
End-User Development of Voice User Interfaces based on 
Web content 

Gonzalo Ripa 1, Manuel Torre1, Sergio Firmenich1,2, Gustavo Rossi1,2 
1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata 

2 CONICET, Argentina 
{sergio.firmenich,gustavo}@lifia.info.unlp.edu.ar 

Abstract. Voice Assistants, and particularly the latest gadgets called smart 
speakers, allow end users to interact with applications by means of voice com-
mands. As usual, end users are able to install applications (also called skills) that 
are available in repositories and fulfill multiple purposes. In this work we present 
an end-user environment to define skills for voice assistants based on the extrac-
tion of Web content and their organization into different voice navigation pat-
terns. We describe the approach, the end-user development environment, and fi-
nally we present some case studies based on Alexa and Amazon Echo. 

Keywords: Voice Assistant, End-User Development, Web content 

1 Introduction 

The World Wide Web has become the main information source and service platform. 
In parallel, speech recognition algorithms and technologies around it have experienced 
strong advances in the last ten years, reaching a broad consumption by part of end users. 
Nowadays, we can see new kinds of gadgets that allow the access to content and func-
tionalities already offered in the Web, but under another user interaction mode based 
on voice interaction. This is the case of voice assistants in the form of smart speakers 
such as Amazon Echo or Google Home. As any other smart device, these gadgets allow 
users to install applications (also called skills) that offer specific information services 
[1]. Some smart speakers’ applications are related to the command of smart devices, or 
even a smart devices mashups by the use of platforms for IoT such as IFTTT [2] or 
Node-Red [3].  However, other kind of smart speaker applications are more focused on 
reading and interacting with information and services already published by existing 
Web applications, such as reading news from a news portal, or asking for a product’s 
price from Amazon.com. 

Suddenly, a process is ongoing regarding how Web applications owners move 
the access to their content and services to these voice-based user interaction devices. 
For instance, the booking site Expedia.com offers an Amazon Echo Skill that lets end 
users search prices for accommodation and flights. A similar process happened when 
smart phones emerged, and Web applications started to deliver native mobile applica-
tions for them. Nevertheless, different to this case where users are able to visit the Web 



2 

site from the mobile Web browser, when a native application does not exist (in the case 
of smart speakers) there is not a generic way to access content and services not deliv-
ered by a native application or skill. 

Web applications play a very relevant role in the users’ daily life; we use them 
for reading news, to consume different services, for working, and even for interacting 
with smart devices in the Web of Things. In spite of the progress on Model Driven 
Engineering [4] and Multi-Modal User Interfaces [5], a large majority of Web sites are 
not developed with these technologies and specifications, therefore delivering device-
specific applications (e.g. for providing voice access) is usually expensive.  

This paper aims to fill the existing gap between the available smart speakers’ 
applications and the preferred online Web services and contents that users consume on 
a daily basis by browsing the Web. We propose an end-user development environment 
by which end users may create their own extensions for voice assistants based on the 
abstraction and extraction of Web content and services that they are accustomed to use.  

The paper is organized as follows. Section 2 presents a background on differ-
ent aspects related to this approach. Section 3 introduces our approach and presents the 
rationale underlying our End-User Development environment, which is described in 
Section 4. Section 5 explains how the case studies used such as examples through the 
paper were developed for Amazon Echo. Finally, we give some conclusion and future 
works on Section 6. 

2 Background and related works 

This section presents a necessary background in different concepts and technologies 
related to our approach, before introducing it in Section 3. In this section, we also dis-
cuss about different works related to our intents. 
 
2.1 Voice User Interfaces  

Conversational agents and Virtual Assistants are not a new concept. Already on 1960, 
Licklider established the interest of “talking with computers” as one dimension to con-
template in human-computer interaction [6]. At that moment, speech production was 
more easily doable by electronic systems, but speech recognition had severe problems. 
Speech recognition algorithms evolved fast in the last decades, and we could appreciate 
research works for conversational agents (also known as conversational interfaces) al-
most twenty years ago [7] [8]. Nowadays, VUIs (Voice User Interface) are deployed 
among diverse kind of devices and interaction, such as smart phones, smart speakers, 
etc. 

