
Variability Features in Building Approaches

for Context-Aware Mobile Applications

Estevan Gómez-Torres1(B) , Cecilia Challiol2,3 , and Silvia E. Gordillo2,4

1 Carrera de Ingeniería en Informática, Universidad UTE,

Av. Mariscal Sucre y Mariana de Jesús, Quito, Ecuador

estevan.gomez@ute.edu.ec
2 LIFIA, Facultad de Informática, UNLP, La Plata, Buenos Aires, Argentina

{ceciliac,gordillo}@lifia.info.unlp.edu.ar
3 CONICET, Buenos Aires, Argentina
4 CICPBA, Buenos Aires, Argentina

Abstract. The growth of mobile applications has been exponential in the last

couple of years and it has come with technological advances, such as embedded

sensors in mobile devices. This brings out greater challenges in the development

of context-aware mobile applications, according to the demands of the current

market. Currently, there are building approaches for this kind of applications, but

these do not have flexibility in the generated applications. Until now, there is not

a unified solution for this kind of applications, so, this is an open research area.

This paper presents a taxonomy of variability concepts (Relevance, Combination,

Precision and Accuracy’s Margins, Configuration Type, and Execution Type) to be

taken into account when designing building approaches for context-aware mobile

application. When these approaches are designed from scratch considering these

variability concepts, this allows generating a wide variety of applications. The

contribution of our taxonomy is to help the designer to identify the potential

variability points in order to obtain more flexible approaches. The aim is to generate

a discussion in relation to the variability concepts of the proposed taxonomy, this

provides guidelines to be able to achieve variability in this kind of approaches. We

hope this will enrich the discussion in relation to this kind of approaches in order

to the unification of features that should be handled by these building approaches

to obtain variability.

Keywords: Building approaches · Context-aware mobile applications ·

Variability · Mobile computing

1 Introduction

In recent years, the growth of mobile applications has been exponential and it has come

with technological advances such as embedded sensors (GPS, accelerometer, etc.) in

mobile devices. This kind of progress has allowed context-aware mobile applications

© Springer Nature Switzerland AG 2020

E. Fonseca C et al. (Eds.): TICEC 2019, AISC 1099, pp. 109–123, 2020.

https://doi.org/10.1007/978-3-030-35740-5_8



110 E. Gómez-Torres et al.

[1] to penetrate the market, becoming more and more commons. Until a couple of years

ago, this was only a research topic and the applications that have been built did not go

beyond the prototypical stage. This generates a new challenge when having to think

about how to support the creation of this kind of applications to adapt to the demand.

The concept of context has been explored in different areas of Computer Science [2]

(e.g.: Artificial Intelligence, Home Automation, etc.). However, this is carried out from

different perspectives depending on each author [1], for example, modeling solutions,

building approaches for this kind of applications, etc. Although, this is a topic that

has been investigated in the last twenty years, there is not yet unified solution for this

kind of applications as mentioned in [1] and [3]. Therefore, it remains an open area of

research. Moreover, it has emerged a new issue, which consists of how to build context-

aware mobile applications that are really useful for users [4], something vital in today’s

market.

A feature of this kind of applications is the variability, which can be managed from

different levels of abstraction. For example, in [5] a way is proposed to provide variability

support at the modeling level at both designing and execution time. In [6], a taxonomy is

detailed understanding the differences and similarities between various ways of handling

the variability in context-aware software. When should be define building approaches

for context-aware mobile applications, there are not clear guidelines to take into account

to ensure that these support variability, particularly in the kind of applications that can

be generated. Besides, there are building approaches for both non-expert users [7] and

experts [8] which require some technical knowledge as modeling features. However,

these approaches are not designed to have variability features in the applications that

derive; for example, they only provide GPS as a location mechanism.

