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A B S T R A C T

In this work the Lau fringes generated by using a combination of an amplitude grating and a photorefractive
volume phase grating is theoretically and experimentally analyzed. A model based on the path integral
formalism to calculate the patterns intensity is employed. We show that the Lau pattern behavior is governed by
the output pupil diameter of the imaging recording system, the DC external electric field and the crystal
thickness. The introduction of a phase modulation that gathers the previously mentioned parameters allows
determining the condition to optimize the fringe visibility. In this case, the visibility maintains a sinusoidal
dependence as it happened with planar grating experiments. The experimental results confirm the theoretical
model proposed.

1. Introduction

The Lau effect takes place when an extended light source which is
imaged onto a grating illuminates a second identical grating [1]. High
contrast fringe patterns appear at infinity only for determined grating
separations that is a function of the wavelength of the optical field and
the grating period. In order to obtain Lau fringes, the experimental
arrangement has been implemented by using an amplitude or a phase
second grating [2–4].

The Lau phenomenon has been exploited for implementing optical
interferometers [5,6]. Lau interferometers are shearing interferometer
which have several applications. For example, in the zero distance Lau
interferometer, the fringes provide information about the phase
structure of a test object under study [7]. In order to quantitatively
reconstruct the phase information codified in Lau interferometric
fringe patterns a phase stepping technique could be used. The phase
steps required by this technique is done with in-plane shift of one of the
interferometer gratings [8]. Note that the Lau interferometry has a
better signal to noise ratio in comparison with Talbot interferometry
[9,10]. However, Lau interferometric fringes exhibits in general a low
visibility. Then, it is important to find strategies to obtain high contrast
Lau fringes.

Lau fringes theoretical model has been done in different frame-
works. From the scalar diffraction theory point of view, the intensity
distribution at the observation plane can be calculated as the correla-
tion of the intensity distribution of the first amplitude grating with the
modulus square of the Fresnel transform of the second grating [11]. In

Ref. [12,13], the effect is explained based on coherence theory. In
particular, Sudol et at. demonstrated that there is a fringe dependence
on the relationship between the grating separation and the periodicity
of the complex degree of spatial coherence in the plane of the second
grating.

By using a phase grating with a square-wave modulation as a
second grating, Lau patterns visibility varies periodically with the
grating separation and its phase modulation [14]. In this particular
case, the highest contrast Lau fringes is observed for a distance

between the gratings
⎛
⎝⎜

⎞
⎠⎟z m d λ= + 1

2
/L

2 m( = 1, 2, 3, ...), where d is

the grating period and λ the wavelength of the optical field.
The mentioned works were involved with Lau patterns generated by

planar gratings. On the other hand, it should be emphasized that
fringes generated by a volume grating stored in a photorefractive
crystal presents new features [15]. The system behaves as a combina-
tion of two amplitude gratings when an analyzer is used at the crystal
output. There, the theoretical proposal was focused on the polarization
behavior of this photorefractive grating to control the patterns visibi-
lity.

In a previous work concerning Talbot patterns, we used a path-
integral approach to explain the self-images features when a volume
grating is used instead of a planar grating [16]. It's worth mentioning
that the self-images’ visibility depends on the volume grating thickness
and on the grating modulation. In Ref. [17], the path-integral proposal
was extended to determine the self-image patterns’ intensity generated
by a volume phase grating stored in a BSO crystal. A distinctive result
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was that the self-image visibility is enhanced by changing the para-
meters which characterize the volume phase grating.

In the present paper, we analyze the essential features of the Lau
effect by using a photorefractive volume phase grating. In Section 2 the
experimental write-in set up is described. A 3D light intensity
distribution is calculated by using the optical transfer function (OTF)
of the incoherent imaging system. This distribution is compared with
experimental results. The photorefractive index grating modulation by
3D light intensity distribution is simulated emphasizing the depen-
dence on the recording parameters. The Lau effect formation by using
this volume phase grating is analyzed in Section 3 based on a path
integral approach. Also, the theoretical and experimental fringe
distributions are presented. The quality of these patterns is evaluated
by using the visibility. An adequate phase parameter to analyze the
fringes visibility is employed. Finally, our analysis allows to enhance
and to control the fringe visibility to be used in interferometric
applications.