Although VUI started to be broadly used with their inclusion in smart phones 
(for instance, Siri in iPhone1) the emergence of gadgets such as Google Home or Am-
azon Echo are changing their daily use and pervasiveness. These smart speakers allow 
users to start some conversational interaction with a voice command expressed in nat-
ural language, such as “Alexa, tell me the news”, in the case of Alexa service from 

                                                
1 Siri, https://www.apple.com/es/siri/, last accessed 3/14/2019 



3 

Amazon. Smart speakers are delivered with a set of base capabilities, for instance re-
garding the time and the weather, or other question-answer VUI that consumes vendors’ 
services, play music, read news, etc.; new capabilities (also known as “skills”) may be 
installed from repositories. In this way, other possible user tasks such as home automa-
tion, travel plan, online shopping, alternative information access, etc., may be added by 
installing third-party skills. 

Currently, and just for analyzing one case, the Alexa Skill repository is orga-
nized in categories and offers more than  50.000 skills2, almost doubling the number of 
skills available at the end of 2017 [9]. 

Table 1 lists the most relevant categories, the number of skills per category, 
an example of skill per category, and some samples of commands for this sample skill. 

Table 1. Table captions should be placed above the tables. 

Skill Category Amout of 
Skills 

Skill Example Skill Sample commands 

Business & Finance  over 1.000 Marketplace 
"Alexa, what's my Flash Briefing?", 
"Alexa, what's in the news?" 
 

Communication over 1.000 Mastermind 
"Alexa, Ask Mastermind to text <someone>", 
"Alexa, ask Mastermind to ring my phone" 
 

Education & Reference over 8.000 Couriosity No direct commands, this skill offer aleatory 
content that end user may skip. 

Games & Trivia  over 10.000 Twitch 
"Alexa, ask Twitch for followed channels",  
"Alexa, ask Twitch to play Monstercat" 
 

Lifestyle  over 7.000 Sleeptracker "Alexa ask Sleeptracker how I slept last night" 
 

Movies & TV 619 MDb's What's On TV 
Briefing 

"Alexa, what's my Flash Briefing?" 

Music & Audio  over 6.000 Connect Control for Spo-
tify 

"Alexa, ask Connect Control to play on device 
2" 
 

News  over 4.000 The Washington Post "Alexa, ask Washington Post for headlines" 

Shopping  153 Opening Times "Alexa ask Opening Times for Tesco Redruth 
Extra" 

Smart Home  over 1.000 Smart Life "Alexa, set hallway light to 50 percent" 

Sports  over 1.000 PGA Tour "Alexa, ask PGA TOUR for the leaderboard." 
 

Travel & Transportation  808 Madrid Transport 
“Alexa, open Madrid Transport” 
“incoming buses at 70" 
 

Weather  663 Temperature Now "Alexa, Temperature Now" 

 
 

                                                
2 Alexa skill repository: https://www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011, accessed February 20th 2019. 



4 

As the reader may note, the range of services offered by skills is very broad, and it 
is also remarkable that for some categories there are more than 4.000 ones (e.g  News). 
However, this is not surprising if we consider that for a same purpose we have a great 
variety of Web sources and services to achieve it. Consequently, it is straightforward 
to establish the possibility of creating new kind of skills using publicly available Web 
content and services (either in the form of Restful APIs or directly parsing and extract-
ing the desired Web content). 

Beyond this quantitative analysis, a recent study [10], shows that smart speakers 
users (the study was made with Google Home’s users) use skills (in order of relevance, 
i.e., from most used to less used skills) related to Music, Information, Automation, 
Smalltalk, Alarm, Weather, Video, Time, Lists, Others. This lets us to do a more qual-
itative analysis related to the kind of skills users prefer. One more time, we can appre-
ciate that for most of these categories there are several Web applications counterparts 
from where end users could read information or complete some business process using 
a device supporting normal Web browsing. Although some skills for automation of IoT 
devices could not satisfy this condition, it is clear that a very broad range of skills could 
be, or even are, based on existing Web contents and functionalities. 

