
Kobold: Web Usability as a Service

Julián Grigera1, Alejandra Garrido2, Gustavo Rossi2
LIFIA, Universidad Nacional de La Plata, Argentina

1Also at CIC, Argentina
2Also at CONICET, Argentina

{julian.grigera, garrido, gustavo}@lifia.info.unlp.edu.ar

Abstract—While Web applications have become pervasive in
today’s business, social interaction and information exchange,
their usability is often deficient, even being a key factor for a
website success. Usability problems repeat across websites, and
many of them have been catalogued, but usability evaluation and
repair still remains expensive. There are efforts from both the
academy and industry to automate usability testing or to provide
automatic statistics, but they rarely offer concrete solutions.
These solutions appear as guidelines or patterns that developers
can follow manually. This paper presents Kobold, a tool that
detects usability problems from real user interaction (UI) events
and repairs them automatically when possible, at least suggesting
concrete solutions. By using the refactoring technique and its
associated concept of bad smell, Kobold mines UI events to detect
usability smells and applies usability refactorings on the client to
correct them. The purpose of Kobold is to deliver usability advice
and solutions as a service (SaaS) for developers, allowing them to
respond to feedback of the real use of their applications and
improve usability incrementally, even when there are no usability
experts on the team. Kobold is available at:
http://autorefactoring.lifia.info.unlp.edu.ar. A screencast is
available at https://youtu.be/c-myYPMUh0Q

Index Terms—Web Usability, Software as a Service, Usability
Refactoring

I. INTRODUCTION
Usability problems affect a great number of web applications.
While companies recognized that usability is crucial to stand a
chance facing the competition, the process of evaluating and
improving usability remains too expensive [1], [2]. A common
approach to evaluate usability is by conducting user tests,
which has the advantage of capturing real usage data [3].
However, they require considerable time and resources to
recruit users and hire experts to design the tests, analyze the
results, discover problems and find solutions for them. Hence,
larger companies are mostly the ones that may afford it. There
are efforts to minimize the cost of user testing with automated
tools that log user interaction (UI) events, perform log analysis
and in some cases provide sophisticated visualization of UI
events that hint usability flaws [2]. However, an expert is still
required to find a good solution to each problem, since
guidelines available in the literature are still hard to relate to a
particular problem that appears on a running application.

We are motivated by the need to provide tools to make
usability improvement affordable, i.e., simple and
inexpensive, even to non-usability experts. Our goal is to
provide automated advice for developers on the usability

problems that users encounter while interacting with their
website and the possible solutions, even applying them when
possible. Thus, our tool allows taking heed of customer
feedback. Moreover, the approach is compatible with an agile
development process, where usability problems can be
detected during the cycle after a release, and solutions can be
applied by the team in the next cycle.

In agile methods, refactoring is an essential technique for
incremental improvement. It allows applying changes in small
steps after identifying potential problems in the code, called
"bad smells". We have proposed refactoring for the
incremental improvement of web usability, and defined
usability refactorings as changes to navigation, presentation
or business processes of web applications with the aim of
improving usability, while preserving the functionality and
result [4]. In a similar way of code smells, we defined
usability smells as indicators of possible problems related to
usability in use. These problems encompass any issue with
user interaction that makes the completion of tasks difficult or
confusing. For example, the usability smell No Client
Validation indicates that a form performs data validation on
the server, forcing users to wait for the request to complete.

We have implemented the approach for automatic usability
improvement in a tool called Kobold (in reference to the
invisible sprites that perform domestic chores in the Germanic
folklore). In essence, the contributions of Kobold are:

• it allows inspecting feedback of the real use of a web
application regarding UI events;

• it reports usability smells of user interaction as soon as
they are detected;

• it suggests solutions in terms of usability refactorings
that when possible are self-installable in the client.

Different stakeholders can take advantadge of each stage of
the process depending on their expertise on usability. Anyone
from novice users to usability experts could make use of the
automated detection of problems and refactoring. For instance,
in an agile development team, reports of usability smells may
be of interest to team members as well as product owners.
Regarding refactorings, developers without usability expertise
can apply automated ones with little effort. Moreover, non-
automated refactoring suggestions provide enough detail so
developers can code them manually. The usability experts in
the team, even if they don’t have programming skills, could
analyze the events separately to define new usability smells,
and design new refactorings for the developers.