2. Volume grating stored in a photorefractive crystal

2.1. 3D light intensity distribution

Let us introduce the photorefractive write-in process in Fig. 1. An
amplitude grating, G, with a low frequency square-wave modulation is
illuminated by a white light source, S1 through a condenser lens L1. An
image of this grating is projected inside a BSO crystal with unitary
magnification by means of lens L2. Due to the limitation of the
incoherent imaging system frequency behavior, a 0.5 mm grating
period is used. A filter, FG, centered at wavelength λw=534 nm
(Δλw= ± 6 nm) is employed in this step due to the strong BSO
photoconductivity at this wavelength. An iris diaphragm P is located
behind lens L2 to control the exit pupil. At a distance zi from lens L2 an
image of the grating is formed. We are concerned in the light
distribution at the image plane and its neighborhood, where za is a
variable distance (see Fig. 1).

By following the same approach as detailed in Ref. [17], the 3D light
intensity distribution results

I z x D t u u( , ; ) = F { ( ). H ( )}∼
o0

−1 (1)

where u is the variable in the frequency domain associated to the
spatial variable x0 and D is the output pupil aperture diameter. In Eq.
(1) the longitudinal spatial coordinate is z0=za−zi , which is referred to
the image plane, t u~( ) is the Fourier transform of the grating amplitude
transmittance function and H(u) is the OTF corresponding to the

incoherent imaging system.
The 3D light intensity distribution in terms of the output pupil is

depicted in Fig. 2. Experimental results were measured by replacing in
the arrangement of Fig. 1 the BSO crystal by a CCD Pulnix TM-6CN
camera. An iris diaphragm gives the variable output pupil diameter, D.
The z0 position of the camera was incremented by steps of Δz0=0.1 mm
from z0=−3–5 mm. The result of the z0-scanning is a stack of Ronchi
grating defocused images and the focused image constituting a 3D light
intensity distribution. Once these images are found, they were stored in
order to obtain their profiles. A 3D graph is generated by putting all
together the intensity profiles. Fig. 2(a), (b) and (c) show the experi-
mental 3D profiles. The simulated light intensity distributions in
Fig. 2(d), (e) and (f), are calculated from Eq. (1).

The result of Fig. 2(a) shows that the critical defocus of the 3D
image is related with a large output pupil aperture diameter
(D=50 mm). Note that the 3D image contrast gradual attenuation
and the image contrast reversal are both produced away from the plane
z0=0. A decreasing D (Fig. 2(b) and (c)) produces an increasing depth
of focus. In particular, Fig. 2(c) corresponding to D=3 mm shows a
lower severity of defocus of the 3D image in comparison with the
results of Fig. 2(a) and 2(b). The same behavior of the light intensity
distributions is observed in the simulated graphs of Fig. 2(d), (e) and
(f).

2.2. Photorefractive volume grating

When an optical field is incident into a photorefractive crystal, it
induces a space-charge electric field. This electric field generates an
index grating through the linear Pockels effect. The index modulation
amplitude in BSO crystal results Δn n r Re E= −(½) { }3

41 10 0 , where n0 is
the bulk refractive index, r41 is the electro-optic coefficient and Re{E1}
is the real part of the space-charge electric field complex amplitude
[18]. In our experimental arrangement, the grating period is 0.5 mm,
therefore, the diffusion charge transport mechanism is negligible and
only the drift must be considered. In this case, the space-charge electric
field can be enhanced by applying a DC external electric field E0. It
implies that the incident intensity distribution and the photorefractive
volume grating are in phase, and therefore Re{E1}≈−E0. As a conse-
quence, Δn0 is proportional to E0 and it takes values in the order of
10−4–10−5. The index grating results [17],

n z x E D L n Δn z x E D L

n Δn E I z x D rect z L

( , ; , , ) = + ( , ; , , )

= + ( ) ( , , ) ( / )
Z Z

N Z

00 0 0 0 0 0

0 0 0 0 0 0 (2)

where the normalized 3D light intensity distribution IN (z0, x0, D) is
obtained by Eq. (1) and the rect function limits the grating to the
crystal thickness LZ. Then, the intensity distribution replicates itself as
a modulation of birefringence in the crystal volume.