The possibility of creating personalized voice commands is also relevant and has 
already been studied in the context of multi-model user interfaces [11]. However, alt-
hough this personalization system offers some kind of flexibility, end users are not able 
to manage the complete specification of VUI by their own. 

In this paper, we investigate how Web contents can be extracted, processed and 
used (as responses) by VUI applications, particularly for smart speakers. Our approach, 
involves a set of tools that let end users without programming skills to be the ones that 
can create these VUI specifications using preferred custom web content sources. 
 
2.2 Managing existing and third-party Web content  

The idea of information extraction we use in this approach is similar to some techniques 
for Web Scraping [12]. Web scraping is the process of non-structured (or with some 
weak structure) data extraction, usually emulating the Web browsing activity. It is usu-
ally used to automate data extraction in order to obtain more information by processing 
it.  

A common end-user driven technique for information extraction is the annotation 
of Web content. Some Web sites already tag their contents allowing other software 
artifacts (for instance a Web Browser plugin) to process those annotations and improve 
interaction with that structured content. A well-known approach for giving some mean-
ing to Web data is Microformats [13]. Some approaches leverage the underlying mean-
ing given by Microformats, detecting those objects present on the Web page and allow-
ing users to interact with them in new ways. According to [14], only 5,64% among 
more than 40 million Web sites provide some kind of structured data (Microformats, 
Microdata, RDFa, etc.). This reality raises the importance of empowering users to add 
semantic structure when it is not available.  

Several approaches let users adding structure to existing contents to ease the man-
agement of relevant information objects. For instance, Atomate it! [15] offers a reactive 
platform that could be set to the collected objects by means of rule definitions. Then 



5 

the user can be informed when something interesting (such as a new movie, or record) 
is added, edited or removed.   

Some End-User Development approaches arose to empower users to solve their 
particular needs by themselves. For instance, MashMaker [16] allows extracting widg-
ets with their properties, and later inserting these widgets in other Web pages n order 
to modify the application. Another work proposes the structuring and extraction of cli-
ent-side data models to create personal Web sites that run purely on client-side, i.e. the 
end user’s Web browser [17]. SearchAPI allows end users without programming skills 
to create search APIs by visually selecting the UI parts of Web applications search 
engines. In this way, the domain objects that an application offers can be searched by 
emulating the user interaction [18]. Similar approaches have arisen under the technique 
called Web augmentation, and it still a promising technology for end-user development 
[22]. However, to the best of our knowledge there are not end-user development ap-
proaches for developing entire VUI specifications by reusing existing Web content. 

3 VUI Specification by end users and based on Web contents 

In this section, we present our approach to define VUI by parsing Web content. First 
we present our approach in a glance, and Section 3.2 explains in details different un-
derlying aspects. 
 
3.1 The approach in a nutshell 

The base of our end-user development approach for VUI is three-fold: 
1. A mechanism for allowing users to select and define Web content blocks. For 

this purpose, we use Web content annotation and definition by means of visual 
tools and simple configuration. In the remaining of this paper, we call them con-
tent blocks. 

2. A way to specify how these content blocks should be used in a VUI and how 
this VUI must behave. We found that flowcharts are a suitable to model VUI 
behavior structure; nodes represent a specific content block and connections 
represent how these contents must be organized and read. 

3. An interpreter that processes a VUI specification, and obtain the Web pages’ 
DOM dynamically, then provides them and finally give the response to the user 
with the extracted text content. 

Our main idea is that end users can design flowcharts using the content blocks they 
previously created. The process starts by defining content block, which they can be 
used later in the flow editor to compose the VUI, to finally use these specifications from 
a native application on the voice-enabled smart device. Figure 1 depicts an overview of 
our idea, where the VUI specification (based on a flowchart) includes the content block 
A (from the Web Page A), and two other content blocks from Web Page B, one content 
block named B (that corresponds to a collection of related Web contents) and other 
named C. Imagine that the user wants to create a VUI for news based on the The New 
York Times’ Web site. This user wants to include some elements from the site´s home 
(Blocks 1, 2, 3, 4 and 5 from the image 2.a). These content blocks would be extracted 



6 

individually, such as the elements A and C in the generic mockup example from Figure 
1. However, this user also wants all the news for a specific news section from The New 
York Times (such as the highlighted one in the right image in Figure 2); our approach 
allows defining a set of siblings elements to compose a content block, which would 
behave as the B elements in Figure 1. 