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

990

Client-Side
Logger

Usability
Events

Usability
Smells Report

Usability
Smell

Usability
Refactoring
Suggestion 1

Usability
Refactoring
Suggestion 2

end users

web application

Usability Events
Logging

Usability Smells
Detection & Reporting

Usability Refactorings
Suggestion & Application

developer

developer

Figure 1: Steps of the automated approach for Web Usability improvement.

II. AN AUTOMATED APPROACH FOR WEB USABILITY
In order to assist developers to find and correct usability
problems on their web applications, we devised a process
centered in usability smells and refactorings. This was
conceived to maximize automation, requiring the minimum
possible effort from developers. To achieve this, the process
relies on end-user’s interaction events as the main input.

There are 3 stages to the process. The first stage consists in
mining UI events in the client and collecting relevant ones. In
the second stage, usability events are analyzed in an off-site
server to detect usability smells. The third and last stage
consists in recommending usability refactorings to solve the
detected smells. In some cases, these refactorings can be
applied automatically or semi-automatically with some input
from developers. The first two stages were already
implemented in a tool called Usability Smells Finder (USF)
[5], and this paper describes the implementation of the last
step, hence completing the tool support for the full approach.
An overview of the process can be seen in Figure 1.

The first stage consists in mining UI events from users and
aggregating them in usability events. These events are
customized to capture information that’s relevant to potential
usability problems (i.e. smells), and also to prevent
overloading the server with irrelevant information. This is
achieved by doing client-side pre-processing of low-level
events before sending the information to the server. There are
over 16 kinds of usability events [5]. An example of usability
event is Search, which represents a search made by a user,
capturing the time, search term, the search form’s HTML code
and location within the page, whether any results that include
the search term were found, and also whether a link within
those results was clicked (i.e. results were potentially useful).

Stage two of the process is where usability smells are
detected by processing the usability events. For each kind of
smell, there is a separate component analyzing the incoming
events. For example, to detect the Scarce Search Results smell,
that indicates that a search form is not bringing results to the
users, there is a component that analyzes the Search events and
calculates the proportion of successful vs. unsuccessful

searches. Currently USF is able to detect 16 kinds of usability
smells.

The third stage is where refactorings are suggested and
applied. Refactoring suggestion is based on existing catalogs
that relate each usability smell with one or more refactoring
[4]. However, in these previous catalogs, refactorings were
usually defined at a design level and in abstract terms, so we
had to refine them to be able to build more concrete, self-
installable refactorings. The generation of refactorings is a
complex task, but the detailed diagnoses of smells helps
considerably in their implementation. The next section
describes this stage in detail.

III. KOBOLD: USABILITY AS A SERVICE
Kobold is the tool that implements the full process for
automating web usability improvement. It is a web application
itself, and works as a SaaS (Software as a Service) solution for
web developers. The main features that the tool offers are:

• Automatic detection of potential usability issues stated
as usability smells, with specific details.

• Suggestion of solutions for the detected usability
smells in terms of usability refactorings.

• Automatic application of refactorings when possible.
• Instant report and browsing of usability events.

In the next subsections, we show how the developers can
incorporate the use of the tool to improve their already
deployed applications, then we provide some detail on the
refactoring process, and finally we show some refactoring
examples.

A. Using the Tool
To start using Kobold, developers must register an account,
and the tool will provide them with a JavaScript snippet to
embed in their application’s header. With the snippet in place,
the tool immediately begins to log end-users’ interaction and
to search for usability smells.

991

Figure 2: Kobold screenshot. In the background, the report on all detected usability smells, and in the pop-up window, specific information about the smell Free

Input for Limited Values and the recommendation for the Add Autocomplete refactoring, ready to be applied.

When a usability smell is reported, Kobold suggests one or
more refactorings to solve it. Depending on the case, the
refactoring may be presented as a suggestion (to be
implemented by the developer), or it can be offered as an
automated solution. For some refactorings, the tool will need
extra information from the developer before applying it - we
call these semi-automated refactorings.

Notice that in order to use the tool, the user doesn’t need to
be an expert in usability, since the reports can be understood
by anyone with a basic knowledge of web interfaces.

