Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains

Abstract

Lactobacillus plantarum CIDCA 8327 is an exopolysaccharide (EPS)-producer strain isolated from kefir with promising properties for the development of functional foods. The aim of the present study was to characterize the structure of the EPS synthesized by this strain grown in skim milk or semidefined medium (SDM). Additionally, genes involved in EPS synthesis were detected by PCR. *L. plantarum* produces an EPS with a molecular weight of 10^4 Da in both media. When grown in SDM produce a heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose meanwhile the EPS produced in milk was composed exclusively of glucose indicating the influence of the sugar source. FTIR spectra of this EPS showed signals attributable to an α-glucan. Both by 1H NMR and methylation analysis it was possible to determine that this polysaccharide is a branched α-(1→3)-d-glucan composed of 80% linear α-(1→4)-d-glucopyranosyl units and 19% (1→4)-d-glucopyranosyl units substituted at O-3 by single α-d-glucopyranosyl residues.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Among the “Food-Grade” biopolymers obtained from natural sources, exopolysaccharides (EPS) synthesized by lactic acid bacteria (LAB) have focused the attention of researchers and manufacturers since these EPS contribute to the rheology of the fermented product and –on account of EPS potential health promoting properties– may also contribute to the development of functional foods (Das, Baruah, & Goyal, 2014; Patten & Laws, 2015).

EPS produced by LAB present a wide range of compositions, structures, molecular masses and conformations depending on the strain. The EPS can stay attached to the cell surface (capsular) or can be released to the culture media (Patten & Laws, 2015). High molecular weight polysaccharides are widely used in the food industry as stabilizers, emulsifiers, and to improve texture and viscosity. The functionality of these polymers is originated from the structural differences in the sugar subunits, which is also the reason of the great diversity among bacterial EPS and novel EPS structures among LAB (Mozzi et al., 2006; Patten & Laws, 2015). Complex genetic mechanisms of EPS production, carbohydrate source, incubation temperature and time, or pH of the culture medium were reported to affect in situ EPS production levels as well as their conformational characteristics, sugar linkages, and molecular mass (Ibarburu et al., 2015).

Many EPS synthesized by LAB have demonstrated to elicit some biological effect (Patten & Laws, 2015). It has been reported that some EPS can have immunomodulatory (Hidalgo-Cantabrana et al., 2012; Medrano, Racedo, Rolny, Abraham, & Pérez, 2011; Notararigo et al., 2014) and antitumoral activity in vivo (Wang et al., 2014), as...
well as an antagonistic effect against some intestinal pathogens in vitro (Medrano, Hamet, Abraham, & Pérez, 2009; Živković et al., 2016), among other health benefits. Additionally, the prebiotic effect of several EPS of LAB has been demonstrated in vitro (Korakli, Gänzle, & Vogel, 2002) and in vivo (Hamet, Medrano, Pérez, & Abraham, 2016).

Lactobacillus plantarum is a versatile microorganism that can be found in a wide range of habitats such as dairy, meat, and many plant fermentations, and it can reach high cell densities which are desirable for industrial applications. Different *L. plantarum* strains are able to produce heteropolysaccharides after grown in glucose or lactose (Dílina et al., 2015; Tallon, Bressollier, & Urdaci, 2003; Wang et al., 2010; Zhang et al., 2013; Zhang, Liu, Tao, & Wei, 2016) or homopolysaccharides: galactanases when lactose is the unique sugar source (Wang et al., 2014) or glucans when sucrose is the sugar source (Das & Goyal, 2013).

Among the health benefits of EPS produced by some strains of *L. plantarum* it can be mentioned antioxidant activity (Zhang et al., 2013), antagonistic activity against *Bacillus cereus* enterotoxin (Zhang et al., 2016), and antimutuaral activity (Wang et al., 2014).

Kefir is a traditional beverage obtained by fermentation of milk with kefir grains that contain a wide diversity of lactic and acetic acid bacteria and yeasts immersed in a matrix composed of protein and the polysaccharide kefiran (Garrote, Abraham, & De Antoni, 2001). Kefiran production was associated to *Lactobacillus kefiranofaciens* though another lactobacilli isolated from kefir were described to produce EPS after growth in milk (Hamet, Pierramaria, & Abraham, 2015; Wang, Zhao, Tian, Yang, & Yang, 2015).