 

 
Fig. 1. Our VUI interpreter processes VUI specifications that are flows defining how parts of 
Web pages must be read in front of voice interaction. 
 
3.2 Rationale: from web user interfaces to voice interfaces 

In this section we present the four dimensions that defines our EUD environment for 
VUI. 

Definition of content blocks 
We foresee two ways to define content blocks. One of them is based on the individual 
selection of each useful part, such as Figure 2.a shows. In this case, the user must select 
the UI element (a DOM element) to create it’s corresponding content block. The other 
way is to contemplate a set of UI elements as a whole content block that includes a 
collection of elements, such as Figure 2.b depicts. 

Usually, Web applications expose in their UI a representation of domain objects 
such as news, products, articles, etc. This means that on the Web client-side a user could 
recreate a simple domain model based on the attributes presented in the UI. For in-
stance, for the news presented in Figure 2.a, the attributes tittle, summary, date and 
author could be obtained from the UI. The same happens if we look for products in 
Amazon, whose UI presents name of the product, price, description, etc. The annotation 
process by which a content block is defined may consider this semantic specification, 
or be simpler and more direct and just consider the whole DOM element as a content 



7 

block. In this last case, by parsing the target DOM element it is possible to decompose 
it to detect different parts relevant to the VUI (anchors, text, etc.) automatically. 

Another important aspect is whether the content block is navigable or not. It is 
very common in a Web site to present excerpts of information for a given item and 
offering to navigate to the specific Web page corresponding to that item by clicking a 
link; this is the case of the news presented in Figure 2.a. This navigation option to obtain 
further information about a content block will be also considered in our approach. 
Finally, content blocks must be categorized in order to allow flexibility when the VUI 
behavior is defined. In this way, voice commands such as “ask for main news”, “ask 
for weather information”, etc., can be defined. 

 

 
(a) Different parts of the same Web page (b) Sibling elements from the same Web page 

Fig. 2. Web content blocks: (a) unique items selection (b) sibling items selection. 

A sample skill could be designed for using the content blocks from Figure 2.b, which 
is based on a set of siblings element sharing a topic. This skill could read the user the 
“Topics news” when he pronounces these work as a voice command. The skill may 
respond y reading the title of the first news, and ask to the end user if he wants to listen 
more about it or just to continue with the following: 

• User’s Command voice: “Topic news” 
• Amazon Echo: “women's hockey rivals prepare for the olympics by playing 

each other again and again, do you want to listen more about this news?” (this 
answer first tell the first news from the topic, and then ask to the user if he 
wants to listen more). 

• User’s Command voice: “yes”. 
• Amazon Echo: “BOSTON — Three days after the United States women’s 

hockey team lost to Canada, 5-1, in an exhibition game here on Oct. 25, USA 
Hockey unexpectedly added Cayla Barnes, an 18-year-old freshman at Boston 
College, to its roster. Do you want to continue listening more about this 
news?” 



8 

•  
 

(a) News’ Web page (b) Search results in a news portal 
Fig. 3. Web content blocks: (a) items details (b) search result items. 

Access to content blocks 
The Web is based on the concept of navigation among resources accessible by a uni-
versal resource location (URL). With this in mind, a specific Web site content can be 
retrieved if the URL is known. When facing a dynamic URL that changes in relation to 
published content or user session, navigation is another strategy to reach the Web con-
tent, given the Web site’s home. However, when there are large sets of data in a Web 
site, search engines become essential to reach relevant information items. With this in 
mind, our approach considers three ways to access Web content: 

• Direct Access: given an URL (which can be static or based on an API-based 
URL that allows to change some parameters values), it is possible to re-
trieve the Web page. This method is useful for getting the current state of a 
Web site that offers frequently updated information such as news, weather, 
etc. Figure 2, either (a) or (b), could be accessed in this manner.  