The aim of this paper is to present a taxonomy that specifies variability concepts to

be taken into account when designing approaches for the creation of context-aware

mobile applications. When these approaches are designed from scratch considering

these variability concepts, this allows generating a wide variety of applications. The

contribution of our taxonomy is to help the designer to identify the potential variability

points in order to obtain more flexible approaches. To do that, each concept of the

taxonomy is described using a pattern-based format, describing how and what could be

considered in the designing phase of this kind of approaches.

The aim is to generate a discussion in relation to the variability concepts of the

proposed taxonomy, this provides guidelines to be able to achieve variability in this

kind of approaches. We hope this will enrich the discussion in relation to this kind of

approaches in order to the unification of features that should be handled by these building

approaches to obtain variability.

The paper is structured as follows. In Sect. 2, related works are presented which are

related to the variability of context-aware applications. The proposed variability taxon-

omy is detailed in Sect. 3. In Sect. 4 a discussion of the topic is generated. Conclusions

and Future works are detailed in Sect. 5.



Variability Features in Building Approaches 111

2 Related Works

The concept of variability in context-aware applications has been handled from different

perspectives. In [9], 36 different ways of modeling context-aware are analyzed, which

implies variability in the form of representation of this kind of applications. Based on

these identified models, in [9] 10,498 elements of context are identified which more

than half do not have a clear classification of how to categorize them. In some cases,

context-aware models allow for handler variability not only at the design level, but

also at execution time [5]. This allows, for example, dynamically add context while the

application is running without requiring to be compiled again. Therefore, to have this

support, the modeling approach should be designed to consider variability.

In [6], a taxonomy is presented understanding the differences and similarities in how

variability is handled in context-aware software. This taxonomy focuses on analyzing

three axes: mechanisms to support variability in binding time (post-deployment and run-

time), context-feature’s types and dependencies between contextual and no-contextual

features. In [6] the authors are focus on variability in context-aware software not on

building approaches.

There are currently several building approaches for context-aware mobile applica-

tions. For example, the App Inventor [7] is an “online” program, which allows users

to create Android applications without having any technical knowledge. The generated

applications can include only GPS as a location-sensing mechanism. That is, users can

only create applications for outdoor spaces. The App Inventor allows configuring preci-

sion and accuracy of the location sensor (in this case, GPS). However, it is not possible

to combine accelerometer sensor to orientation sensor, in that the configuration reacts

to these three sensors separately. In this case, the App Inventor only focuses on some

contexts of the device and the user’s location.

On the other hand, WebRatio Mobile [8] allows users to create context-aware mobile

web applications. WebRatio Mobile is oriented to expert users who should have knowl-

edge of databases and hypermedia design. The generated applications are packaged in

PhoneGap, facilitating their use on both Android and iOS platforms. The users could

define contexts related to Device, Network Connectivity and Location. In this case, loca-

tion setting is also limited to GPS, allowing only applications for outdoor spaces to be

generated. It can define precision and accuracy related to GPS.

Considering the description mentioned above, these approaches [7] and [8] are lim-

ited. In particular, they focus only of building applications for outdoor spaces where

certain contexts are also considered, most of them related to the available APIs. There-

fore, these approaches are not designed to support variability in the kind of generated

applications. We hope to contribute in this aspect with the proposed taxonomy in this

paper.



112 E. Gómez-Torres et al.

3 The Proposed Variability Taxonomy

In [10] we present an initial version of a taxonomy for context-aware mobile applications

building approaches. Only a brief description of each concept of the taxonomy is detailed

in [10], without going into about how should be handled in building approaches.

We have been working in the area of context-aware mobile applications from more

than ten years, this allows us to know and identify points of variability in this kind of

applications. According to that, we think that the format used for design patterns in

different areas of Software Engineering is a good way to describe our taxonomy. Thus,

in this paper will expand each concept by describing them with a pattern-based format.

Note that each concept is described not only considered the existing literature (such

as [1–5]) but also based on our expertise in the area.

Each pattern of variability has the following structure:

• Name of the Variability Concept

• Scenario: Describe situations in which the concept be handled by building approaches.

