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Abstract

The Dimensional Regularization technique of Bollini and Giambiagi
(BG) [Phys. Lett. B 40, 566 (1972); II Nuovo Cim. B 12, 20
(1972); Phys. Rev. D 53, 5761 (1996)] cannot be employed for
all Schwartz Tempered Distributions Explicitly Lorentz Invariant
(STDELI) S;. We lifted such limitation in [J. Phys. Comm. 2
115029 (2018)], which opens new QFT possibilities, centering in
the use of STDELI that allows one to obtain a product in a ring
with zero divisors. This in turn, overcomes all problems regrading
QFT infinities. We provide here three examples of the application
of our STDELI-extension to quantum field theory (A) the exact
evaluation of an electron’s self energy to one loop, (B) the exact

4
evaluation of QED’s vacuum polarization, and C) the )\% theory
for six dimensions, that is non-renormalizable.

Keywords

Dimensional Regularization Generalization, Electron Self Energy,

Vacuum Polarization, Six-Dimensional Non Renormalizable )\‘Z—?
Theory

1. Introduction

The current paradigm in quantum field theory (QFT) asserts that non
renormalizable theories are intractable. This is so because an infinite
number of counter terms are needed to deal with the infinities that
arise in the convolution of two quantum propagators.

A nascent new paradigm, based on Ultrahyperfunctions (UHF), a
generalization of the well known Schwartz’ distributions, uses the fact
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that quantum propagators can be represented by UHF-distributions.
If one does it, then convolutions are always finite and infinities disap-
pear. Non renormalizable theories can then be tackled with no undue
effort. This fact is highly unpalatable for workers of the old paradigm
that will fight to the death the propagation of the new one.

Thus, this effort is based on quantum field theoretical (QFT) results
of the new paradigm, exhaustively discussed with all pertinent details
in [1-6]. They revolve around Ultrahyperfunctions theory (UHT), a
generalization of Schwartz’ distribution theory. Specifically, one uses
a particular kind of Schwartz’s distributions called explicitly Lorentz
invariant ones (STDELI). We will revisit here via STDELI the exact
evaluation of an electron’s self energy to one loop, the exact evaluation
of QED’s vacuum polarization, and the )\‘Z—? theory in six (non renor-
malizable) dimensions. We use extensively the mathematics of [1-6],
without giving all the intermediate results for the sake of saving space.
For the sake of completeness, though, some mathematical sketch is
given below, which may be skipped.

1.1. Brief Summary of the Mathematical Results to
Be Employed

This subsection may be omitted at a first reading. Our work revolves
around the problem of using a workable version of the product of two
distributions (a product in a ring with divisors of zero). This is an
old conundrum of hard functional analysis. In quantum field theory
(QFT), the problem of evaluating the product of distributions with
coincident point singularities is related to the asymptotic behaviour
of loop integrals of propagators, becoming thus an obstacle that is to
the essence to overcome. We did it in references [1-5].

From a mathematical point of view, practically all definitions of that
product of distributions lead to limitations on the set of distributions
that can be multiplied by each other to give another distribution of
the same type. In fact, Laurent Schwartz himself was unable to define
a product of distributions regarded as an algebra, instead of as a ring
with divisors of zero.

In references [2-5] it was demonstrated that it is possible to de-
fine a general convolution between ultradistributions, introduced by
the mathematician J. Sebastiao e Silva and called an ultrahyperfunc-
tion [7]. This new convolution yields then an ultrahyperfunction.
Therefore, we have a product in a ring with zero divisors. Such a ring
is the space of distributions of exponential type, or ultradistributions of
exponential type, obtained applying the anti-Fourier transform to the
space of tempered ultradistributions or ultradistributions of exponen-
tial type. Remember that ultrahyperfunctions are the generalization
and extension to the complex plane of the Schwartz’ tempered distri-
butions and of the distributions of exponential type [2-5]. That is, the
temperate distributions and those of exponential type are a subset of
the set of ultrahyperfunctions. One then faces the problem of formu-
lating the convolution between ultradistributions. This is a complex
issue, difficult to manage, even if it exhibits the advantage of allowing
one to attempting to deal with non-renormalizable QFT’s.

Fortunately enough, we have found [1] that a method similar to
that used to define the convolution of ultradistributions can also be
employed to define the convolution of Lorentz Invariant distribution-
s [8],using a generalization Bollini-Giambiaggi’s (BG) dimensional reg-
ularization (DR) ( [9-11]) in momentum space [1]. As a consequence,
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ultradistributions need not to be used in our present calculations, which
considerably simplifies things. Taking advantage of the regularization
technique of [1] one can also work in configuration space. Thus, one is
able obtain a convolution of Lorentz Invariant tempered distributions
in momentum space and the corresponding product in configuration
space [1].

Using the results of [1] we have managed to do the Quantum Field
Theory of Einstein’s Gravity [12], the Non-Relativistic Quantum Field
Theory of Verlinde’s Gravity [6] and the Newton’s Gravity [13].