Figure 2 shows a screenshot of Kobold suggesting a
refactoring called Add Autocomplete to correct the usability
smell “Free Input for Limited Values”. The screenshot shows
the usability smell’s diagnosis with a live view of the affected
element (the “Country” input), and prompts the user to confirm
the application of the refactoring, or edit the values for the
autocomplete’s suggestions.

B. Taxonomy of Client-Side Usability Refactorings
We have been able to match each usability smell of user
interaction with one or more concrete usability refactoring to
solve it. In consequence, Kobold can always suggest at least
one solution for each usability smell that it automatically
detects. In some cases, Kobold may even select the best
solution among a few for a given smell. However, usability
refactorings may not always be applied automatically at the
client-side, for example in the case of Split / Postpone activity,
which solves the smell “Abandoned Form”. Thus, regarding

the extent to which Kobold can automate refactorings, we have
classified them in 3 groups:

1. Suggestion Only: these refactorings can only be
suggested to be implemented by a developer.

2. Semi-Automated: they can be automatically
generated, but require some parameter data that a
developer must provide manually.

3. Fully Automated: the detected smell provides all data
necessary to generate and apply the refactoring without
any external help.

There is a second aspect in which we classify the refactorings
that may be applied with some degree of automation (i.e.
groups 2 and 3). This criterion refers to the target UI element
where the refactoring must be applied. In some cases, the same
smell may affect more than one element in a site, and Kobold
has the ability to detect all elements affected by the same smell
thanks to its specific similarity algorithm [5]. In this aspect, we
contemplate 2 possibilities:
a) Single Element: the refactoring is applied on a unique

element affected by a usability smell. For example, a
heading, or a login form.

b) Elements Family: the refactoring must be applied on a
group of similar elements affected by the same smell. For
example, all products included in a search results page, or
a list of news.

992

In the next subsection we exemplify with some refactorings
from all these categories.

C. Examples of Usability Refactorings

 1) Turn Attribute into Link (Group 2; Target a / b): This is
a simple refactoring that converts a static UI element, such as a
text or image, into a link. The usability smell that this
refactoring solves is called Unresponsive Element, which
indicates that an element is frequently being clicked, but
produces no action. An example of this symptom is a heading
logo that does not lead users to the website's homepage when
clicked.

Regarding the degree of automation, the Turn Attribute into
Link refactoring is semi-automated, since it requires end users
to provide the link destination, whereas the rest of the
implementation is generated automatically thanks to the
detailed information that USF reports with each smell. With
respect to the target, it can be applied either to a single element,
or to an elements’ family. In the last case, Kobold can use an
expression generated by the similarity algorithm during smell
detection to refactor all related DOM elements belonging to a
same family at once.

 2) Add Autocomplete (Group 2 / 3; Target a): Sometimes
forms include text fields with free input for data that belongs to
a limited set of values, either a closed set (like countries) or an
open one, but with a dominant amount of popular choices (like
occupations). The usability smell Free Input for Limited Values
detects these situations. It does so by analyzing the entered
values and comparing similitude amongst them. When it
detects that most values are within a closed set, with a small
percentage of outliers, the smell is signaled. Some input types
like credit cards or passwords are discarded to preserve
privacy. Also, personal data like names or addresses, rarely
trigger this smell because of their inherent diversity.

When Free Input for Limited Values appears, Kobold
suggests three possible refactorings: Replace Widget, Add
Default Value or Add Autocomplete. This suggestion is based
on the variety of values that the smell detects. If all values
belong to a closed set of up to 8 values, and the outliers’
percentage is marginal, Kobold suggests the use of a radio
buttons list via a Replace Widget. If the values are sparser but
still within well-defined sets (e.g. cities names, even misspelled
ones) then an Add Autocomplete is suggested. If there is a
dominant value that outnumbers all others, Add Default Value
is suggested.

There is another use for Add Autocomplete. The smell
Scarce Search Results indicates that a search form usually fails
to bring results. In these cases, Kobold can also suggest this
refactoring but offering the popular values from successful
searches as term suggestions.

The refactoring Add Autocomplete applies to a single text
input field, taking the values that USF found as popular for the
field, and providing them as suggestions when users are
completing it. This refactoring can be used both as fully
automated or semi-automated, since the user has the ability
of correcting or providing new values to the list of suggestions

that will drop down in the autocompletion (e.g. by adding a
city that nobody entered).