This allows understanding situations that could be presented to the user of a building

approach, and how this concept would provide flexibility if it should be handled by

building approaches.

• Purpose: Define the specific objective or motivation for handler the concept from a

building approach.

• Applicability: Every concept has challenges that should be faced when it wants to

be implemented as part of a building approach. These challenges could be occur at

both levels conceptual approach and tool. Therefore, how it is feasible to handle these

challenges be shown.

– Applicability at Conceptual Approach Level: Represented the conceptual way to

handle these challenges. This is the first step that the challenges be handled by a

tool.

– Applicability at Tool Level: The ability of a tool to handle these challenges. In other

words, how the challenges can be treated from a tool. Sometimes happen that at

the conceptual level could be achieved, but at a tool level demands a lot of cost or

it is not viable according to the current technology.

Using the structure described above, each variability concept of the proposed

taxonomy is described below in Tables 1, 2, 3, 4, 5 and 6.



Variability Features in Building Approaches 113

Table 1. Variability concept: relevance.

Name of the variability

concept

Relevance

Scenario Classify, in some way, the level of importance of a context would

allow working with contexts at different levels. For example, to take

into account only the most important contexts to generate reduced

versions of applications which only provide services related to some

selected contexts. Having reduced versions allows, for example,

generating applications that are less heavy or that consume fewer

resources

Purpose Being able to specify the importance of each context, from a

building approach, would allow making different decisions

Applicability at

conceptual approach

level

A way of indicating the relevance of each defined context should be

provided, for example, using a numerical or descriptive ranking.

This could do it by associating a certain value with each defined

context. The scale of relevance should be clearly established

Applicability at tool

level

Using the scale of relevance defined at the conceptual level, from a

tool could be implemented using, such as, a combo-box with the

possible values. In addition, some actions could be taken related to

this values. For example, this could be implemented in the tool to be

considered when applications are derived, indicate which contexts

are considered in them

Although specifying the relevance is technically feasible to

implement in a tool, handling how this impacts, for example, in the

derivation of applications and also involves defining heuristics of

what actions to take based on the indicated values

Note that the flexibility of the tool could be affected by the

heuristics that are defined in relation to relevance

Table 2. Variability concept: combination.

Name of the variability

concept

Combination

Scenario Allowing indicating which contexts could be combined, for

example, to provide services that are more complex. This implies

defining which context they want to combine but also how they

will behave together to provide, for example, services

Purpose Being able to specify how contexts can be combined, from a

building approach, would allow providing complex services that

depend on several contexts

(continued)



114 E. Gómez-Torres et al.

Table 2. (continued)

Name of the variability

concept

Combination

Applicability at

conceptual approach level

A way of indicating how to combine contexts should be provided;

for example, grouping them in some way. Moreover, each group

should define how the different values of each contexts are

working together to provide, for example services. This could be

implemented using rules as if-them in which the conditions

indicated what is the specific value of each considered context, in

order to apply the rule

Applicability at tool level In a tool could be used the specification of combination defined at

the conceptual level. For example, visually represent the group of

contexts that want to combine, and then it associates services to

this group

Specify the combination of contexts is technically feasible to

implement in a tool; however, the specification of how to combine

services can be complex since there should be clear rules of how

to react to each value that these contexts could take

It is worth mentioning that sometimes the contexts take values

from sensors; this brings as a consequence the fact should be

considered the margin of error of these sensors when defining how

the contexts behave when they are combined

Table 3. Variability concept: precision and accuracy’s margins.