It is of the essence to have a clear picture of the consequences of
the advances made in reference [1]. As a starting point, remark that
DR is one of the most important advances in theoretical physics, be-
ing used in several disciplines [14, 15]. If one adds to it our DR~
generalization [1], the above referred to convolution happens to be
both one of STDELI in momentum space and a product in a ring with
divisors of zero in configuration space. Our work of [1] can then be
used to quantize non-renormalizable QFT’s. This could be regarded
as a worthwhile achievement.

More to the point, let us emphasize that our [1]-work is concerned
with deeper issues than those regarding QF T axiomatics in Euclidean
space and QFT renormalization. Reference [1] generalized BG di-
mensional regularization to all Schwartz tempered, explicitly Lorentz
invariant, distributions (STDELI), something that BG were unable to
achieve. Permit us to insist on the fact that this would permit one to
deal with non-renormalizable QFT’s.

A great advantage thereof lies in the fact that we do not have
to use counterterms in a renormalization process devoted to elimi-
nate infinities. This is exactly what we would not want to do, since
a non-renormalizable theory involves an infinite number of countert-
erms. The central purpose of our work is to avoid counterterms. In
addition, we do not appeal to a simple correlation-functions’ convolu-
tion (not defined for all STDELI). At the same time, we conserve
all extant solutions to the problem of running coupling constants
and the renormalization group. The STDELI convolution, once ob-
tained, converts configuration space into a ring with zero-divisors. In
it, one has now defined a product between the ring-elements. Thus,
any unitary-causal-Lorentz invariant theory quantified in such a man-
ner becomes predictive. The distinction between renormalizable on
not-renormalizable QFT’s becomes unnecessary now. With our BG
generalization, that uses Laurent’s expansions in the dimension, al-
1 finite constants of the convolutions become completely determined,
eliminating arbitrary choices of finite constants. This is tantamount
to eliminating all finite renormalizations of the theory. What is the
importance of using only that term independent of the dimension in
Laurent’s expansion? That the result obtained for finite convolutions
will coincide with such a term. This fact translates to configuration
space the product-operation on a ring with divisors of zero.

1.2. Present Goals

We wish here to illustrate the power of our approach with reference
to two interesting examples. In such a vein we calculate two convo-
lutions of distributions used in QFT, in connection with the electron
self energy and the vacuum polarization in QED.
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2. Preliminary Materials

2.1. The BG-Original Calculation of an Electron
Self Energy to One Loop
The self energy of the electron is defined as

_ iy (=K —m]
2BV) = (o / MR mE ) (21.1)

BG evaluated this integral for the first time in [10]. BG’s result,
obtained using their definition of DR, is

S(0) = g (020 (2 2) { [ p+ w2 =) — 20

(47)% v—2
v v v 1 ) 4
F(2—2,2—1,2,1—p>+[m—(w-p+m)](V—2>-
vV Vv v 1
Fl2—— - —4+1;1——- 2.1.2
(-5 55 +11-2), (2.12)

where the variable p is defined as p = (p? + m?)/m?. To obtain the
finite part of the self energy, BG decomposed it in the form

S(p,v) = A+ (iy-p+m)B+ (iv-p+m)*Se(p,v),  (2.1.3)
where A, B, and X;(p,v) were defined as
A= [E(p, V)]i'y~p+m:O

y-p+m iy-pm=0
E(p,v) —A—(iy-p+m)B

: L (214)
(Z’}/ P+ m)2 :|i'y~p+m=0

)= |

with (iy-p4+m)~t = (m —iv-p)/(p* + m?). Es(p,v) thus turns out
to be the finite part of the self energy. As a result of these definitions

we get

2 3

eem"Crv—1 v
A:—i,,iF(Q—f), 2.1.5
(4m)% v—3 2 (2:1.5)
A
B=—", 2.1.6
2 (2.1.6)
5 V)_eQm”_‘lF(Q_Z) (2- )m—i’y~p_ m—iy-p 2
1) = (47)= 2 m2p m2p? mp
2 — 1y - — 1y - 1 4
F(I,Q—K,K;l—p)+2m yp m—wy-p 1 X _9).
v—2 272 m2p? m2p mp | \ v

] i~ 1 — -
FL2=2. 2 +11-p)+ 2 [Qm ”p+mwp]}.

v—3 m2p? mp m2p
(2.1.7)
It should be noted that A and B are independent of p. The three
above equations have not been modified till the present time. However,
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and this is a crucial issue, BG’s decomposition exhibits an unwanted
facet. There are an infinite number of ways to choose A and B. The
cause is found in products of the gamma function with the hypergeo-
metric function at a pole of the gamma function. We must therefore
isolate such pole in proper fashion, so as to avoid this problem. The
rigorous way to do this is to use the convolution of Lorentz Invari-
ant distributions obtained in [1]. If this is done straightforwardly, the
result obtained turns out to be too involved to be faced numerical-
ly, as one faces quite difficult to evaluate functions. These functions
arise when we derive the hypergeometric functions (HF) that appear
in (2.1.2) with respect to the dimension v so as to perform the cor-
responding Laurent’s series expansion, typical of DR. Instead, before
HF-deriving as explained above, one must first isolate the gamma func-
tion at the pole (from the hypergeometric function) and subsequently
tackle the Laurent expansion. This will be illustrated below.