 3) Distribute Menu (Group 1; Target b): The usability
smell Forced Bulk Action detects a common interaction issue
with lists of selectable items. With the intention of easing the
application of an action to many items at once, a usual design
consists in providing checkboxes to select multiple items, and
buttons to apply actions to all of them (e.g. delete). While this
interaction style is effective for this scenario, it becomes a
usability smell when most users apply the action on a single
item. As a solution for this smell, the Distribute Menu
refactoring proposes adding a button for each popular action to
every item on the list (see Figure 3).

Item 1

Move to… Remove

Item 2

Integer posuere erat a ante venenatis

Integer posuere erat a ante venenatis

Integer posuere erat a ante venenatis

Integer posuere erat a ante venenatis

Item 3

Item 4

Item 1

Move to…

Integer posuere erat a ante venenatis

Integer posuere erat a ante venenatis

Integer posuere erat a ante venenatis

Integer posuere erat a ante venenatis

Remove

Item 2

Item 3

Item 4

Figure 3. Distribute Menu refactoring. The top-left figure shows the page
before refactoring. The refactored, bottom-right version includes a “move”
and “remove” button for every single item.

Due to the complexity of detecting how the actions are
performed (and, consequently, determining how to reproduce
them), at this time we have not found a way to automatically
or semi automatically apply this refactoring, so it can only be
suggested (suggestion only). Nevertheless, Kobold is able to
assist the developer by providing the XPath locator for the
family of affected items (i.e. the items that comprise the list).
This refactoring applies over an element’s family.

From a total of 15 refactorings that Kobold currently
suggests, 12 of them can be fully or partially automated.
Besides 1) and 2) above, other refactorings currently
implemented in Kobold include: Add Processing Page
(“loading…” overlay for slow processes), Add Default Value
for text inputs, Add Validation (fully automated) that
incorporates inline validation for frequently rejecting forms.
There are also different Replace Widget refactorings, e.g. for
incorporating date pickers, combo boxes or radio buttons.

IV. TOOL ARQUITECTURE
Kobold was built on top of a previous tool called Usability
Smells Finder (USF) [5]. USF captures UI events from real
users at the client-side, mines and filters the events on-the-fly, and
aggregates and classifies the events at the server-side using
specialized algorithms that discover usability smells. To be able
to log usability events from end-users, USF provides a client-side
JavaScript snippet that developers must embed in their
applications. Given the immediate nature of the logs analysis, the

993

tool reports the usability smells that may affect the web
application right as they appear. The imported library is very
lightweight (~30kb minified) and the mining, being
asynchronous, is unnoticeable by the end-users, as also
confirmed by our experiments in real world web sites.

Kobold adds to USF the capability of suggesting and even
applying usability refactorings. This is possible also thanks to
the JavaScript client-side component. Once loaded, besides
starting to log usability events, the component asks the Kobold
server for potential refactorings. If the server finds any
refactoring that must be applied, it generates them and sends
the JavaScript code to be executed. The technology for
applying refactorings uses a client-side adaptation framework
that adapts existing applications on the client-side by changing
their DOM [6]. In the case of Kobold, these adaptations were
refined and restructured to fit the refactorings in our catalog.

When refactorings are semi or fully automated, Kobold
generates the JavaScript code from a fixed template. If the
refactoring is applied to a DOM element, the template is
dynamically completed with the XPath locator for it. In semi-
automated refactorings, the user input is also added, like extra
terms for autocompletion. If any libraries are required (e.g. a
Date Picker plugin) they are imported once, but there is one
instantiation code for each refactored element. The full code
(i.e. libraries importing and instantiation for each element) is
sent from the server at page loading if the elements affected by
usability smells are present. The code generation is designed to
be easily extended in new refactorings by providing hotspots
for incorporating libraries, automated variable declaration for
the affected elements, and other features.

Using the aforementioned techniques, Kobold can offer
usability refactorings application, either automatically or
semi-automatically. Note that each sub-component of Kobold
is engineered as a framework, so experts may extend it with
new usability events, smells, or refactorings.

V. VALIDATION
In this section, we briefly describe the early validations on
usability smells detection, and the first results on a new
experiment in which we assess the usability refactoring
application.

A. Usability Smells Validation
In our previous work on usability smells detection, we
presented an experiment where we validated aspects of the
first two stages of the process, namely usability events
logging and usability smells detection [5].

