-HCl buffer (pH 7.0) containing 0.5 mM 2-ChlAde and 1.5 mM Thd. b Amount of added
enzyme (µg). ND: non determined.

http://biophysics.cs.vt.edu/H++
http://biophysics.cs.vt.edu/H++
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3.3. Optimization of Reaction Parameters

As shown in Table 1, SiGPEI25000-LdNDT displayed the most interesting enzyme
load/activity ratio, so we selected the derivative SiGPEI25000-LdNDT obtained using 230 µg
of initial protein, for further experimental studies. To evaluate the effect of pH and
temperature on the reaction time course, different experimental conditions were assayed
(Figure 3).
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buffer, pH 7.0; (N) 25 mM tris-HCl buffer, pH 9.0. (B) Effect of temperature on reaction time course,
(•) 30 ◦C, (�) 50 ◦C, and (N) 60 ◦C.

According to the obtained results, neutral and low-acid pH values were shown to
be the most promising experimental conditions (>90% conversion), whereas SiGPEI25000-
LdNDT displayed an optimal conversion rate in the temperature range from 30 to 50 ◦C.
These results were similar to those previously observed for soluble protein [30].

3.4. SiGPEI25000-LdNDT Stabilization by Calcium Alginate Entrapment

Among natural matrixes, sodium alginate is considered an efficient option for enzyme
immobilization because it is nontoxic, hydrophilic, biodegradable, and biocompatible [53].
It has also been demonstrated that calcium alginate entrapment significantly improves en-
zyme stability and allows easy recovery and reuse of the biocatalyst, favoring a subsequent
bioprocess scale-up.

With the aim of optimizing the biocatalyst for future scale-up studies, SiGPEI 25000-
LdNDT derivative was successfully entrapped in calcium alginate to obtain SiGPEI25000-
LdNDT-Alg biocatalyst [29,54–56]. The double stabilized biocatalyst was able to achieve
86% of cladribine conversion at 15 min, while after 30 min of reaction a conversion of 96%
was achieved, equaling that achieved by its counterpart without trapping. As expected,
the biosynthetic rate of the entrapped biocatalyst decreased slightly, probably due to
diffusion restrictions associated with the alginate coating [54–56].

3.4.1. Temperature and pH Stability

To determine the effect of alginate coating on biocatalysts stability, the effect of tem-
perature and pH on the stability of SiGPEI25000-LdNDT and SiGPEI25000-LdNDT-Alg was
assayed (Figure 4). As shown SiGPEI 25000-LdNDT displayed excellent stability across a
broad range of temperatures, exhibiting high stability at 50 ◦C (t1/2 ≈ 3100 h) and 60 ◦C
(t1/2 ≈ 600 h) but also high long-term stability at 30 ◦C (60% retained activity) for incubation
periods of more than 3300 h (Figure 4A). More interestingly, the alginate entrapped biocata-
lyst improved the stability of SiGPEI 25000-LdNDT when stored at 50 ◦C (t1/2 ≈ 3300 h) and
60 ◦C (t1/2 ≈ 800 h) and enhanced the above-mentioned high long-term stability at 30 ◦C
(≈80% retained activity during 3300 h) (Figure 4B).
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In a similar way, the obtained biocatalysts, SiGPEI25000-LdNDT and SiGPEI25000-LdNDT-
Alg, were also incubated at different pH values (pH 5.0, 7.0 and 9.0) at 50 ◦C (Figure 4C,D),
and we could observe a similar tendency than that shown for thermal stability experiments.
In this sense, both biocatalysts showed a significant improvement in stability over soluble
enzymes (Figure S1), which is an operational added value. Since the primary limiting factor for
industrial synthesis of purine nucleoside analogs is the poor solubility of some purine bases in
aqueous solutions (e.g., adenine, hypoxanthine, or guanine) [57,58], the excellent operational
stability at alkaline pHs of both derivatives qualifies them as potential biocatalysts for the
industrial synthesis of purine nucleoside analogs, such as araA, araG, or ddI [5].

To get a possible explanation about this phenomenon, we evaluated the disposition
of N-terminus residues in both, dimeric and hexameric form, concluding that the most
probably binding involves three N-terminus of different dimers located in the same axial
plane (Figure 5). This three-point union provides not only higher rigidification of LdNDT
but also contributes to preventing subunit dissociation in the hexamer, leading to a non-
expected high thermal stability. Moreover, the entrapment into calcium alginate also
increased this particularly high stability, probably due to the confinement of SiGPEI25000-
LdNDT within the support, which contributes to increasingbiocatalyst stability and also
protects the derivative from surrounding conditions.
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3.4.2. Scanning Electron Microscopy (SEM) Analysis

The analysis of the morphological characteristics of the SiGPEI25000-LdNDT and SiGPEI25000-
LdNDT-Alg biocatalysts was performed by SEM (Figure 6). Typical spherical nanoparticles of
biomimetic silica, in the 400–800 nm range were observed (Figure 6A). Glutaraldehyde prompts
the formation of randomly agglutinated particles, but these aggregates decrease by the presence
of protein, which could reduce the number of free glutaraldehyde molecules [59]. On the
other hand, micrographs of SiGPEI25000-LdNDT-Alg show spherical particles (3 mm) due to the
presence of alginate (Figure 6B). Energy dispersive X-ray spectroscopy (EDX) spectra revealed
the presence of calcium and chlorine on SiGPEI25000-LdNDT-Alg, introduced by the calcium
alginate matrix (Figure 6C,D).Biomolecules 2021, 11, x FOR PEER REVIEW 12 of 17 
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3.5. Storage Stability and Reusability of SiGPEI25000-LdNDT and SiGPEI25000-LdNDT-Alg Biocatalysts