2.2. Vacuum Polarization

BG also calculated the vacuum polarization in QED [10]. The integral
that defines it is given by

ie iv-p—m diy-(p—k)—m
Wy (kyv) = 5T . d’p. (2.2.1
M ( V) (27’()” T/’Yp« p2+m2 Y (pfk)2+m2 ( )
To evaluate it, the following results should be used
Troyuy = d(v)nu, (2.2.2)
TryuveYpYe = AV)(Mupo = Nuptve + MuoTlup); (2.2.3)

where d(v) is an analytic function of the dimension v, which, for v a
positive integer, matches the number of components of the associated
spinor in a v dimensional space The result of the integral (2.2.1) is

I, (kv) =
e? d(v) v 4 9 v .5 K
L (2— o )m" o = Nk ) F 25,2, 55— | -
(4m)% 3 ( 2) m ko = 10k) ( 2°72 4m2>
(2.2.4)

Note that in all terms, except for the first one, one faces the multi-
plication of the gamma function by a zero of the hypergeometric func-
tion. Therefore, the finite part of the vacuum polarization II,,, r(k, V)
is given by (note a critical —1 subtraction in the last bracket)

e? d(v AN
or (b, v) = Tt %F (2 — 5) m? =4 (ks — 10k?):

v 5 k2
Fl2—=-2 —i— | -1 2.2.
(CRTERCH I I

and the vacuum polarization is cast as

I, (k,v) = (42)% @I‘ (2 _ g) m? =4 (ks — 0ok + o (K, v)
(2.2.6)
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3. Simple Preliminary Example to Better
Understand Our Procedure

So as to better understand our approach we will confront now with
two simple examples: the self-energy and the vacuum polarization,
corresponding to a massless scalar field ¢ and a massive scalar field v
with an interaction given by g¢v?

3.1. The Scalar Field Self Energy

In this case the self energy is given by:

d’k
Y(p,v) = / 2 — )2+ 7] (3.1.1)

The result of this integral is: (see [9])

2
. v _ v 172 % p
S(p,v) = ”4F(1—7>F 1,2-2 Y, P 1.2
(p’y) Z7T2m 2 Y 2727 m2 (3 )
This last equation can be re-written in the form:

2imrzm? 4 v v v o p?
S(p,v) = Z5 T (2 - 5) F (172 _zr —2> (3.1.3)

—v 2’2" m

We use now the equality:

2
F(Q—Z)F l2-2 V. P )
2 2'2"  m2

2

1“(27%)7%1“ (3Z)F<1,3’;,;+1;:;2) (3.1.4)

With it we obtain:

2 £ s v—4
S(p,v) = 2™ p (2_ Z) _

2—-v 2
4imzm?~5p? v v v P2
—T (3—7)F 1,3——-,-+1;,—— 3.1.5
v(2—v) 2 ( 2’2 + m2> ( )
The self energy can be then decomposed as:
S(p,v) = A+ 3 (p,v) (3.1.6)
where . .
2imzmY ™ v
A= ——T (2 — —) 1.
2—v 2 (3.1.7)
and
dimzm?~6p? v v v P>
3¢ (p, :—7I‘( —7>F 1,3——, - +1;——
£p:v) 2= B3 ( oyt m2>

(3.1.8)

This is the procedure followed by Bollini and Giambiagi. We are

going to proceed with our generalization of dimensional dimensional.

For this we are going to develop the self-energy in Laurent’s series.
Let f be given by:

TEmy 4
fv) = ) (3.1.9)
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Its development is:

,”2 2

flv) = 5 +%[1*1n(’ﬂ')*21H(77’L)](1/74)+Zbk(1/*4)k (3.1.10)
k=2

As a consequence we have:

2 2

F)T (2 . g) - V”_ 1+ %[ln(w) +2In(m) + C — 1) (v — 4)+
idk(u—ll)k (3.1.11)
k=2

Development of self energy then is:

2im? .9
Y(p,v) = — + i [In(7) + 2In(m) + C — 1+
P’ P - K
53k <1,1,3;—mQ>] +;ak(y—4) (3.1.12)
We can write again:
X(p,v)=A+32s(p,v) (3.1.13)
with )
2
A= .1.14
1 (3.1.14)
and
Y¢(p,v) = ir?[In(n) + 2In(m) + C — 1+
p’ P’ - K
53k (1,1,3;—W)] —i—kz_lak(y—él) (3.1.15)

Therefore the exact value of self energy in four dimensions is:

Yp(p,4) = B4 (p,4) = ir?[In(n) + 2In(m) + C — 1+

2 2
p p
—F|1,1,3—— 3.1.16
) 2 ( ) Ly 2):| ( )

3.2. The Vacuum Polarization of a Scalar Field

As an example we consider the vacuum polarization, given by
d’k

11 = .