L. plantarum CIDCA 8327 is a facultative heterofermentative *Lactobacillus* isolated from kefir grains (Garrote et al., 2001). This strain presents a hydrophilic surface and a moderate adhesion to intestinal cells (Caco-2 cell line), while it had a strong inhibitory activity against *Salmonella typhimurium*, *S. enterica*, *S. gallinarum*, *S. sonnei* and *Escherichia coli* (Golowczyc et al., 2008). Besides, it is able to grow in the presence of bile salts and survives after one hour of exposure to pH 2.5 (Golowczyc et al., 2008). Moreover, some studies demonstrate that this strain is able to produce organic acids such as lactic and acetic acid, and substances of low molecular weight with antifungal properties after growth in whey media (Londero et al., 2011). In addition this strain is able to grow in milk and produces *in situ* an EPS of low molecular mass (Hamet et al., 2015).

The above mentioned characteristics, that turn *L. plantarum* CIDCA 8327 into a promising starter to be potentially included in functional foods, prompted us to study the production and chemical composition of the EPS synthesized *in situ* by this strain.

2. Materials and methods

2.1. Strains and growth conditions

L. plantarum CIDCA 8327 isolated originally from kefir grains (Garrote et al., 2001) was stored at −80 °C in sterile skim milk and reactivated in MRS broth at 30 °C for 24h (De Man, Rogosa, & Sharpe, 1960). After that, *L. plantarum* was grown in UHT skim milk (Composition g/L: Protein 32, Fat 15, lactose 47; ashes 6.). La Serenisima, General Rodriguez, Argentina or in a semidefined medium (SDM) (Marieta, Ibarburu, Duenas, & Irastorza, 2009) for 21h or 96h, depending on the determination. The SDM had the following composition: glucose 20 g/L, Casamino Acids (Becton Dickinson, Spain) 5 g/L, Difco Yeast Nitrogen Base (DYNB, Becton Dickinson, Spain) 6.7 g/L, MnSO₄·H₂O 0.05 g/L, K₂HPO₄ 2 g/L, NaAcO 5 g/L, adenine 0.005 g/L, guanine 0.005 g/L, xanthine 0.005 g/L, uracil 0.005 g/L, and L-malic acid 4 g/L pH 5.0.

2.2. Transmission electron microscopy

Analysis of the bacteria and the EPS by transmission electron microscopy (TEM) (Tecnai G2 Twin) was performed using samples prepared as follows. Glow-discharged carbon-coated grids were placed facedown over a droplet of each culture concentrated five-fold in 0.1 M AcNH₄, pH 7. After 1 min, each grid was removed, blotted briefly with filter paper, and without being dried, negatively stained with 2% uranyl acetate for 30 s and then blotted quickly and air dried.

2.3. DNA extraction and detection of genes

Genomic DNA was prepared from late-logarithmic phase *L. plantarum* CIDCA 8327 cells using the DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions, except that we preincubated the cells with 2 U/µL mutanolysin (Sigma-Aldrich), and adjusted to a final DNA concentration of 40 ng/µL with water-free DNase and RNase.

For detection of polymerase genes in *L. plantarum* CIDCA 8327 associated with polysaccharide production, PCR primers were designed based on the predicted polymerase-cps genes sequences of *L. plantarum* WCFS1 available in the GenBank database (AL935263; Lp_1185, Lp_1204, Lp_1222, Lp_2101) (Table 1). Internal primers were also used to determine the sequence of both strands of genes. Primers were designed using the Primer V0.40 software (http://prodo.wi.mit.edu/primer3/). PCR reactions were carried out with Phusion High-Fidelity DNA Polymerase (Thermo Scientific, 163 Schwerte, Germany). Two annealing temperatures were used: 49 °C for *cps*11, *cps*2H and *cps*4H, and 53 °C for *cps*3F. The PCR products were subjected to electrophoresis using a 1% (w/v) agarose gel. The amplicons were purified using Nucleospin™ Gel and PCR Clean-up kit (Macherey-Nagel, GmbH & Co., KG Düren, Germany), according to the manufacturer’s instructions. Sequencing of the amplicons was carried out by Secugen S.L. (Madrid, Spain). The resulting sequences were analyzed by using the BLAST tool of the GenBank DNA database (http://www.ncbi.nlm.nih.gov/).

2.4. EPS isolation and purification

The EPSs were isolated and purified from SDM or milk inoculated with *L. plantarum* CIDCA 8327. For the EPS produced in SDM, *L. plantarum* was cultured for 21 h or 96 h at 30 °C. After that, cells were removed by centrifugation for 30 min at 12,000 x g. The clear supernatant was collected, and the EPS was precipitated by adding 3 volumes of cold ethanol, followed by storage overnight at −20 °C. The precipitate was recovered by centrifugation at 12,000 x g for 20 min at 4 °C, dissolved in hot distilled water and dialyzed against deionized water, using a membrane (Medicell International Ltd., London, UK) having a cut-off of 3.5 kDa, for 2–3 days (water changed twice daily). Then, the retentate was lyophilized.