Name of the variability

concept

Precision and accuracy’s margins

Scenario Defining values of precision and accuracy’s margin related to

physical sensors allow having what is the error respect to the sensed

value. This helps to interpret better the context’s values that depend

on these sensors. For example, the accuracy of the GPS will allow

knowing how much the user’s location is accurate

Purpose Being able to specify the precision and accuracy in relation to

physical sensors, from a building approach, would allow interpreting

better the context’s values. According to these values, different

decisions could be made

(continued)



Variability Features in Building Approaches 115

Table 3. (continued)

Name of the variability

concept

Precision and accuracy’s margins

Applicability at

conceptual approach

level

A way to indicate the precision and accuracy related to physical

sensors should be provided. Different actions could be specified

according to these values, for example, to adjust the sensed value

according to the precision or accuracy which has. This could be

represented using value ranges

Applicability at tool

level

A tool could use how precision and accuracy’s margin have been

defined at the conceptual level. For example, entering numerical

values related to physical sensors, to indicate both the precision and

the accuracy of them. In addition, it should consider what services

(associated with these contexts) can be affected by how these sensors

behave. For example, if the GPS has a certain precision and accuracy,

then in the generated application it will be possible to reflect the

user’s location more accurately. Specifying precision and accuracy’s

margin related to physical sensors is technically feasible to

implement in a tool; however, the complexity is associated with how

these values affect services related to the contexts. So, this is not only

involved to define how to react to each sensed value but also how to

consider the precision and accuracy of them

Table 4. Variability concept: categorization.

Name of the variability

concept

Categorization

Scenario Classify the types of context would allow working with them in

different ways. For example, the derivation of the contexts of the user,

environment or mobile objects does not have the same treatment.

That is, it is not the same to take location from the user that a mobile

object; this impacts on which sensors are used in each case to take the

location

Purpose Being able to specify to which category a context belongs, from a

building approach, would allow being able to make different

decisions or to enable different options

(continued)



116 E. Gómez-Torres et al.

Table 4. (continued)

Name of the variability

concept

Categorization

Applicability at

conceptual approach

level

A way of indicating the context’s category to which it belongs should

be provided; for example, by a description. It should be clearly

established what concept is defined and what is associated with each

category, for example, sensors available for each category

Applicability at tool

level

Using the categories defined at the conceptual level, from a tool could

be implemented using, such as, combo-box with the possible values.

In addition, it should specify in the tool which restrictions are

associated with each category, for example, what sensors are

available or how these are derived in the generated applications

Although specifying the categories is technically feasible to

implement in a tool; however, handling how each of these impacts the

generated applications requires defining different heuristics. For

example, user’s contexts should be specified differently from mobile

objects’ context, but also be derived differently

Table 5. Variability concept: configuration type.

Name of the variability

concept

Configuration type

Scenario Specifying the configuration type associated with each context would

allow providing more flexibility in the generated applications. For

example, the configuration type could be passive or active, according

to [1]; in which these types are defined in relation to if it requires

user’s intervention or not. The passive configuration requires

specifying what data the user should enter, meanwhile the active

configuration is automatic, for example, using automatic learning. It

could also represent the default configuration

Purpose Being able to specify the configuration type, from a building

approach, would allow establishing in which way the contexts are set

to take their values

(continued)



Variability Features in Building Approaches 117

Table 5. (continued)

Name of the variability

concept

Configuration type

Applicability at

conceptual approach

level

When the configuration type is chosen, more information should be

specified in relation to what each type requires. For example, the

passive configuration requires defining what the user should specify.

Meanwhile, the active configuration should consider with what

automatic mechanism, it will be bound in order to make the

configurations dynamically in runtime. In the default configuration,

the values should be set. The configuration type impacts on the

generated application since it is necessary to incorporate as part of it

what each one requires

Applicability at tool

level

Using the types of configuration defined at the conceptual level, from

a tool could be implemented using, such as, a combo-box with the

possible values. In addition, what each type requires should be

implemented as a part of building approach in order to generate

applications with the corresponding configuration

Meanwhile, specifying the configuration type is technically feasible

to implement in a tool, handling what each implies is not trivial. For

example, the active configuration type requires automatic learning

which it would not be simple to have as part of the generated

application

The passive configuration type should be a little less complex to

implement since it could be defined by a form with the data that the

user could configure in relation to each context (or sensor associated

with it). The default configuration could be set from the tool with, for

example, selected options

Table 6. Variability concept: execution type.