(&) / (2 +m?)[(p — k)? + m?]

The result of this integral is (see [9])

(3.2.1)

2
. ,Z) _v3
L(p,v) = in¥m r(z - F(I,Q “R-H 4m2>. (3.2.2)

We use the equality

v v 3 p?
N CER PRI A I
2 2 F( 2 272 4m2)
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2 2
v p v v 5 p
I‘(2—7)——F( ——)F 1,3— =, =;——— . 2.
2 6m?2 3 2 3 2’2" 4m? (3.2.3)
We have then

H(p,v) =ir2m” 4T (2 — Z) -

2
imzm?6p? v v b p?
e (32)F(1,32,2,4m2>. (3.2.4)
We make the decomposition
(p,v) = A+1s(p,v). (3.2.5)
Thus, we obtain
A=irsmiT (2 - g) , (3.2.6)
and
im2m?6p? v v b p?
U (p,v) = —7F(3—7)F 1,3-2. 2. P ) (397
1) 6 2 < 2'2 4m2) (8:2.7)

This is the result obtained by BG. We proceed now to generalize it.
We define

fv) =mzm* (3.2.8)
As a consequence, we obtain the Laurent expansion
f)r (2 — Z) =— i — 72[C 4 2In(m) + In(7)]+
2 v—4
> by —4)*. (3.2.9)
k=1

The expression of the vacuum polarization is now

2im? 9
(p,v) = ——— 17 [C +2In(m) + In(7)+
2 2 >
o 5._» Nk
ok (1,1, 5 4m2>] +kZ:1ak(V 4)k, (3.2.10)
We can re-write it as
U(p,v) = A+ 1L (p,v), (3.2.11)
with )
iy
A= —— 3.2.12
2, (3:2.12)
and

s (p,v) = —7*[C + 21In(m) + In(7)+

LAY R +§:a(u—4)’f (3.2.13)
om2" \ "2 Tam2 )| T A ' -

The exact value for the four dimensional vacuum polarization is
then
Ip(p,4) = Iy (p,4) = —7*[C + 21n(m) + In(r)+
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N (1,175._1”2”_ (3.2.14)

6m?2 2" 4m?

As a second example we give the calculation of the self-energy of a
well-known QFT model, in the renormalizable case v = 4 and in the
non-renormalizable case v = 6.

4. The Massless Case for —(;54 Model
4.1. The v-Dimensional Self-Energy

As it is well known, in Minkowski’s space the second order self energy

is defined as (all remaining terms, to second order, vanish using our
method)

S(p) = (p—1i0) "L x (p—i0) "t x (p—i0) 7L, (4.1.1)
where p =k} + k3 + k3 + ...+ k2_, — k3.

Going beyond the mere definition (4.1.1), we will actually evaluate
3} now using our methodology. In v dimensions we have

S(o,) = [(p—i0) " x (p—i0) "5 (p—i0) e (412)

We are thus confronted with the convolution of three massless Feyn-
man’s propagators. In facing such problem, we take into account that

F Y fix fox 5} = @m)* fifofs. (4.1.3)
According to reference [16], we this have

l
2

FH {0 -
and accordingly,

FH{(p—i0)~ —i0) "' x (p—i0)7"} =

_9v 25T (f - 1) (z+1i0)'7%, (4.1.4)

137
e 2

(2m)¥

Using again reference [16] we face now

f{(a: + z‘0)3*37”} -

93 =6, % [F (g - 1)}3 (z + 0~ ¥. (4.1.5)

e

ol

26-2 75 (3 —v) (p —i0)" 3 (4.1.6)

with which we can write for X(p, v)

S(p,v) = [(p—i0) " (p—i0) "+ (p— i0) '], =

e 1%

s ()] 0

which successfully completes our task.
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A Confirmation of the Validity of the Above
Result

To such an effect, we proceed now to the traditional technique for
evaluating ¥ via the well known Feynman’s integrals and parameters
Thus, we have

S(k) = (p—i0)~ = (p—i0)~"

d*pd*q
2 _ 2 _

(p? —i0)(q2 —i0)[(p + q — k)2 — i0]’ (4.2.1)

so that, in v dimensions

*(p—i0)~" =

S(k,v) = [(p—i0) " x (p—i0) " % (p—i0) '], =

d"pd” q
. 4.2.2
| == T 22
After performing the corresponding Wick rotations we get then

_/M
P?¢*(p+q—k)?