In the case of the EPS produced in milk, *L. plantarum* was incubated for 96 h at 30 °C. A volume of 1000 mL of fermented milk was treated in boiling water for 30 min with discontinuous stirring. The mixture was centrifuged at 10,000 × g for 20 min at 20 °C (Avanti J25 Beckman Coulter Inc. centrifuge, Palo Alto, California). The polysaccharide in the supernatant was precipitated by addition of two volumes of cold ethanol and left at −20 °C overnight. The mixture was centrifuged at 10,000 × g for 20 min at 4 °C. Pellets were dissolved in hot distilled water and dialyzed using a membrane (Spectra/Por, The Spectrum Companies, Gardena, CA, USA) having a cut-off of 1000 Da for 48 h at 4 °C against four changes of twice-distilled water (Rimada & Abraham, 2003).
Table 1
Primer sequences designed to screen for CPS genes.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Locus_tag</th>
<th>Primer sequences (5' → 3')</th>
<th>Expected fragment size (bp)</th>
</tr>
</thead>
</table>
| cpsII | Lp_1185 | F: GGAATTTACATGCGGTTG
R: ACATAGGCTTGAAGTTCGA
I: TTATGCTCAGAGCATACCTTGT | 1431 |
| cps2H | Lp_1204 | F: AATACGTGTAAGCATAAGATGGTIG
R: CAAAATCATITCCGAAATATATAAATCA | 1415 |
| cps3E | Lp_1221 | F: GCGCTAGATGACAATTCGTTT
R: CCGCTACCTTCTGATACAAA
I: TGTCGCGCTTCATTTGAT | 1148 |
| cps3F | Lp_1222 | F: GTGGTGCTTTGATGCCTAGAT
R: ACTCCCTGCGAAATAGGTT
I: TTTGCCTGATGCTATGAT | 1531 |
| cps4I | Lp_2100 | F: GGTATGGTACGAAATATGAA
R: CCTGCAGTATGCTATGAT | 1383 |
| cps4H | Lp_2101 | F: GGTATGGTACGAAATATGAA
R: CCTGCAGTATGCTATGAT | 1383 |

F: forward, R: reverse and I: intermediate primer.

The samples were tested for the absence of other sugars by qualitative thin layer chromatography (TLC) and of proteins the Bradford method according to Rimada and Abraham (2003).

2.5. Exopolysaccharides quantification and molecular mass determination

EPS produced in milk or SDM was quantified by the anthrone method (Hamet et al., 2015). The molecular weight of the EPS obtained were determined by high-performance size exclusion chromatography (HPLC-SEC, Agilent 1100 Series System, Hewlett-Packard, Germany) as associated a refractive index (RI) system, as described by Ibarburu et al. (2015), using as molecular mass dextran standards of molecular weight range from 10^3 to 2 × 10^6 Da (Sigma-Aldrich).

2.6. Sugar composition

The sugar composition of the EPSs was determined by a method described by Notararigo et al. (2013) after hydrolysis of the polysaccharides with 3 M trifluoroacetic acid (TFA) at 121°C for 1 h. The hydrolysed monosaccharides were converted into their corresponding alditol acetates, and analyzed and quantified by gas chromatography (GC 6890A, Agilent, Palo Alto, California, USA).

2.7. Fourier-transform infrared (FTIR) spectroscopy

Fourier-transformed Infrared Spectroscopy (FTIR) studies were performed using a Nicolet 380 instrument (Thermo Fisher Scientific) with a ZnSe single reflection ATR in the range 4000–650 cm⁻¹. The number of scans per experiment was 64, with a resolution of 4 cm⁻¹.

2.8. Methylation analysis

The EPS obtained after grown in milk was methylated according to the method described by Ciucanu and Kerek (1984). The permethylated polysaccharide was hydrolyzed with 3M TFA at 121°C for 1 h.