Name of the variability

concept

Execution type

Scenario Specifying the execution type associated with each context would

allow providing more flexibility in the generated applications. For

example, execution type could be passive or active, according to [1];

in which these types are defined in relation to if it requires user’s

intervention or not. Passive execution requires user intervention (for

example, QR code reading); meanwhile active execution is automatic

(for example, GPS)

Purpose Being able to specify execution type, from a building approach,

would allow establishing information about how the contexts behave

(continued)



118 E. Gómez-Torres et al.

Table 6. (continued)

Name of the variability

concept

Execution type

Applicability at

Conceptual approach

level

When the execution type is chosen, more information should be

specified in relation to what each type requires. For example, passive

execution requires defining how the user interact with it, meanwhile

active execution is an automatic mechanism without intervention. The

execution type impacts on the generated application since it is

necessary to incorporate as part of it what each one requires

Applicability at tool

level

Using the types of execution defined at the conceptual level, form a

tool could be implemented using, such as, a combo-box with the

possible values. In addition, what each type requires should be

implemented as a part of building approach in order to generate

applications with the corresponding mechanisms

Specifying the execution type is technically feasible to implement in

a tool; however, handling what each implies is not trivial. The passive

execution requires detail of how the application will interact with the

user; as well as, how it will react for each possible interaction. For

example, in the case of having a passive execution mechanism, such

as reading QR codes to take the user’s location, it should be indicated

how the generated application behaves when the user reads an

incorrect code. Active execution is simpler to implement because it

only requires the available APIs. For example, if GPS is used to take

the user’s location, it is enough to make the appropriate connection to

the location’s API as part of the generated application. This execution

type is transparent to the users and their intervention is not required

It could be possible that a context, such as user’s location could

involve a mixed execution type, for example, reading of QR codes

and GPS. In this case, the two previous solutions are combined, but in

addition heuristics should be defined of which mechanism has more

priority given that the GPS works constantly. This add complexity in

the tools

Each variability concept of the proposed taxonomy is specified above. It could

observe that each concept could involve a value to be established, but the complex-

ity arises in relation to how each value impacts or what has to be defined based on it. The

biggest challenge comes from being handler from a tool and how to derive applications

considering what implies each variability concept. It should be mentioned that the tax-

onomy is not closed, but is an initial proposal to achieve flexibility in the context-aware

mobile applications building approaches.



Variability Features in Building Approaches 119

4 Discussion

In this section, it discusses different aspects of the taxonomy presented in Sect. 3; in

order to help the reader understand how each concept can affect the variability supported

by the building approaches.

In [5], a model is proposed which considers the separation between the aware-objects

concept of its context-feature and in addition from the sensors (which assign values to

these features). When this decoupling of concepts is considered from a building approach,

it allows the different layers could combine and thus support variability. For example, the

location-feature could set its values from different associated sensors, and each of them

could has different implementations. This decoupling allows reuse and extensibility.

This is a possible way to represent these concepts in a building approach to handler a

first level of variability; beyond that incorporates the variability concepts of the proposed

taxonomy in this paper.

According to what is detailed in [11], the sensors can be of different types, for

example, physical, virtual (using applications and services), direct user input, etc. Each

of them has its own configuration and way of execution.

Considering what has been analyzed previously, Fig. 1 is shown an example of two

aware-objects (User 1 and Package), each one with different context-features according

to its nature.

Fig. 1. Examples of aware-objects with its context-features which are related to abstract and

concrete sensors.



120 E. Gómez-Torres et al.

In addition, in Fig. 1 there is a separation between the concepts of abstract and

concrete sensors. This allows the flexibility that the same concept of an abstract sen-

sor is implemented differently, such as occurs with the GPS example; that could be

implemented using the Google Places API [12] or the Android Location API [13]. The

separation between the concepts of abstract and concrete sensors when it is consid-

ered from a building approach allows having more level of variability in relation to the

combination that can be handled.