In Eq. (2) it is observed that the photorefractive volume grating is
characterized by using three parameters. One parameter is associated
to the imaging system, that is the output pupil diameter, and the other
parameters related to the photorefractive register are the external DC
electric field and the crystal thickness. The defocusing of the projected
image is governed by changing the output pupil diameter. In this way,
the region in which the index grating spreads inside the crystal is
modified. Besides, the index grating amplitude depending on the space-
charge field is controlled by varying the DC electric field and the
volume grating is limited, as maximum, by the crystal thickness.

In Fig. 3, the simulated index gratings evaluated from Eq. (2) are
displayed. In order to understand the role playing by the mentioned
parameters, one of them is varied and the other parameters are
maintained fixed. The BSO constant values used in the calculation
are n0=2.54 at λw and r41=3.4×10

–12 m/V [19,20]. In Fig. 3(a), (b) and
(c) the index grating modulations for crystal thicknesses of LZ=2, 6 and
10 mm, D=50 mm and E0=7 kV/cm are depicted. The serious defocus
of the 3D image that maps the photorefractive grating is related with a

Fig. 1. Write-in experimental set-up: S1: white light source; FG: green interference filter;
L1: condenser lens; L2: imaging lens of focal length f; G: Ronchi grating;; P: diaphragm.
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large D supported by a large LZ. This behavior is evident in the case of
LZ=6 mm and LZ=10 mm (see Fig. 3(b) and (c)). It should be pointed
out that the attenuation and the reversal of the phase modulation

contrast is observed away from the plane z0=0.
The results of Fig. 3(d), (e) and (f) correspond to E0=5, 7 and 9 kV/

cm, D=3 mm and LZ=6 mm. They show an increasing index grating
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Fig. 2. Experimental (a), (b), (c) and theoretical (d), (e), (f) normalized 3D light intensity distribution for different output pupil diameters, D.
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Fig. 3. Simulated index grating modulation for: (a), (b), (c) different crystal thickness with fixed values of D=50 mm and E0=7 kV/cm and (d), (e), (f) different DC external field with
fixed values D=3 mm and LZ =6 mm.
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modulation amplitude, Δn0. Note that for a value of D=3 mm, the
region in which the 3D image spreads is larger than the crystal
thickness (even for the larger LZ=10 mm) but the grating is effectively
limited by the crystal.

3. Lau effect by the photorefractive volume grating

3.1. Lau patterns formation

The read-out experimental arrangement is shown in Fig. 4. An
incoherent red light (λr=633 nm) illuminates an amplitude grating, GA,
free propagates a distance zL and impinges onto the photorefractive
volume grating, G2. The emerging light distribution is Fourier trans-
formed by lens L3, resulting in Lau patterns at the CCD plane.

Lau images intensity is interpreted as the correlation of the
intensity distribution of the first amplitude grating with the modulus
square of the Fresnel pattern generated by the second grating. In our
case, the second grating is a photorefractive volume phase grating.
Thus, the intensity distribution at the observation plane is calculated as

I x t x Ψ z x( ) = ( ) ⊗ ( , )2 2 (3)

where Ψ z x( , ) is the Fresnel pattern generated by the photorefrac-
tive volume grating, whose calculation is outlined in the following
subsection.

3.2. Fresnel pattern generated by the photorefractive grating

The inhomogeneous field propagation through the volume grating
can be treated by means of a path integral formulation to obtain the
intensity of the Fresnel patterns generated by the photorefractive
medium [17]. A straightforward calculation leads to determine the
field at the output plane (z, x, y)

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫ ∫

∫

Ψ z x y t k
i z L

e

e Ψ x y dx dy

( , , ) =
2π ( − )

(0, , )

F r

Z

i k z L
x x y y

z L

i k n z x y dz

−∞

∞

−∞

∞ ( − )+
( − ) +( − )

2( − )

( ′, , ) ′
0 0 0 0

r Z
Z

r
LZ

0 2
0

2

0
0 0 (4)

where Ψ x y(0, , )0 0 stands for the field just behind the input plane,
n z x y( ′, , )0 0 is the spatially variable refractive index kr=2π/λr is the
vacuum wave number in the read-out process, LZ is the crystal
thickness and tF is the Fresnel transmission coefficient which is
approximately constant by assuming a low modulation in the refractive
index. Note that in our experimental case a one dimensional grating is
considered, therefore, in the following calculation only the x spatial

coordinates is taken into account.
Fresnel images generated by the photorefractive volume grating are

calculated by means of Eqs. (2) and (4). High contrast Lau fringes are
found by evaluating z z m d λ= = ( + ) /L

