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Abstruct-—The electrochemical faceting of polycrystalline {pc) platinum yielding a (100}-preferred oriented
electrode surface was accomplished in HF solutions by applying to the pc platinum electrode a square wave
potential perturbation at 1 kHz in the 0.2 to 1.3 V range (vs rhe). SEM patterns of the resuiting surfaces were
also obtained. For HF concentrations up to 2 M no appreciable influence of the electrelyte concentration on
the elecirochemical faceting was noticed. Otherwise, the voltammetric response of the (100}-iype preferred
oriented platinum surface in the H-adatom potential range when compared to previously reported data
resulied remarkably sensitive to the electrolyte composition. The discussion of results was based on the non-
equilibrium adsorption conditions for anions under the periodic perlurbation.

The electrochemical faceting of polycrystalline plati-
num[ 1-3] involving different preferred crystallograp-
hic orientations was accomplished through the appli-
cation of a relatively fast periodic potential perturb-
ation of preset frequency, upper and lower potential
Lmit values. Although the electrolyte composition
apparently plays a tinor influence in electrochemical
faceting development, it may be significant in the
stabilization stage of the faceted surfaces by potential
cycling at low potential sweep rate[3, 4]. This note
reports the conditions for the electrochemical faceting
of pc platinum in HF and compares the voltammetric
response at 0.1 Vs~ ! of (10U)type faceted platinum in
different electrolytes.

The clectrochemical faceting was made in HF
solutions (0.1-2.5 M range) at 25°C by using an 30 ml
capacity cell made of Teflon, working electrodes madc
from spectroscopic pc platinum  wircs (Johnson
Matthey Co., 0.5 mm dia. and ca 1.6 cm?® apparent
arca), a platinum counterelectrode of large area and a
reversible hydrogen reference electrode (rhe). The
working electrode was subjected to a symmetric rep-
etitive square wave potential signal (RSWPS) at the
frequency (f) (0.5kHz < f < 5kHz) between the
upper (E,) and the lower (E)) potential limits (1.0 V
<E, = 16V, 00V g E, < 040V), during a preset
time (). The optimal RSWPS characteristics for
electrochemical faceting of platinum in 2 M HF in the
direction of (100)-type-preferred orientation are
f=10kHz E, =130 + 005V, E, =03+0.1Y,

The development of faceting was voltammetrically
followed at 0.1 Vs~ !, in nitrogen saturated either
2MHF or 1 M H;80, at 25°C covering either
H-adatom or both the H- and O-adatom potential
rangcs. Solutions were prepared from a.r. chemicals
(Merck) and triply distilled water.

Scanning electron microscopy {(SEM) patterns of
electrode surfuces resulting after 8 h clectrochemical
faceting were obtained.

The voltammograms of the starting pc platinum
electrode run in 2 M HF and for the sake of com-
parison also in 1 M H,;SO,, exhibit the two pairs of
conjugated sharp current peaks usually assigned to
weakly and strongly bound H-adatoms. These pairs of
peaks in 2 M HF are broader and less symmetric than
those observed in 1 M H;S0, (Figs 1a and 1b).

The faceted platinum electrodes exhibit two stable
voltammeiric responses after repetilive triangular po-
tential scanning in 2 M HF, at 0.1 Vs~!, depending
whether the H-adatom or the H- and O-adatom
potential ranges are covered (Figs ic and 1f). These
voltammograms are only qualitatively comparable to
those obtained in 1 M H,S5QO,[4] as the single cathodic
current peak related to the strongly bound H-adatom
in 1 M H,S80, mirns into two peaks in 2 M HF, one
located at ca 0.22 V and another at ca 0.26 V, respect-
wvely (Fig. 1¢).

The degree of development of (100)-type faceting in
2 M HF can be estimated through the strongly bound
to the weakly bound H-adatom electrodesorption
peak height ratio (R) measured in 1 M H,50,, as for
the latter the greatest definition of peaks is observed.
Thus, for E, =004V, E,= 130V, and ¢t = 5min, R
exhibits a maximum in the 1.0 kHz < f< SkHz
range, in agreement with results for other acids[4].
Otherwise, for f=1kHz, E,=0Vand E, =13V, K
attains & maximum for ¢ ~ 20 min. For longer ta shght
decrease in R is noticed. Likewise, the value of R in
2 M HF decreases from 2.5 for a (100)-type faceted
platinum eiectrode voltammetricaily stabilized, at
0.1 V5~ !, in the H-adatom potential range, to 1.8 for
the electrode stabilized by potential scanning also at
0.1 Vs~ ', but covering the O-adatom potential range.