For the first part, we validated that the heuristics for
detecting end user events were correct. Some heuristics
involve interpreting users’ intention, and others involve
interpreting the role of the affected interface elements.

To assess all different heuristics, we ran a Precision &
Recall analysis comparing the tool findings with a direct
observation in a controlled environment on 3 websites with 15
volunteer users (8 m. and 7 f., ages from 26 to 64 x̄ 35.66, s2
75.52). We used a F2 score, which is a weighted average of
precision and recall that puts more weight on the latter. We

favored recall for the event detection experiment since it is
more important not to “miss” events that cannot be recovered.
False positives, while undesired, can be dealt with in the
smells detection stage. Results showed that, in the case of
heuristics involving user intention (5 event kinds), the tool
performed with an F2 score between .75 and .97. In the
heuristics involving reasoning on GUI elements (3 events), the
F2 score was between .67 and .75. The rest of the heuristics
(for 4 events) had no margin for error and thus were not
assessed.

The second part of the experiment consisted in evaluating
the usefulness of the usability smells reporting. To do this, we
compared the usability problems found in a user test with 9
volunteers (4 m. and 5 f., ages from 25 to 62, x̄ 35, s2 125.25).
In this case, we ran a GQM (Goal-Questions-Metrics)
experiment with 6 different metrics. The most relevant metric
was the percentage of problems found by USF with respect to
traditional usability tests. At that time, the USF tool was able
to find 52% of usability smells manually found in the control
applications. Other metrics related to the reliability of the
findings were true and false positives, 75% and 25%
respectively.

B. Usability Refactoring Validation
We conducted another validation to assess the tool’s ability to
automatically improve usability on web applications. The
validation consisted in running user tests on two real-world
web applications: a merchandising online shop (“FF Site”) and
an online travel agency (“TA Site”). We had Kobold solve the
smells detected by USF applying automated and semi-
automated refactorings and compared the sites’ usability with
and without such refactorings. The refactorings applied were:
Add Autocomplete, Add Validation, Turn Attribute into Link,
Add Default Value and Add Processing Page.

We recruited 8 subjects, 5 males, 3 females (ages: x̅ 37.5, s
9.74). The subjects ran tasks on both versions of the 2
applications, as follows:

FF Site
1. Find the price of a specific product.
2. Add it to the cart and go to the homepage.
3. Register.
4. Search for a given product.
5. Complete the checkout.

TA Site
1. Search for a given package.
2. Reserve the cheapest.
3. Search for a flight ticket.

We measured three aspects related to usability according
the ISO/IEC 25010 standard: effectiveness as completion
percentage, efficiency in average time, and satisfaction, by
using a standard SUS questionnaire [7]. To avoid the learning
effect threat, each subject interacted with one version of each
application. This way, we gathered 8 results for each site: 4
for the refactored version and 4 for the original one.

994

The results showed improvements in all 3 measured aspects,
which implies that Kobold is indeed able to improve usability
automatically. Detailed results be seen in Table 1.

Table 1. Experiment’s Results

 FF
Original

FF
Refactored

TA
Original

TA
Refactored

Satisfaction 74.375 78.75 84.375 93.75
Efficiency 03’40’’ 02’57’’ 03’09’’ 02’36’’

Effectiveness 100% 100% 83.33% 100%

Although we still must extend the experiment with more
refactorings and subjects, the results are very promising, based
on Nielsen’s rule that a single test with 5 subjects is able to
detect nearly 85% of the total usability problems on a website1.

VI. RELATED WORK
The idea of analyzing user behavior in websites through UI
events has become quite common, from web analytics tools
(like Google Analytics, ClickTale, etc.) which mostly target
improving revenue, to other tools like in our case that try to
hint usability problems. Among the latter, there are tools like
WUP [8] or WELFIT [9] that log events during remote user
testing, and discover problems in the deviations with optimal
logs from usability experts. Speicher et al. [10] developed
tools for obtaining usability scores in Search Engine Results
Pages (SERPs). Despite being focused only on SERPs, the
approach is similar to ours, and it also provides solution’s
suggestions. While other approaches may succeed in pointing
out usability problems, most of them require an expert opinion
to interpret the outcomes and provide solutions, manually
searching through usability guidelines in the literature [11],
[12]. The tool that is closest to ours in terms of functionality
is, to our knowledge, W3Touch [13]. The tool detects
problems related to missed links and zoom levels on mobile
devices by analyzing user logs. It also offers simple fixes that
may be adjusted by developers, though the main difference is
that W3Touch focuses on responsiveness issues for touch-
based devices.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Kobold, a tool that is able to
automatically suggest and, in some cases, apply usability
refactorings that have already been established to be successful
at improving web usability.