After hydrolysis, the partially methylated monosaccharides were reduced with deuterated NaBH₄ and converted into their corresponding alditol acetates with 500 µL of pyridine:acetic anhydride (1:1) for 1 h at 100°C, as described by Laine, Sweeley, Li, Kiscic, and Rapport (1972). Gas chromatography–mass spectrometry GC–MS analysis was carried out in a 6890A/5975C instrument from Agilent (Palo Alto, California, USA), with He as the carrier gas. The injector was programmed at 250°C. Samples (1 µL) were injected with a split ratio of 1:50 and their components separated in a HP5MS (Agilent) fused silica column (30 m × 0.25 mm I.D. × 0.2 µm film thickness), with a temperature program starting at 160°C (1 min) and then rising 2°C/min up to 200°C. An m/z range between 40 and 450 amu was scanned. Identification was based on the basis of the retention time and mass spectra of the compounds. Quantification was performed according to peak area (Ibarburu et al., 2015).

2.9. NMR analysis

Purified EPS were deuterium exchanged several times by freeze drying from D₂O and then examined as solutions (3 mg/mL) in 99.98% D₂O. Spectra were recorded at 60°C on a Bruker AMX500 spectrometer operating at 500.13 MHz (¹H-nuclear magnetic resonance). Chemical shifts were given in parts per million (Ibarburu et al., 2015).

3. Results

3.1. L. plantarum CIDCA 8327 contains polysaccharide polymerase genes associated with surface/exopolysaccharide production

L. plantarum strains that produce EPS contain several gene clusters involved in the synthesis of the biopolymer (Remus et al., 2012). To detect the presence of polysaccharide polymerase genes in the EPS-producing L. plantarum CIDCA 8327 strain, several cps primers were designed based on the L. plantarum WCFS1 complete genome sequence (GenBank accession number AL935262) (Table 1). In this strain 4 gene clusters (designated cps1, cps2, cps3 and cps4) independently contribute to the overall surface-associated polysaccharide. DNA of L. plantarum CIDCA 8327 yielded an 1148 bp PCR product with the cps3E-F primers, covering the 3’-end of cps3E gene and the cps3F gene. No PCR products were obtained with any of the other primers used. Comparison with nucleotide sequences in the database revealed that the sequenced fragment showed 98% identity with the cps3E-F region encoding putative polysaccharide biosynthesis proteins in L. plantarum WCFS1, ST-III, and ZJ316 strains (Accession Numbers: AL935263.2, CP002222.1, CP004082, respectively). In addition, TEM analysis of L. plantarum CIDCA 8327 grown in a semidefined medium (SDM) revealed the presence of extracellular material loosely attached to the bacterial surface (Fig. 1).

3.2. The EPS produced by L. plantarum CIDCA 8327 depends on the growth medium

EPS production was first quantified in SDM. Two time points of fermentation were sampled, 21 h (EPS 1) and 96 h (EPS 2), obtaining 40 mg/L and 120 mg/L, respectively (Table 2). Both samples lacked protein based on the negative responses for Bradford test and absorption at 260 nm/280 nm spectra (data not shown). Differ-
ent patterns of molecular weight distribution were observed for the EPS recovered at the two times of fermentation (Table 2). While in EPS 1 there were 61.2% of the 10^4 Da and 38.7% of the 10^3 Da fraction, in EPS 2 most glucidic material (87.4%) appears as a 10^4 Da fraction accompanied to two minor fractions of 10^5 Da and 10^3 Da, indicating that incubation for longer period enables oligosaccharides polymerization.

With these data in mind, sterile skim milk was inoculated with L. plantarum CIDCA 8327 and after 96 h of fermentation 160 mg/L of an EPS (EPS 3) with a molecular mass of 10^4 Da was obtained (Table 1). Sugar composition of the three EPS obtained was analyzed by HPAEC-PAD and it is presented in Table 2. The EPS 1 and EPS 2 produced in SDM were composed mainly of glucose, rhamnose and glucosamine (Table 2). Galactose was also detected in both EPS at lower percentage. Moreover, trace amounts of galacturonic acid were detected. On the other hand the EPS 3, produced in milk, was composed exclusively of glucose (Table 2) indicating that the sugar source influences the composition of the EPS produced by this strain.