SEM patterns (Fig. 2} of faceted electrodes in
2 M HF solutions show a clear grain structure with
crystallographic orientation in a particular direction,
and mnet grain boundaries. Under the optimal con-
ditions, (100)-type clectrochernical [aceting implies the
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Fig. 1. Voltammograms run at 0.1 Vs™*; 23°C. (a) and (b} correspond to the starting pc platinum in 1 M
H;50, and 2 M HF, respectively. (c) (100)-type faceted platinum; 5 min fageting and voltammogram run in
2 M HF. The veltammogram <orresponds to the 3rd cycle covering the H-adatom potential range.
Voltammetric response depicted in (c} turns into that shown in (d) by changing the electrolyte from 2 M HF
into 1 M H,80,. {¢) (100)-type faceted platinum; voltammogram resulting from (d) after a few cycles in
1M H,50, covering the O-adatom potential range. (I') (100)-type faceted platinum; voltammogram
resulting (rom (c) afler a few cycles in 2 M HF covering the O-adatom potential range. The same
voltammogram results from (e) when the electrolyte is changed from | M H,80, inta 2M HF,

Fig. 2. Scanning electron mictoscopy patterns of (100)-type faccted platinum after 8 h faceting in 2 M HF at
25°C. (a) x 3200 (scale 10 pm}); (b} x 6400 (scale 10 um); (c) x 12600 (scale 1 uk (d) = 12600 (scale 1 ).



Electrochemical facsting of polyerystalline platinum in HF solutions

development of a grain structure which can be seen
with a2 low magnification for ¢ greater than 1 h. On
increasing ¢ the formation of stepped surfaces with a
high density of kinks is observed. In addilion, some
patches of the surface comprises cubic-shaped twinned
crystallographic structures.

Electrochemical faceting of platinum in acids in-
volves an initial stage and a propagation stage{4, 5).
The initial stage provokes a weakening of metal-metal
bonds through electroadsorption/electrodesorption
reactions, principally at crystallographic defects in the
lattice. The propagation stage implies a selective
electrodissolution and electrodeposition of metal
atoms during the potential cycling. For comparable
electrochemical faceting freatments in different acids,
the development of the (100)-type preferred oriented
platinum surface is practically independent of the
electrolyte composition[3]. This fact shouid be related
to the slowness of the anion adsorption kinetics to
follow the fast potential cycling developing elec-
trochemical {aceting.

In contrast there is a clear influence of the electrolyte
composition on the voltammetric stabilization stage at
0.1 ¥s~ 1. Thus, for a (100)-type preferred oriented
platinum, this influence can be seen by changing an
electrode prepared in 2 M HF exhibiting the voltam-
mogram depicted in Fig. le, from 2 M HF inio
1M H,;50,. Its voltammetric behaviour in
1 M H,80, (Fig. 14} is similar to that of an electrode
subjected to  electrochemical  faceting in
1 M H,30,[4] itself. Similarly, for an electrode fa-
ceted tn 1 M H,S(O, and then stabilized by potential
cycling in the samc acid at 0.1 Vs ~?! covering the O-
adatom potential range (Fig. ie), the change in elec-
trolyte again from 1 M H,50, to 2 M HF, brings a
voltammetric response similar to that for an electrode
faceted in 2 M HF which has been cycled at 0.1 Vs~ !
in the O-adatom potential range (Fig. 1f). After4-8h
electrochemical faceting in 2 M HF, the splitting of the
strongly bound H-adatom electrosorption current
peak is also observed by changing the electrolyte to
1 M H,S80.. For thc latter the voltammetric splitting
remains during cycling covering the H- and O-adatom
potential ranges. It should be noticed that these two
cathodic current peaks were also seen during the first
voltarnmetric scans in the H-adatom potential range of
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freshly prepared (100)-type faceted platinum both in
1 M H,80, and 0.5 M HCIO,[6]. Therefore, the pre-
sent results confirm that the voltammetric response of
the preferred oriented platinum surfaces, as well as
platinum single crystals{ 7-9] and polycrystalline plati-
num[10, 117, depcnds on both the proper surface
struciure and the electrolyte composition.

The voltammogram assigned to the stable electrode
surface structure accomplished through potential cyc-
ling in the H-adatom potential range is reached for
only a few cycles in 1 M H,8Q.,, it requires a fonger
potential eycling in 0.5 M HCIO,, and it is practically
not attained in 2 M HF. The time for the voltammetric
stabilization at 0.1 ¥s ! of (100)-type preferred or-
iented platinum in the different electrolytes correlates,
in principle, with the decreasing adsorbability of
anions in the order F~ < ClQ; < HS3Q, [7-11].
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