1
2

2 in Eq. (3), where m is an
integer number and d is the grating period. Then, the behavior of Lau
patterns in terms of the previously proposed volume grating para-
meters will be analyzed. To this purpose, let us consider the visibility.
The conventional expression of the visibility is

V z z d
z z d

= Ψ( , 0) − Ψ( , /2)
Ψ( , 0) + Ψ( , /2)

L L

L L

2 2

2 2 (5)

When using a second planar phase grating with a square-wave
modulation, Lau patterns visibility depends on the grating separation,
z, and phase grating modulation, β, as

∑V C β πλzn d= 4 sin ( ) sin ( / )
n odd
integer

n
=

2 2 2

(6)

where Cn is the Fourier coefficient of the square-wave function [14].
In order to analyze our experimental proposal, we consider the

replacement of the second planar phase grating in the Lau effect by a
photorefractive volume phase grating. Let us suppose that the visibility
expressed by Eq. (6) maintains its validity, as the parameter β is
adequately modified. In a previous paper [17], we proposed a new
phase parameter, βmod, which takes into account the variable modula-
tion through the volume. This parameter is given by

⎛
⎝⎜

⎞
⎠⎟∫β k Δn z E D L Δn z d E D L dz= ( ( ′, 0; , , ) − ( ′, /2; , , )) ′r

L
Z Zmod

0
0 0

Z

(7)

Note that βmod gathers the dependence on the output pupil
diameter of the imaging system, the crystal thickness and the external
applied field, which in fact control the features of the index volume
phase grating.

Fig. 5(a) and (b) show experimental Lau images produced by
photorefractive volume phase gratings generated with crystal thick-
nesses LZ=3 and 6 mm, respectively. In this case, the remaining
parameters are set at D=3 mm and E0=7 kV/cm. It is apparent an
increasing fringes contrast for LZ=6 mm in comparison with LZ=3 mm.
This fact leads to expect an increasing of the visibility calculated by
using Eq. (5). This behavior motivates a deeper analysis of the
phenomenon.

Then, the fringes contrast is explored for Lau patterns generated by
a photorefractive grating. Fig. 6 depicts the Lau patterns behavior when
the phase grating modulation varies in terms of the parameters detailed
in Section 2.2. Theoretical results are obtained using Eqs. (2), (3) and
(4). The simulated pattern profiles by using index grating modulations
corresponding to the crystal thickness LZ=2, 6 and 10 mm, whereas
maintained fixed D=50 mm and E0=7 kV/cm, are presented in
Fig. 6(a). A remarkable enhancement of the Lau image visibility is
apparent up to LZ=6 mm. For crystal thickness larger than 6 mm the
Lau pattern visibility decreases. This behavior can be explained by
considering the result shown in Fig. 3(c). In this case, a phase
modulation contrast reversal of the index grating is observed. The
effect of the field propagation through this grating induces a shifting in
the Lau fringes reducing thereby the whole fringes visibility. The
experimental patterns stacked in Fig. 6(b) confirm this behavior.

Fig. 6(c) shows the behavior of Lau patterns calculated using the
same values of LZ as in Fig. 6(a) but, in this case, for D=3 mm and
E0=7 kV/cm. Recalling the result depicted in Fig. 3(e), a single grating
is generated along the crystal thickness. Then, a remarkable enhance-
ment of the patterns visibility is observed as a consequence of the
accumulated in-phase field propagation through this volume grating.
However, the pattern corresponding to LZ=10 mm exhibits a diminish-
ing quality, a fact that is not expected a priori from a grating with
D=3 mm. This behavior will be discussed in Fig. 7. It is observed that
the experimental results of Fig. 6(d) verify the theoretical simulation of

Fig. 4. Lau fringes generation experimental set-up: S1, S2: white light source; FG, FR:
green and red interference filter, respectively; L1, L2, L3: lenses; G and GA: amplitude
Ronchi gratings;; BS: beam splitter; P: diaphragm;G2: photorefractive volume phase
grating.