The FTIR spectra of the three EPS are presented in Fig. 2. They show the typical signals of polysaccharides documented in literature, such as a broad band around 3200 cm⁻¹ and a band at 2933 cm⁻¹, arising from O=H stretching and C=H stretching, respectively, and a broad band located at 1000–1200 cm⁻¹ assigned to overlapped C=O, C–C stretching and C–OH bending modes (Bremer & Geesey, 1991; Howe, Ishida, & Clark, 2002; Nataraj Schomaker, Kraume, Mishra, & Drews, 2008). The spectra of EPS 1 and EPS 2 showed also two peaks around 1540 cm⁻¹ and 1639 cm⁻¹, corresponding to C–N and C–O stretching, that are related to the amide linkage of aminosugars in the polysaccharides structure and a band at 1747 cm⁻¹ typical of uronic acids (Kovács, Nyerges, & Izsók, 2008). These findings confirm the results from monosaccharide analysis. Absorptions in the “anomeric region” (950–750 cm⁻¹) contain weak bands that inform on the anomeric configuration of the monosaccharides (Synytsya & Novak, 2014). For these samples, the spectra presented a characteristic band located at 835 cm⁻¹ from the α-anomer of the glucose pyranoid ring as well as a signal at 873 cm⁻¹ from galactose units (Kačuráková, Capek, Sasinkova, Wellner, & Ebrero, 2000).

Table 2

Molecular weight distribution and sugar ratios of EPS produced by L. plantarum CIDCA 8327 in different growth conditions. EPS1: EPS produced at 21 h in semidefined medium (SDM); EPS2: EPS produced at 96 h in SDM; and EPS3: EPS produced after 96 h in milk.

<table>
<thead>
<tr>
<th>EPS</th>
<th>Medium</th>
<th>Hours of culture</th>
<th>pH</th>
<th>Total EPS (mg/L⁻¹)</th>
<th>Molecular weight distribution (%)</th>
<th>Monosaccharide ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^3 Da</td>
<td>10^4 Da</td>
</tr>
<tr>
<td>1</td>
<td>SDM</td>
<td>21</td>
<td>3.9</td>
<td>40</td>
<td>–</td>
<td>61.2</td>
</tr>
<tr>
<td>2</td>
<td>SDM</td>
<td>96</td>
<td>3.6</td>
<td>120</td>
<td>5.9</td>
<td>87.4</td>
</tr>
<tr>
<td>3</td>
<td>milk</td>
<td>96</td>
<td>4.2</td>
<td>160</td>
<td>100</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 3

Results from the methylation analysis of the α-glucan produced by L. plantarum CIDCA 8327 in milk.

<table>
<thead>
<tr>
<th>Position of the O-methyl groups</th>
<th>Deduced linkages</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5-diacetyl-2,3,4,6-tetramethyl-Glc p</td>
<td>Terminal (non-reducing end)</td>
<td>4.7</td>
</tr>
<tr>
<td>1,4,5-triacetyl-2,3,6-trimethyl-Glc p</td>
<td>1 → 4</td>
<td>81.5</td>
</tr>
<tr>
<td>1,3,4,5-tetraacetyl-2,6-dimethyl-Glc p</td>
<td>1 → 3,4</td>
<td>13.8</td>
</tr>
</tbody>
</table>

On the other hand, all the vibrational peaks of the EPS 3 sample were similar to those obtained for α-glucans. The bands at 1155, 1022, 930, 850 and 760 cm⁻¹ evidenced the presence of a polysaccharide with α-linkages in the structure of this EPS (Kačuráková et al., 2000; Synytsya & Novak, 2014). The absence of a band at 1745 cm⁻¹ indicates that there are no carboxylic sugars in this EPS. In addition, there is no band around 1650 cm⁻¹, confirming that the sample does not contain amino sugars. These observations are in agreement with the sugar compositional analysis.

3.3. L. plantarum CIDCA 8327 produces an α-glucan during fermentation of milk

Since L. plantarum CIDCA 8327 was isolated from kefir and the research was focused on the use of this strain as milk starter, further studies were performed in order to elucidate the structure of the EPS produced by this strain during milk fermentation (EPS 3). Sugar linkages were determined and quantified upon analyzing by gas-liquid chromatography (GLC) the partially methylated alditol acetates (PMAAs) obtained from the sample (Table 3).

Methylation analysis showed the presence of 2,3,4,6-tetra-O-methyl glucitol corresponding to the non-reducing ends in the EPS chain, 2,3,6-tri-O-methyl glucitol indicating linear 1,4 glucosidic linkages, and 2,6-di-O-methyl glucitol resultant from branching points in glucose units attached through their positions 1,4, and 3.