Taking into account the above mentioned results we thought SiGPEI25000-LdNDT and
SiGPEI25000-LdNDT-Alg could be valuable biocatalysts for the synthesis of nucleoside analogs,
we continued with the characterization of some other operational features, such as storage
stability and reusability. Subsequently, storage stability was assayed by keeping the obtained
biocatalysts at 4 ◦C and determining their activity at different time points (Figure 7A). Both
stabilized biocatalysts maintained more than 85% of their initial activity for at least 10 months
(300 days), which is far from the storage stability displayed by soluble LdNDT when stored at
4 ◦C (85% retained activity after 30 days) [30].
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Biocatalyst recycling is an essential pre-requisite for its industrial application, there-
fore, both biocatalysts, SiGPEI25000-LdNDT and SiGPEI25000-LdNDT-Alg, were employed
in consecutive batch reactions (Figure 7B). Both maintained ≥50% retained activity over
1300 cycles, but at this point SiGPEI25000-LdNDT suffered a slow but continuous decrease
in retained activity. In contrast, SiGPEI25000-LdNDT-Alg was successfully reused up to
2100 cycles with negligible loss of activity, which considerably increased the reusability
of alginate-free derivative. These results are lined with those shown for thermal inactiva-
tion experiments, which displayed an excellent thermal stability, but also highlight the
extremely high operational stability for both derivatives. As suggested above, the entrap-
ment of SiGPEI25000-LdNDT on alginate, led to a higher stabilization of the derivative but
also contributed to avoiding the mechanical damage associated withmechanical stirring,
which could promote the subunit dissociation and therefore a reduction in biocatalysts’
reusability.

Although a high number of NDT-mediated bioprocesses using immobilized biocata-
lysts have been reported during the last decade [10,11,29,32,33,38,42,43,45,46,54,55,60,61],
most of them focused on cladribine synthesis [11,30,38,45,54,61], the low biocatalyst
reusability under assay conditions often hinders their industrial implementation. Illus-
trative examples of this operational problem are cladribine synthesis using PDT from
Trypanosoma brucei immobilized (TbPDT) onto glutaraldehyde-activated microparticles
(25 reuses without any activity loss, 1 mM substrates, 41% conversion) [45] or mutant
TbPDTV11S immobilized onto Ni2+ chelate magnetic microparticles (10 reuses without
any activity loss, 2 mM substrates, 21% conversion) [61]. This operational problem was
also observed for other immobilized enzymes (e.g., cascade synthesis of cladribine using
immobilized PNP and PyNP from Geobacillus stearothermophilus; 20 reuses, 5 mM substrates
85% conversion) [62]. Interestingly, several recent articles have addressed this issue, devel-
oping novel immobilized derivatives with high operational stability and reusability, such
as Arthrobacter oxydans cells immobilized on alginate (20 reuses, 0.5 mM sub-strates, 85%
conversion) [54] or Thermomonospora alba whole cells entrapped in nanostabilized hydrogels
(270 reuses, 0.5 mM substrates, 89% conversion) [38]. However, these experimental results
are surmounted by those shown in this work (2100 reuses, 1 mM, ≈95% conversion).

3.6. Bioprocess Scale-Up

Finally, as a proof of concept, the tentative scale-up of SiGPEI25000-LdNDT-Alg medi-
ated synthesis of cladribine was carried out using a batch system with an airlift column,
increasing the biocatalyst amount and reaction medium volume by tenfold. Reaction
productivity was not significantly affected in comparison with micro-scale assays, afford-
ing 90% of reaction yield at 30 min, allowing us to obtain 2.6 mg of product per hour as
evaluated by HPLC. Therefore, considering its demonstrated reuse capacity, this combined
biocatalyst could produce 1.8 g of cladribine, forty times more than that required per
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treatment cycle for an average patient (44 mg), using a dosing regimen of 0.09 mg/kg
Q7D43.

Additionally, several green parameters such as E-factor, C-efficiency, and A-economy
were calculated for the proposed bioprocess (Table 2).

Table 2. Scale-up bioprocess for cladribine biosynthesis using a batch bioreactor. Environmental
factors were calculated as previously reported [38,63].

Specific Productivity a E-Factor C-Efficiency A-Economy

8.6 1.6 67 69
a Cladribine (mg/h)/g catalyst.

In this way, the E-Factor value for cladribine biotransformation was <2, suggesting
mass utilization efficiency and a significant decrease inwaste production. Furthermore,
C-Efficiency and A-Economy are parameters used to evaluate the efficiency of synthetic
reactions, showing a positive effect on atom recovery and bioprocess efficiency [64].

4. Conclusions

Herein we report, for the first time, the immobilization of LdNDT onto different
supports. Among resulting immobilized derivatives, SiGPEI25000-LdNDT was selected as
the optimal biocatalyst for further biochemical studies. With the aim to obtain a highly
stable derivative, SiGPEI25000-LdNDT was also entrapped in calcium alginate, leading to a
SiGPEI25000-LdNDT-Alg biocatalyst, which significantly enhanced the stability of soluble
LdNDT, but also widely outperformed the thermal stability and reusability of SiGPEI25000-
LdNDT derivative.

Finally, the scale-up of cladribine biosynthesis by the developed biocatalyst; SiGPEI25000-
LdNDT-Alg, was achieved. Thus, an environmentally friendly process which displays an
excellent stability, reusability, and high productivity for low cost cladribine biosynthesis
using a novel double stabilized NDT biocatalyst, was developed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11050657/s1, Figure S1: Thermal inactivation and pH effect on stability of soluble LdNDT,
Table S1: Computed pKa values of the surface exposed lysine residues in LdNDT using the H++
server (http://biophysics.cs.vt.edu/H++, accessed on 24 March 2021).
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