(4.2.3)
Let us evaluate first
d’p
Yilkyv)= | ———. 4.2.4
(k) /pQ(erq—k)Q 24
We define here k — ¢ = k1 and then
d’p
Ya(k = | ——. 4.2.5
1k, v) /p?(p—kl)2 (42:5)
We now use Feynman’s parameters and obtain
d’p dz
1(k = 4.2.6
1,V 'L// p klm + a]2 ( )
where
a=Fkaz(l-x). (4.2.7)
Change variables by setting u = p — kx and write

d¥u dx
Lk 128
L //u“w (128)

We evaluate the integral over u using [17] and have

[ R
(u? +a)™ I'(s

Tl , (4.2.9)

which leads to:

1
Y1 (k1,v) = im2y (2—7) kY™ 4/9512 2(1 -
0

)2 2dx.  (4.2.10)
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Using [17] once again leads to

1
v v 2 |27 v
¥_9 r_g
1— - F(2—7,7—1,7;1). 42.11
/x2 (1=2) de = 7= 22 73 (4.2.11)
0

Also from [17] one finds

F<2fg,gfl,g;1) % (4.2.12)
so that
Si(kr,v) = ﬁw% [F (g - 1)}2r (2 - g) KUY (4.2.13)

Using this result, we have for the self-energy:

S(k,v) = 711(%_2)7& [F (g - 1)}21“ (2 . g) x

d’q
_—. (4.2.14)
/112[(7611)2]2 2
We now turn our attention to Feynman’s generalized parameters:
1 / 11—-2)~1d
(a + ”B / 27 (1 —a)" da (4.2.15)
AapB ~ Az + B 1—x)oth
0
The self-energy thus has the expression
1 v v 2 v
st =t (5] o=
k) === T3 3m3)x
1 "
1—xz
T2 -, (4.2.16)
0/ /[(k—fJ)%Jrq(l—fC)} >
or, equivalently:
1 v v 2 v
S(hv) =~y [T (5 -1)] T(3-3) %
1 "
=54 7 4217
[ [ .
0

We define now a = k%x(1—x), u = g— kz, and then the last integral
can be easily evaluated as

d’u T2 v_ v
| v - r B ) (42.18)

Thus, we have for the self-energy

S(k,v) = —ﬁw” {F (g - 1)}2r (3 — ) k>~ Sx

1
/m%_z(l —x)" 3dr. (4.2.19)
0
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Finally, we obtain

S(k, v) = —mﬂ [r (g - 1)]3 T(3—v)k> 5. (4.2.20)

Returning now to Minkowski’s space, we have the following expres-
sion for the r-dimensional self-energy

S(p,v) = —F(%Vl_g)w” {F (g - 1)}3 (3 — ) (p—i0)" 3. (4.2.21)

We will next give the dimension v fixed values.

4.3. The Four-Dimensional Self-Energy

This is a known problem, that we discuss here only for didactic pur-
4
poses. In four dimensions the theory )\% is renormalizable.

As the reader should expect, we expand X(v) in Laurent series
around the pole at v = 4 [1-6,12,13] and find

24 —v) 4

mp mp 13 =
Y(p,v) = a3 [hl(p —i0)+Inm+C — ]—FZ am (v—4)".
m=1

(4.3.1)
The term independent of v — 4 in our expansion yields the self-
energy [1-6,12,13]:

) 13

3(p) = —5 {ln(p —i0)+Inm+C — 4} . (4.3.2)

4.4. Successfully Dealing with the Non
Renormalizable Case of 6 Dimensions

We pose ourselves now a critical test, by showing that we can deal with
a yet unsolved instance without undue hardship. When v = 6, the )\%1
theory is non-renormalizable. Thus, if we appeal to the BG technique,
we can not proceed as we did above. The achievement that we will
boast about now is that our present Laurent based approach remains
undaunted by these difficulties. This will be appreciated below.

Our Laurent expansion is

703 76 p3 ‘
E(p,u) = 6'(6—1/) - 6! [ln(psz)
187 &
+hnr+C - EJF am (v —6)™. [((4.4.1)
m=1

The term independent of v — 6 in our expansion yields the self-
energy [1-6,12,13]

6,3 1
2(p) = _”6") {ln(p —i0)+Inw+C — ;ﬂ (4.4.2)

As promised, no undue hardship was involved. Non renormaliz-
able QFT theories can be easily dealt with by appeal to our
techniques of [1-6,12,13].
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5. Our Exact Results
5.1. The Electron Self Energy to One Loop

To evaluate self energy we use the following equalities

vV v v 1 v vV v
Fla—2.2_-1,-:1-2)= 2*§F(12———'1— ) 5.1.1
( 272 ’2’ p) p ) 2’2, p ) ( )

vV vV 1 v v v
Fl2-ZY YV 112 = 2**F(1,277,7 11— )
< 229" p) e 23" P
(5.1.2)
We can write (2.1.2) in the form
£(p,) =~z T (2= ) {{(i7 - p+ m)(2 — 1) — 2]
D,V —(47r)%m ~ 3 [(iv-p+m)(2—v)— m]y_2
F(12 rra )+[ Gy-prm) (22
) 2727 p m Z’Yp m V
vV v
F<1,2—7,7 11— )} 1.
55+ p (5.1.3)