• Navigation: when the desired content cannot be access by a predefined 
URL, navigating through the links that come with the Web page retrieved 
is possible. Navigation is also important for retrieving more information for 
a content block. For instance, reading the details for a main news may imply 
to follow the link that allows end users to navigate from the Web site’s 
home to the specific news’ web page, whose URL could hardly be known 
beforehand. Imagine that the user wants to know more about the news rep-
resented by the Element 3, in Figure 2.a. Then, a Web page similar to the 
presented in Figure 3.a would be retrieved, where this news is presented. In 
cases like this, navigation is used to reach the target content block.  



9 

• Search: in cases where the VUI requires querying a Web application for 
specific information, the automated use of search engines could be used. 
For instance, if only elements related to a specific domain are required (for 
instance, news related to “Venezuela”, as Figure 3.b shows), then to emu-
late how the user would search it on the Web application could be useful. 
This method for Web content access is also relevant in the case of e-com-
merce, accommodation and flights Web sites, etc. 

Despite how the target Web page that contains the desired content is retrieved, once 
it is obtained it is necessary to parse it and extract the content block. For this goal, each 
content block has a template extractor, which is defined by end users using visual se-
lection and annotation tools. These annotations belong to the VUI definition and 
(among other aspects) contains the XPath expressions to extract a specific information 
element given a retrieved Web page. 
 
Order in which the same voice command reads several content blocks  
As we mentioned, this approach proposes using flow diagrams to arrange how content 
blocks are disposed in the VUI, because to respond a voice command, a sequence of 
content blocks will be read as a response. Once the content blocks are defined, it is 
important to define an order in which they will be read and under which voice interac-
tions. For example, for the content blocks in Figure 2.a, the voice command could be 
“Read today’s news” and the order in which the news must be read may be (Block1, 
Block2, Block3, Block4, Block5), in which each block number corresponds to the num-
bers in figure 2.a, or any other the end user defines.  

Configuration of the VUI’s behavior 
As we said, in our approach a flow diagram defines the main structure of VUI re-
sponses. Besides the established order, different aspects of the VUI behavior must be 
defined: 

1. How to read a content block: when the user says a command, the VUI will re-
spond using one or a set of content blocks. However, which parts or properties 
to read for each of these content blocks may be different in distinct use scenar-
ios. For instance, the user may be interested on reading just the main title or the 
complete content block for a news, or in a generic way, a specific collection of 
the semantic properties defined for that content block. Furthermore, if the block 
contains a navigable element, then it would be possible to offer deeper infor-
mation that could be extracted by retrieving the Web page defined in the content 
block’s link, etc.  

2. How to continue to the next content block: beyond how to read a specific content 
block, when it is finished, there are different possibilities to continue with other 
related ones. This is part of the definition of the VUI behavior, in which the end 
user must be able to define among different options: read following block with-
out asking, read following block without asking but pronouncing a predefining 
text, ask to the user if s/he want to continue, etc. 

With these two aspects, we aim to give support to behavior variability for the pro-
posed VUI. However, since it can be tedious and error prone to define each of these 
aspects for each element in the VUI flow (contemplating both nodes and arrows), we 
propose to use as a default option some VUI patterns. A pattern template defines the 



10 

transversal behavior to manage content blocks (1) and the transitions among them (2). 
However, to allow end users to customize their VUI and better support variability, they 
may change the pattern-based behavior for both a particular content block and for a 
transition to another content block. So far in our approach, a VUI pattern requires Ja-
vaScript programming skills to be defined, basically these are state machines for define 
the conversational behavior. 

4 SkillMaker: A Web browser-based environment for VUI 
Specification 

In this section, we present SkillMaker, our EUD environment, through an example. We 
first present the tool for defining extraction templates for content blocks, and later the 
editor of VUI based on flow diagrams using these content blocks. The whole environ-
ment is deployed as a Web browser extension (in particular as a Google Chrome plug-
in). 
 