We showed that automated usability improvement is
possible by running a validation on two real applications. We
also planned a more comprehensive experiment to assess all
the refactorings.

Future work includes determining if the accuracy in
detection and reporting of USF is good enough to automate
other refactorings still to be implemented. Another challenge
of the current work is selecting the most appropriate
refactoring, especially in cases where different refactorings
may solve the same smell. Moreover, once Kobold has
detected many usability smells, they could be prioritised.

1 http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Kobold shows in first place the smells that most users run into,
but other criteria for prioritizing them may be researched.

We are also planning a validation to assess the level of
adoption that Kobold may have among developers. The
experiment will be conducted in two phases: first, we will
collect information on how developers use Kobold in a period
of 1 month, and then they will answer a survey about the tool.

Finally, we are studying the process that follows the
refactoring application: how can we automatically measure the
alleged improvement that refactorings bring? Since there are
no accepted standards for these metrics, we are researching on
the best ones for measuring aspects of the applied refactorings.

ACKNOWLEDGMENTS
The authors acknowledge the support from the Argentinian
National Agency for Scientific and Technical Promotion
(ANPCyT), grant number PICT-2015-3000.

REFERENCES
[1] J. Nielsen and H. Loranger, Prioritizing Web Usability. Pearson

Education, 2006.
[2] A. Fernandez, E. Insfran, and S. Abrahão, “Usability evaluation

methods for the web: A systematic mapping study,” Inf. Softw.
Technol., vol. 53, no. 8, pp. 789–817, 2011.

[3] J. Rubin and D. Chisnell, Handbook of Usability Testing:
Howto Plan, Design, and Conduct Effective Tests. Wiley, 2008.

[4] D. Distante, A. Garrido, J. Camelier-Carvajal, R. Giandini, and
G. Rossi, “Business processes refactoring to improve usability
in E-commerce applications,” Electron. Commer. Res., vol. 14,
no. 4, pp. 497–529, Sep. 2014.

[5] J. Grigera, A. Garrido, J. M. Rivero, and G. Rossi, “Automatic
detection of usability smells in web applications,” Int. J. Hum.
Comput. Stud., vol. 97, pp. 129–148, 2017.

[6] S. Firmenich, G. Rossi, S. Gordillo, and M. Winckler, “A
crowdsourced approach for concern-sensitive integration of
information across the web,” J. Web Eng., vol. 10, no. 4, pp.
289–315, 2011.

[7] J. Brooke, “SUS - A quick and dirty usability scale,” Usability
Eval. Ind., vol. 189, no. 194, pp. 4–7, 1996.

[8] F. Paternò, A. G. Schiavone, and P. Pitardi, “Timelines for
Mobile Web Usability Evaluation,” in Proc. Int. Working
Conference on Advanced Visual Interfaces - AVI ’16, 2016, pp.
88–91.

[9] V. F. de Santana and M. C. C. Baranauskas, “WELFIT: A
remote evaluation tool for identifying Web usage patterns
through client-side logging,” Int. J. Hum. Comput. Stud., vol.
76, pp. 40–49, 2015.

[10] M. Speicher, A. Both, and M. Gaedke, “S.O.S.: Does Your
Search Engine Results Page (SERP) Need Help?,” in Proc.
ACM Conf. on Human Factors in Comp Systems - CHI ’15,
2015, pp. 1005–1014.

[11] L. Wroblewski, “Web Form Design: Filling in the Blanks,”
Interactions, vol. 0, no. October, p. 226, 2008.

[12] C. Mariage, J. Vanderdonckt, and C. Pribeanu, “State of the Art
of Web Usability Guidelines,” Handb. Hum. FACTORS WEB
Des., pp. 688--700, 2004.

[13] M. Nebeling, M. Speicher, and M. Norrie, “W3touch: Metrics-
based Web Page Adaptation for Touch,” Proc. SIGCHI Conf.
Hum. Factors Comput. Syst. - CHI ’13, p. 2311, 2013.

995