It can also be observed in Fig. 1 that two sensors could set values to the same

context-feature (in this case, the location-feature). This decoupling allows sensors to be

added or removed without affecting the context concepts. This provides flexibility when

considered as part of a building approach.

Based on the example in Fig. 1, it is analyzed with more details how the variability

concepts of the proposed taxonomy can be considered.

The aware-objects could have its category associated. The range’s values of the cat-

egory are used by the building approaches when deriving context-aware mobile appli-

cations. For example, deriving code that represents the user concept is not the same as

referring to a mobile object.

The relevance could be associated with the context-features. The relevance range

could be used by the building approaches to generate reduced applications without all

the functionality. For example, in the example presented in Fig. 1, the location could be

more relevant than the activity; this depends on the services of the application that are

being modeled.

The combination could occur observing the values of different context-feature. From

building approaches should be able to allow the specification of rules, as well as the

actions that it triggers. Each time that a context-feature change its value the rules are

evaluated.

In the case of triggering services, they should be integrated into the building approach;

in order to later derive these as part of the generated applications. Other triggers could

update some context-features values. In the example of Fig. 1, it could happen that User

1 is waiting for the Package to arrive; a rule could be that each time the object’s state

changes, the user is notified as long as she/he is not in a meeting. In this case, the rule

observes the object’s state and the user’s activity, and based on its values, triggers the

warning to the user as a service.

Based on the analysis carried out, in Fig. 2 is shown a possible generalization of the

variability concepts: categorization, relevance and combination.

Following the analysis of the variability concepts of the proposed taxonomy, each of

the specific sensors could involve different types of configuration and execution. That

is, at this level these variability concepts could be handled from building approaches.

The configuration type is useful for a building approach since it allows identifying if

user’s intervention would be required or not. In the case of it is requiring it is important to

define how this would be carried out. In the case “Active” configuration [1], it should be

taken into account that the building approach should have, at least, one way of including

the monitoring program as part of the generated application. “Passive” configuration [1]

when is supported by building approach should have, at least, one way of indicating how

the user will perform such a configuration; for example, designing the form which would



Variability Features in Building Approaches 121

Fig. 2. Generalization of the variability concepts: relevance, combination and categorization.

then be embedded in the generated application. In the case of “default” configuration,

the generated application defines the fixed values which have been defined using the

building approach.

In the example of Fig. 1, the APIs related to GPS and Estimote Beacons [14], they

could be set, for example, as the default configuration. The monitoring program could

be set as “Active” configuration, so, it could learn to configure itself as it monitors.

Whereas the manual entry could have, for example, a “Passive” configuration, being

able to design from the building approach the form in which the user could enter new

possible values.

For the execution type, some specific sensors determine automatically how they

work; this facilitates the auto-completion of this value when it is handled by a building

approach. For example, if the option is GPS or Beacons, they have an “Active” execution,

meanwhile manual entry is “Passive” and it should define how the user could interact

with the generated application, for example, using a form. In the case of the monitoring

program could require or not user’s intervention, and this defines the execution type

associated with it. In this last case, the building approach could not autocompleted the

execution type associated with the sensor.

The specification of precision and accuracy is usually associated with concrete phys-

ical sensors. Building approaches should consider the range’s values that precision’s

margin can take. However, this is used at runtime in the derived applications; that is, the

margin of error is specified in the building approach but allows decisions to be handled

in the generated applications. In the example of the Fig. 1, the APIs related to GPS and

Beacons Estimote are those that could define precision and accuracy’s margins.

Based on the analysis carried out, in Fig. 3 is shown a possible generalization of the

variability concepts: configuration type, execution type and the precision and accuracy’s

margins.

Figures 2 and 3 allow to observe a way of representing the variability concepts which

should be associated with aware-objects, context-features or specific sensors. This is

important when designing building approaches to consider these variability concepts.