4.1 Contents Blocks definition 
We use content annotation as the method to define a content block [19]. The process 
starts when the user decides to define a content block for the current Web site, which is 
done by clicking the main button of the SkillMaker Web extension – point (1) in Figure 
4 –. The result of this is that the DOM elements are highlighted when the pointer is over 
them. When the user chooses a specific DOM element, he may drag and drop it – point 
(2) in Figure 4 –into the extraction template definition box – point (3) in Figure 4 –. 

 
 

Figure 4. Web content selection for defining a content block 
 
Once a DOM element is selected, the annotation process starts by adding the 

semantic of the sub-DOM elements, such as Figure 5 shows. A detailed view is shown 
in Figure 6.a, where the confirmation for the title property can be seen. 

  



11 

 
Figure 5. Definition of a Web content block  

 
The process continues (Figure 6.b) by asking the end user if related content (basi-

cally sibling elements) should be considered, in order to support content blocks such as 
the one in Figure 2.a. Figure 6.b also shows that the tool detects navigation links for the 
selected DOM element automatically. In this way, the end user may consider this nav-
igation (see “Can navigate?” checkbox in Figure 6.c). Figure 6.c shows the edition form 
for other mandatory properties such as a category and a name. 

 
  

a. Semantic attributes edition b. Related content edition c. Final block edition 
Figure 6. Edition views of different steps of the block definition process 

 
When the end user confirms the creation of this content block, the tool stores it 

and offers to open the flow editor, which is explained next. Otherwise, the user may 
continue with the creation of content blocks for the same Web page or any other. 

4.2 VUI definition and deployment through examples 
The flow editor, also deployed in the same Web extension, has access to the content 
blocks defined by the end user, which can be dragged and dropped into the diagram 
editor’s canvas, as Figure 7 shows. In this example, the content block selected is the 
one representing all siblings elements from Figure 2.b. 



12 

 

 
Figure 7. Flow for read a set of sibling content blocks 

 
After adding several more blocks into the canvas, and also some links among 

them, the flow looks like the one in Figure 8. In these case, several content blocks 
representing the main news from different portals. 

 
Figure 8. A flow for reading the main news from each news portal 

 
When the user clicks on the “Deploy to skill” button, the editor opens a modal win-

dow (Figure 9) asking the user: 1) a name for the skill which will be used as a voice 
command to be answered with this flow, 2) the content reading pattern to use in the 
corresponding response. This last option relates to the Configuration of VUI behavior 
issue presented in previous section.  

 
Figure 9. Editing skill name and content reading pattern. 

 
The skill designed in the flow from Figure 8 uses the “Read only titles” pattern. In 

this example, 6 content blocks “main news” were defned for 6 news portals (Chicago, 
BBC, Washington Post, Telegraph, sfchronicles). A sample interaction with this VUI 
is the following: 



13 

• User’s Command voice: “Main News headlines” 
• Amazon echo: “N Korea We won't move on talks with Trump, next news…” 
 

A second case study was based on existing and frequently used skills, such as those in 
the weather domain. This skill is defined to answer with the temperature and the hu-
midity from Buenos Aires city, when the user says “Weather in Buenos Aires”. 
 

   
 a. Web page highlighting Web contents b. Temperature block  c. Humidity block 

Figure 10. Content blocks definition for the Weather skill 

The skill was built using information from weather.com. Figure 10 shows the 
blocks definition process. Two content blocks are defined, one for temperature and a 
second one for humidity. Figure 11 shows the corresponding flow. Since the interesting 
content were detected as titles, we used the “Read only titles” pattern. A possible con-
versation excerpt is the following: 

• User’s Command voice: “Buenos Aires weather” 
• Amazon Echo: “22, humidity 65%” 
 

 
Figure 11. VUI definition for the Weather skill 

End-User Development concerns 
We mentioned before that variability is a key aspect in EUD environments; there-

fore, the general rules to read content blocks and the links used by the pattern may be 
replaced by manually editing how to read these elements. For the case of the content 
blocks, Figure 12.a shows the available options, which range from read everything, read 
only the titles property, and whether the VUI must ask the user before reading the con-
tent block or not. 