Using the following relations, we can isolate the gamma function at

the pole
I‘(sz)F(l,?fK,K;lfp):
2 22

v 2(1-p) v 7
F(Q—f) 7I‘( —f)F(l, AN ) 1.4
+ » 3 5 3 5 2+ P (5.1.4)
14 1280 %
F<277)F(1,277,7 11— ):
2 29 " P

v 2(1—p) v v v
F(Q_,) 7F(3_7)F(173—7,7 21— ) 5.1.5
2) T e 2 23" p). (5:15)

Replacing these results in (5.1.3) we obtain

S(p,v) = (j);m““‘{{[(w-mm)(z—y)_2m]V32+
i m) 22T (22 5) 4
{[(i’Y'p-i-m)(Q—y)—zm]m.

F(L3= 5511 ) +m (i p )] Co )
Py )rGD) o

or equivalently

s = g (- 2

i(i’y-p+m)}f‘(2—;)+

NN
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: 4(1—p)
{irpem =) 2 20 =0
v v ) , (8 —4v)(1 —p)
12 % 14
F(I,S—§,§+2,1—p>}F<3—§>}. (5.1.7)
Note that 1 — p = —p?/m?2. We can decompose the self energy in
the form
YX(p,v) = A+ B(iy-p+m)+Xs(p,v), (5.1.8)
where A, B, and X¢(p, v) are given by
e? 4 2v—4 v
A= m? 3 — rz-- 1.
(47r)5m (1/2 v ) ( 2)’ (5.1.9)
o ity (2 - 5) (5.1.10)
 (4m)% v 2/’ o
2
_ € v—4 . o o 4(1 7/))
50.0) = g™ {0 m)2 =) =200 =
v v , (8 —4v)(1 —p)
120 % 14
F(1,3—§,§+2,1—p)}F(3—§). (5.1.11)

This decomposition is consistent, since both the self energy and its
finite part depend linearly on iy - p +m. Note that X¢(p.v) can be
re-written as

2i(p,v) = Zpip,v) + (17 - p+m)Epa(p,v), (5.1.12)
with 2
Enlp,v) = 7(42)% m? =3 {m.
FL3-2,2+11-p) _W.
F(L3-3.2+21-p)}r(3-2). (5.1.13)
Yra(p,v) = (422); m’ = {(2 - u)m.
F(L3-2.2+21-p)jr(3-3). (5.1.14)

Note that X;1(p,v) and Xo(p,v) are independent of iy - p + m.
Although this result seems to be correct, to obtain the true convolution
we must perform the pertinent Laurent’s expansion. To such an end
we define

f(u):my_4 K 1 —2V_4)m—i(i’y-p+m)]. (5.1.15)

v—2 v
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We then use the following expression for the gamma function

P(2—5):— 2 —C’+kz::10k(1/—4)k (5.1.16)

2 v—4
and thus obtain the corresponding Laurent expansion

fwr (2-3) = (47r)i;y(z'/pf el

1. 1 = X
a2 {z’y-p {C—l—?ln(m) — In(4m) — 2} +2m+;bk(1/—4) }
(5.1.17)
Using the previous result, we have the following expression for the

self energy
e [iy-p
) = i =

yp [C’+21n(m) —In(4n) — ;] +2m+ibk(y4)k}+

k=1
o {1 e miz -0 - 2 2020
F(1,3—g,g+1;1—p> +[m—(z’7-p—|—m)}(8y(4;)_£12)m~
F(l,3—g,g+2;1—p)}F(3—%)}. (5.1.18)

Completing the Laurent expansion we have

e [iy-p
) = o {5+

1 oo
iy p {C +2In(m) — In(4n) — 2} +2m + Z br(v — 4)F+
k=1

ez . 1
WW'?Q —-p) [BF(171,4§1 —p)+

F(1,1,31—p)] +2m(1 — p)F (1,1,3;1 - p) +

ick(y—él)k}, (5.1.19)
k=1

or equivalently
2

) = o 5+

iy-p {C+21n(m)ln(47r)ﬂ + 2m+
. -p) 2P 1,41 —p)+

7’/7/ : - Py ) ) ; -

aE P10 |3 p
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(5.1.20)

iak(y - 4)’“} .
k=1

This last result can be recast as
e? - -p+m m
E = —
(v.p) (47r)2{ v—4  v-at

iy-p [C +2In(m) — In(4n) — 2} + 2m+
e? 1
2zt p(l=p) |3 F (L1, 41— p)+

(4m)¥
F(1717371_p)]+2m(1_p)F(1717371_p)+

Z%(V - 4)k} .
k=1

We are now allowed to effect then the following decomposition
(5.1.22)