In this session, it has been discussed as a possible way to represent the variability

concepts of the proposed taxonomy. This representation could vary according to how



122 E. Gómez-Torres et al.

Fig. 3. Representation of the variability concepts: configuration type, execution type and precision

and accuracy’s margins.

the basic concepts to be represented by each building approach. The examples presented

in this session are based on the concepts defined in [5].

5 Conclusions and Future Work

In this paper, a taxonomy was presented that specifies variability concepts to be taken

into account when designing approaches for the creation of context-aware mobile appli-

cations. This taxonomy is focused on providing support to generate a wide range in

the kind of applications from these approaches. Each variability concept of the taxon-

omy is described using a pattern-based format, focusing on the challenges involved in

considering each of them as part of an approach to build this kind of applications. The

proposed taxonomy is not complete or closed, but it is the first definition in order to have

variability in the building approaches.

In addition, a discussion has been generated in relation to the variability concepts of

the proposed taxonomy. It has been used the concepts defined in [5] in which separates

the concepts of aware-objects, context-features and sensors; based on this, a possible

way of handler each variability concept was described. Using this paper, designers of

building approaches for context-aware mobile applications have a guidelines to be able

to achieve variability. We hope the presented discussion will enrich how could be handled

variability in these building approaches. Moreover, we wish to contribute to a unified

solution to this kind of approaches.

As future work, a concrete building approach will be designed to put into practice the

proposed taxonomy. It is desirable that by designing this approach, the taxonomy could

be enriched by incorporating new variability concepts. In addition, we will analyze how

to enrich our taxonomy with other aspects of variability such as those proposed in [6].



Variability Features in Building Approaches 123

References

1. Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications: a

survey. J. Syst. Softw. 117, 55–83 (2016)

2. Augusto, J., Aztiria, A., Kramer, D., Alegre, U.: A survey on the evolution of the notion of

context-awareness. Appl. Artif. Intell. 31(7–8), 613–642 (2017)

3. Bauer, C., Dey, A.K.: Considering context in the design of intelligent systems: current

practices and suggestions for improvement. J. Syst. Softw. 112, 26–47 (2016)

4. Alegre-Ibarra, U., Augusto, J.C., Evans, C.: Perspectives on engineering more usable context-

aware systems. J. Ambient Intell. Humanized Comput. 9(5), 1593–1609 (2018)

5. Fortier, A., Rossi, G., Gordillo, S.E., Challiol, C.: Dealing with variability in context-aware

mobile software. J. Syst. Softw. 83(6), 915–936 (2010)

6. Mens, K., Cardozo, N., Duhoux, B.: A context-oriented software architecture. In: 8th

International Workshop on Context-Oriented Programming, pp. 7–12. ACM, New York

(2016)

7. Bales, S.: Build Android Apps Without Coding: Get Started with Android Apps Using

Thunkable-MIT app Inventor. Independently published. ACM, New York (2018)

8. Hamdani, M., Butt, W.H., Anwar, M.W., Azam, F.: A systematic literature review on inter-

action flow modeling language (IFML). In: 2nd International Conference on Management

Engineering, Software Engineering and Service Sciences, pp. 134–138. ACM, New York

(2018)

9. Bauer, C., Novotny, A.: A consolidated view of context for intelligent systems. J. Ambient

Intell. Smart Environ. 9(4), 377–393 (2017)

10. Gómez-Torres, E.R., Challiol, C., Gordillo, S.E.: Context-aware mobile applications: taxon-

omy of factors for building approaches. In: XXV International Conference on Electronics,

Electrical Engineering and Computing, pp. 1–4. IEEE (2018)

11. Rivero-Rodriguez, A., Pileggi, P., Nykänen, O.A.: Mobile context-aware systems: technolo-

gies, resources and applications. Int. J. Interact. Mobile Technol. 10(2), 25–32 (2016)

12. Google Place API. https://developers.google.com/places/web-service/intro. Accessed 28 June

2019

13. Android Location API. https://developer.android.com/training/location. Accessed 28 June

2019

14. Estimote Beacons. https://estimote.com. Accessed 28 June 2019