Figure 12.b shows the configuration for the links. In this case, the available options 
are to read a particular text before starting with the content block, read the block directly 
without asking, ask for reading the next content block (which has the same impact that 
set it up for the following block’s configuration). 



14 

It is interesting to mention that these options came from the analysis of several ex-
amples that were useful to define the expressivity of the approach (further details are 
not included for the sake of space). However, new kinds of controls can be easily pro-
grammed. 
 

 
 

a. Editing VUI options for a Node b. Editing VUI options for a 
Link 

Figure 12. Editing VUI options for replacing patterns rules 
 

Our environment takes into account particularly the debugging concern described 
by Ko. [20] in the context of end-user software engineering approaches. This is because 
our approach is based on third-party Web content. The extraction template defined with 
our environment have references to DOM elements expressed in xPath. If a Web page 
changes its underlying DOM structure, these xPaths expressions may not work any-
more. Although there are ways to make them more robust [21], it still is possible that a 
substantial change in the target Web page’s DOM breaks the references. In this sense, 
the environment provides visual feedback in the editor when a particular content block 
seems to have a broken reference, as Figure 13 shows; these blocks have a red back-
ground in the menu. By clicking on one of them, the procedure for defining an extrac-
tion template starts in the corresponding Web page. If the corresponding Web page is 
not found, the user may define a new content block in any other Web site and store it 
with the same name. 

  
Figure 13. Content block with missing or broken DOM references 

5 Case Studies  

Al the examples presented in the paper were used for defining case studies achieving 
real interaction. We have carried on these case studies using Amazon Echo, which is 
based on Alexa. For these case studies, we create SkillHub, an Amazon Echo skill that 



15 

includes our Javascript-based interpreter for the VUI created with SkillMaker. SkillHub 
and SkillMaker are synchronized so when a new VUI flow is created, it is automatically 
available on the Amazon Echo. SkillHub also allows end users to ask for the content of 
a specific category of block. For instance, if for some block the user defines the cate-
gory “temperature”, SkillHub will read the current content from the Web page. VUI 
specifications made with SkillMaker are stored in JSON format and interpreted in this 
format by SkillHub. This Amazon Echo skill allows us to prove the VUI created with 
SkillMaker in a real scenario. We have developed the “Main news” presented in Figure 
8 and also the “Weather skill” shown in Figure 11. The process for defining these cases 
studies is quick and trivial. 

6 Conclusion and future works 

VUI are being increasingly used to allow communication with smart devices. These 
devices usually allow end users to install third-party skills to support new behaviors. In 
this paper, we presented an end-user development approach to allow end users to create 
their own VUI-based skills for using their preferred Web sources for information and 
services. The creation of VUI based on Web content could be an interesting way for 
users to gain more control while interacting with devices. 

We discussed the rationale and mechanics to transform Web content into VUI, 
which consists in extracting content blocks and arranging them in flow diagrams that 
will be interpreted for answering a voice command. We also showed our EUD environ-
ment, including the extraction template for content blocks and SkillMaker, our EUD 
tool to create VUI based on content blocks. The development time was very short; it 
just took some minutes for defining content blocks and the VUI for using them in 
SkillMaker. As a proof of concept we developed SkillHub, an Amazon Echo skill im-
plementing our approach. We used SkillHub to interact with the voice commands de-
fined using SkillMaker.  

References 
1. Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y., & Qian, F. (2018). Understanding and 

mitigating the security risks of voice-controlled third-party skills on amazon alexa and 
google home. arXiv preprint arXiv:1805.01525. 

2. IFTTT and Amazon Alexa, https://ifttt.com/amazon_alexa, last accessed 2019/3/13. 
3. Rajalakshmi, A., & Shahnasser, H. (2017, September). Internet of Things using Node-Red 

and alexa. In 2017 17th International Symposium on Communications and Information 
Technologies (ISCIT) (pp. 1-4). IEEE. 

4. Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in 
practice. Synthesis Lectures on Software Engineering, 3(1), 1-207. 