G. Forte et al. Optics Communications 396 (2017) 110–115

113



Fig. 6(c).
Fig. 6(e) shows Lau pattern profiles calculated using gratings with

D=3 mm, LZ=6 mm and E0=5, 7 and 9 kV/cm. In this case, the
improvement of the patterns is due to the field propagation through
a grating that experiences increasing modulation amplitude expressed
by Eq. (2). This behavior is confirmed by the experimental patterns in
Fig. 6(f).

Let us analyze quantitatively the visibility of the Lau patterns

generated by the photorefractive volume gratings. The pattern visibility
defined by Eq. (5) is studied in terms of the phase parameter βmod

introduced in Eq. (7). In Fig. 7(a) the visibility of theoretical patterns is
plotted in terms of the βmod calculated for the respective volume phase
gratings. A sinusoidal fitting curve for the least squares fit confirms the
expected visibility behavior. In Fig. 7(b) the visibility of experimental
patterns in terms of βmod is considered. A sine function for compar-
isons is added to the graph.

Fig. 5. Experimental Lau patterns produced by photorefractive gratings with D=3 mm, E0=7 kV/cm, (a) LZ=3 mm and (b) LZ=6 mm.

Fig. 6. Lau patterns intensity profiles: (a) calculated and (b) experimental patterns generated by using different crystal thicknesses with fixed values of D=50 mm and E0=7 kV/cm;
(c) calculated and (d) experimental patterns generated by using gratings with the same values of LZ as in (a) and (b), but for D=3 mm and E0=7 kV/cm; (e) calculated and (f)
experimental patterns generated by using different DC external field with fixed values D=3 mm and LZ=6 mm.
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Let us observe the point indicated as (1) in both graphs. This point
corresponds to D=3 mm, LZ =10 mm and E0 =9 kV. These values of D
and LZ provide a well-defined single grating in the crystal volume.
Therefore, this E0 value guarantees the maximum index grating
modulation amplitude. In this sense, the light field through this phase
grating accumulates in-phase propagation producing a βmod =2,73 >
> π/2 that results in a blurring of the Lau fringes reducing thereby the
whole fringe contrast. Then, the visibility drops drastically, confirming
thereby its sinusoidal behavior. Let us return to the discussion
concerning Fig. 6c) and 6d). These results can be explained in a similar
way as that argued in the point (1). The Lau fringes corresponding to
D=3 mm, E0=7 kV and LZ=10 mm decreases its quality with respect to
D=3 mm, E0=7 kV and LZ=6 mm as a consequence of that βmod > π/2
in the first case.

4. Conclusion

We have studied theoretically and implemented experimentally the
Lau effect by using a photorefractive volume phase grating. The 3D

grating is generated by imaging an incoherently illuminated Ronchi
grating into a sillenite crystal. A calculation based on the OTF of an
incoherent imaging system to describe the 3D intensity distribution is
employed. This 3D distribution is mapped into a refractive index
perturbation via the photorefractive effect. Three parameters govern
the index grating modulation: the DC external electric field that
controls the index modulation amplitude, the exit pupil diameter of
the imaging recording system and the crystal thickness, the last two
parameters related to the region in which the grating spreads out. In
this way, the use of a 3D photorefractive grating in a Lau experiment
turns out to control the fringes quality through the introduced
parameters. A model based on a path integral formulation is used to
calculate the Lau patterns’ intensity generated by the mentioned
volume phase grating. The Lau fringes visibility maintains the sinusoi-
dal dependence of the planar phase grating but introducing a new
proper phase parameter. Note that this parameter gathers the depen-
dence on the output pupil diameter of the write-in process, the crystal
thickness and the external applied field. In summary, an adequate
combination of the three parameters which makes that βmod takes a
value close to π/2 is the best configuration to enhance the Lau image
visibility.
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6 and 10 mm with fixed D=25 mm and E0=7 kV/cm LZ=2, 3, 4, 6 and 10 mm with
fixed D=3 mm and E0=7 kV/cm E0=5, 7 and 9 kV/cm with fixed D=3 mm and
LZ=6 mm; E0=9 kV/cm with fixed D=3 mm and LZ =10 mm.
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