(5.1.21)

Y(p,v)=A+(iv-p+m)B+X¢(p,v)

where the constant A and B are given by
e?m
A=————— 5.1.23
a2 — ) (0129
2
- (5.1.24)

P= e —o

and the finite part of the self energy is

£5(0p) = oz Liv-p [0+ 2In(m) — Inam) = £| +2m+
v,p) = —— . n —1In - =

¢(v,p an)? iy p m 7 m

2 ] 1
wp(l—p) |:3F(171747]-_p)+

SE(LL31—p)]+2m(l—p)F (1,1,3;1—p)+
(5.1.25)

iak(u — 4)k} .
k=1

We have then the four dimensional result (the sub-index P below

1
—| +2m+

means ”physical”)
2

i2 {m p [C +21In(m) — In(4) —

Ep(p) =Xf(p,4) = )

_ 1 1
iy-p(1=p)[3F(1,1,41 = p) + SF(1,1,3,1 = p)}—
(5.1.26)

Qm(l - p)F(l, 1,3,1- P)} ’

which is the exact result of the convolution (see [1]). We arrive thus to
the conclusion that X p(p,v) is the true physical self energy, a rather

nice conclusion.
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2. Vacuum Polarization Evaluation

The vacuum polarization can be written in the form

e dv v e
T (k, v) = o %r (2 - 5) m? = kuky — uok?) + Iy (ki v),
(5.2.1)
where 11,7 (k, v) is given by (2.2.5). To make the Laurent expansion
"
we define ) d( )
12
f(l/) = (47_‘_)% (k,u,k'u - TINUI{;Z)- (52.2)
Thus, we obtain
v 1 d(v) kuky — nuk?
r(o_%)=_ 1 L B 2y
f(]/) < 2) (47’[’)2 { 3 4 —v + (k#kv Thwk )

{d(;)[z In(m) —In(4m) — C] + dlgl)} + ; bi,(v — 4)’“} - (5:23)

Using this result, we obtain for the vacuum polarization

e? dv) kuky, — nuwk?

Hp/u(k:,y):_(4ﬂ_)2 3 1 - )2 { — Mok )

~—

{d(4[2 In(m) — In(4n) — C] + d/:(;l) } + ibk(V — 4)k}—|—pr(k, v).
k=1

3
(5.2.4)
The finite part is then

Wyor(k,v) 2 { — Nuvk )

S

{@‘)(2 In(m) — In(4n) — C] + dlz(f) }} + 11,7 (k,4) +i ap(v—4)*.
k=1

3

(5.2.5)
Consequently, we have for the convolution (in four dimensions) the
result

Hwp (k) = oy (k,4) 2{ = Nuok )

{d(;)b In(m) — In(47) — C] + d/:(;l) }} r(kd).  (5.26)

6. Discussion

We used the new QFT-paradigm based on STEDELI-distributions
that overcomes the old problem of QFT-infinities. With this new
paradigm, we have here solved, for instance, the non renormaliz-
able problem posed by )\‘i—? theory in six dimensions. The old QFT-
paradigm can do nothing here. Instead, we solved it.

Using STEDELI, we were thus able here to successfully handle in
novel fashion several old QF Tproblems.
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It is of the essence to realize that, in QFT, when one uses pertur-
bative expansions, we are dealing with products of distributions in
configuration space or, analogously, with convolutions of distributions
in momentum space.

Using such convolution, we have exactly evaluated, for the first time,
the electron self energy and the vacuum polarization in QED.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication
of this paper.

References

1]

Plastino, A. and Rocca, M.C. (2018) Quantum Field Theory,
Feynman-, Wheeler Propagators, Dimensional Regularization in
Configuration Space and Convolution of Lorentz Invariant Tem-

pered Distributions. Journal of Physics Communications, 2, Ar-
ticle ID: 115029. https://doi.org/10.1088/2399-6528 /aaf186

Bollini, C.G., Escobar, T. and Rocca, M.C. (1999) Convolution
of Ultradistributions and Field Theory. International Journal of
Theoretical Physics, 38, 2315-2332.
https://doi.org/10.1023/A:1026623718239

Bollini, C.G. and Rocca, M.C. (2004) Convolution of Lorentz In-
variant Ultradistributions and Field Theory. International Jour-
nal of Theoretical Physics, 43, 1019-1051.
https://doi.org/10.1023/B:1JTP.0000048599.21501.93

Bollini, C.G. and Rocca, M.C. (2004) Convolution of n-
Dimensional Tempered Ultradistributions and Field Theory. In-
ternational Journal of Theoretical Physics, 43, 59-76.
https://doi.org/10.1023/B:1JTP.0000028850.35090.24

Bollini, C.G., Marchiano, P. and Rocca, M.C. (2007) Convolution
of Ultradistributions, Field Theory, Lorentz Invariance and Res-
onances. International Journal of Theoretical Physics, 46, 3030-
3059. https://doi.org/10.1007/s10773-007-9418-y

Plastino, A. and Rocca, M.C. (2020) Non-Relativistic Quantum
Field Theory of Verlindes Emergent Entropic Gravity. Annals of
Physics, 412, Article ID: 168013.
https://doi.org/10.1016/j.a0p.2019.168013

Sebastiao e Silva, J. (1958) Les fonctions analytiques comme
ultra-distributions dans le calcul oprationnel. Mathematische An-
nalen, 136, 38-96. https://doi.org/10.1007/BF01350287

Schwartz, L. (1966) Théorie des distributions. Hermann, Paris.