5. Elouali, N., Rouillard, J., Le Pallec, X., & Tarby, J. C. (2013). Multimodal interaction: a 
survey from model driven engineering and mobile perspectives. Journal on Multimodal 
User Interfaces, 7(4), 351-370. 

6. Licklider, J. C. R. (1960). Man-computer symbiosis. IRE transactions on human factors in 
electronics, (1), 4-11. 



16 

7. Cassell, J., Bickmore, T., Billinghurst, M., Campbell, L., Chang, K., Vilhjálmsson, H., & 
Yan, H. (1999, May). Embodiment in conversational interfaces: Rea. In Proceedings of the 
SIGCHI conference on Human Factors in Computing Systems (pp. 520-527). ACM. 

8. Kadous, M. W., & Sammut, C. (2004, August). InCa: A mobile conversational agent. In Pa-
cific Rim International Conference on Artificial Intelligence (pp. 644-653). Springer, Berlin, 
Heidelberg. 

9. White, R. W. (2018). Skill discovery in virtual assistants. Communications of the 
ACM, 61(11), 106-113. 

10. Bentley, F., Luvogt, C., Silverman, M., Wirasinghe, R., White, B., & Lottrjdge, D. (2018). 
Understanding the Long-Term Use of Smart Speaker Assistants. Proceedings of the ACM 
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 91. 

11. Kurniawati, E., Celetto, L., Capovilla, N., & George, S. (2012, January). Personalized voice 
command systems in multi modal user interface. In 2012 IEEE International Conference on 
Emerging Signal Processing Applications (pp. 45-47). IEEE. 

12. Ferrara, E., De Meo, P., Fiumara, G., & Baumgartner, R. (2014). Web data extraction, ap-
plications and techniques: A survey. Knowledge-Based Systems, 70, 301-323. 

13. Khare, R., & Çelik, T. (2006, May). Microformats: a pragmatic path to the semantic web. In 
Proceedings of the 15th international conference on WWW (pp. 865-866). ACM. 

14. Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., & Völker, J. (2013). 
Deployment of rdfa, microdata, and microformats on the web–a quantitative analysis. In The 
Semantic Web–ISWC 2013 (pp. 17-32). Springer Berlin Heidelberg. 

15. Van Kleek, M., Moore, B., Karger, D. R., & André, P. (2010, April). Atomate it! end-user 
context-sensitive automation using heterogeneous information sources on the web. In Pro-
ceedings of the 19th international conference on World wide web (pp. 951-960). ACM. 

16. Ennals, R., Garofalakis, M. Mashmaker : Mashups for the masses (demo paper). In Proceed-
ings of the 2007 ACM SIGMOD International Conference on Management of Data 
(SIGMOD’2007). 

17. Firmenich, S., Bosetti, G., Rossi, G., & Winckler, M. (2017, May). End-user software engi-
neering for the personal web. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering Companion (ICSE-C) (pp. 216-218). IEEE. 

18. Bosetti, G., Firmenich, S., Fernandez, A., Winckler, M., & Rossi, G. (2017, June). From 
Search Engines to Augmented Search Services: An End-User Development Approach. In In-
ternational Conference on Web Engineering (pp. 115-133). Springer, Cham. 

19. Firmenich, S., Bosetti, G., Rossi, G., Winckler, M., & Barbieri, T. (2016, June). Abstracting 
and structuring web contents for supporting personal web experiences. In International Con-
ference on Web Engineering (pp. 77-95). Springer, Cham. 

20. Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., ... & Rosson, 
M. B. (2011). The state of the art in end-user software engineering. ACM Computing Surveys 
(CSUR), 43(3), 21. 

21. Aldalur, I., & Diaz, O. (2017, June). Addressing web locator fragility: a case for browser 
extensions. In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive 
Computing Systems (pp. 45-50). ACM. 

22. Aldalur, I., Winckler, M., Díaz, O., & Palanque, P. (2017). Web Augmentation as a Prom-
ising Technology for End User Development. In New Perspectives in End-User Develop-
ment(pp. 433-459). Springer, Cham. 