Bollini, C.G. and Giambiagi, J.J. (1972) Lowest Order “Diver-
gent” Graphs in v-Dimensional Space. Physics Letters B, 40, 566-
568. https://doi.org/10.1016/0370-2693(72)90483-2

Bollini, C.G. and Giambiagi, J.J. (1972) Dimensional Renorinal-
ization: The Number of Dimensions as a Regularizing Parameter.
Il Nuovo Cimento B, 12, 20-26.

DOI: 10.4236/jhepgc.2020.64040

607 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.1088/2399-6528/aaf186
https://doi.org/10.1023/A:1026623718239
https://doi.org/10.1023/B:IJTP.0000048599.21501.93
https://doi.org/10.1023/B:IJTP.0000028850.35090.24
https://doi.org/10.1007/s10773-007-9418-y
https://doi.org/10.1016/j.aop.2019.168013
https://doi.org/10.1007/BF01350287
https://doi.org/10.1016/0370-2693(72)90483-2
https://doi.org/10.4236/jhepgc.2020.64040

A. Plastino, M. C. Rocca

[11]

[12]

[15]

[16]

[17]

Bollini, C.G. and Giambiagi, J.J. (1996) Dimensional Regulariza-
tion in Configuration Space. Physical Review D, 53, 5761.
https://doi.org/10.1103/PhysRevD.53.5761

Plastino, A. and Rocca, M.C. (2020) Gupta-Feynman based
Quantum Field Theory of Einstein’s Gravity. Journal of Physics
Communications, 4, Article ID: 035014.
https://doi.org/10.1088/2399-6528 /ab8178

Plastino, A. and Rocca, M.C. (2020) Quantization of Newtons
Gravity. Journal of Modern Physics, 11, 920-927.
https://doi.org/10.4236 /jmp.2020.116056

Zamora, D.J., Rocca, M.C., Plastino, A. and Ferri, G.L. (2018)
Dimensionally Regularized Boltzmann-Gibbs Statistical Mechan-
ics and Two-Body Newtons Gravitation. Physica A: Statistical
Mechanics and Its Applications, 503, 793-799.
https://doi.org/10.1016/j.physa.2018.03.019

Zamora, D.J., Rocca, M.C., Plastino, A. and Ferri, G.L. (2018)
Dimensionally Regularized Tsallis Statistical Mechanics and
Two-Body Newtons Gravitation. Physica A: Statistical Mechan-
ics and Its Applications, 497, 310-318.
https://doi.org/10.1016/j.physa.2018.01.018

Gel’fand, .M. and Shilov, G.E. (1964) Generalized Functions,
Vol. 1. Academic Press, Cambridge, MA.

Gradshteyn, 1.S. and Ryzhik, .M. (1980) Table of Integrals, Se-
ries and Products. Academic Press, Cambridge, MA.

DOI: 10.4236/jhepgc.2020.64040

608 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.1103/PhysRevD.53.5761
https://doi.org/10.1088/2399-6528/ab8178
https://doi.org/10.4236/jmp.2020.116056
https://doi.org/10.1016/j.physa.2018.03.019
https://doi.org/10.1016/j.physa.2018.01.018
https://doi.org/10.4236/jhepgc.2020.64040

	Abstract
	Keywords
	1 Introduction
	1.1 Brief Summary of the Mathematical Results to Be Employed
	1.2 Present Goals

	2 Preliminary Materials
	2.1 The BG-Original Calculation of an Electron Self Energy to One Loop
	2.2 Vacuum Polarization

	3 Simple Preliminary Example to Better Understand Our Procedure
	3.1 The Scalar Field Self Energy
	3.2 The Vacuum Polarization of a Scalar Field

	4 The Massless Case for bold0mu mumu 4!44!4[4!44!44!44!4 Model
	4.1 The bold0mu mumu [-Dimensional Self-Energy
	4.2 A Confirmation of the Validity of the Above Result
	4.3 The Four-Dimensional Self-Energy
	4.4 Successfully Dealing with the Non Renormalizable Case of 6 Dimensions

	5 Our Exact Results
	5.1 The Electron Self Energy to One Loop
	5.2 Vacuum Polarization Evaluation

	6 Discussion