The 1H NMR spectrum of the EPS 3 (Fig. 3) showed resonances of hydrogen corresponding to the glucosyl residue. The 1H NMR spectrum of a polysaccharide can generally be divided into two major regions: the anomic region (δ = 4.3–5.5 ppm), and the ring proton region (δ = 3.2–4.3 ppm). As shown in Fig. 3, signals in the region between 5.3 and 4.5 ppm related to H1–4 and H1–3 are well resolved and indicate α-D-glucans (Synytsya & Novak, 2014). The main signals in the anomeric region correspond to protons bound to C1 in the primary α1 → 4 glucosidic bond (δ = 5.36 ppm), and C1 in the branching α1 → 3 (δ = 5.32 ppm), and a small signal at δ = 4.95 ppm, attributable to α1 → 6 glucosidic bonds was also observed (Cheng & Neiss, 2012; Zang, Howeseman, & Shulman, 1991; Zang, Rothman, & Shulman, 1990). The signals obtained in the spectrum in the ring proton region were poorly resolved due to the overlapping chemical shifts. However, it is possible to observe clearly the H4’ peak corresponding to the protons bound to the free C4 non reducing ends (δ = 3.41 ppm) and other intense peaks from the H2 (δ = 3.63 ppm), H3 (δ = 3.95 ppm), H4 (δ = 3.62 ppm), H5 (δ = 3.81 ppm) and H6α and H6β (δ = 3.86 and 3.79 ppm, respectively) (Cheng & Neiss, 2012; Nilsson, Bergquist, Nilsson, & Gorton, 1996; Zang et al., 1990, 1991), but better assignments will require more specific identifications.
The intensities of the resonances contain information about the branched structure of the molecule. In this case, the ratio of the integrated peaks of H1-4, H1-3, H1-6 and H4' is 47:12:0.38:1.

Gathering all data collected for EPS 3, this polysaccharide can be described as a branched α-(1→4)-β-glucan with a molecular mass of around 9000 Da, composed of 80% linear α-(1→4)-β-glucopyranosyl units and 19% (1→4)-β-glucopyranosyl units substituted at O-3 by single α-D-glucopyranosyl residues or α-(1→4) disaccharidic side chains (Fig. 4A and B).

4. Discussion

The functional aspects of fermented foods are mostly related to the concept of probiotic bacteria however the microbial production of functional molecules, such as bioactive EPS, is targeted (Leroy & De Vuyst, 2016). Kefir grains are an interesting source of EPS-producing bacteria (Hamet et al., 2015; Moura de Paiva et al., 2016). Herein we demonstrated that L. plantarum CIDCA 8327 isolated from kefir is able to produce EPS in milk or SDM, whose composition depends on the growth conditions. Otherwise, this is the first report of the production of α-glucan by a strain of L. plantarum isolated from kefir after growth in milk. Accordingly, by amplification and sequencing of a PCR fragment with a high degree of homology with the cps3 cluster of L. plantarum WCSF1, we are proving the presence of genes involved in the CPS/EPS polysaccharide synthesis in the genome of L. plantarum CIDCA 8327.

It is noteworthy that L. plantarum CIDCA 8327 EPS remains in part loosely bound to the surface of the bacteria and may be involved in the interactions with their environment playing an important role in the communication between bacteria and the host organisms (Abraham, Medrano, Piermaria, & Mozzi, 2010; Chap. 10). Therefore, improved knowledge on these molecules is of great importance to understand the strain-specific and proposed beneficial modes of probiotic action (Remus et al., 2012).

The EPS produced by L. plantarum CIDCA 8327 in SDM was a heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose. Harvesting the EPS at two incubation times allowed observing that the molecular mass of the EPS recovered was higher upon a longer period, but without relevant changes in monosaccharide composition, suggesting that polymerization continues even in the stationary growth phase. Analysis of previous reports about characterization of EPS produced by different strains of L. plantarum, allows concluding that most of the strains produce heteropolysaccharides when grown in media containing glucose or lactose as the carbon source (Ismail & Nampoothiri, 2010; Remus et al., 2012; Tallon et al., 2003; Wang et al., 2010; Zhou et al., 2016).

On the contrary, L. plantarum 70810 grown in a SD with lactose as unique carbon source produce a galactan (Wang et al., 2014).

Biosynthesis of CPS/EPS inside the cell occurs by activation of the precursor molecules by enzymes producing activated sugars/sugar acids by three possible mechanisms: the Wzx/Wzy-dependent pathway, the synthase-dependent pathway and the ATP binding cassette (ABC) transporter-dependent pathway. Alternatively, the extracellular synthesis by use of a single sucrase protein is used for the polymer strand elongation (Schmid, Sieber, & Rehm, 2015). Studies of the L. plantarum WCSF1 genome demonstrates that 4 gene clusters (designated cps genes), associated in two regions, independently contribute to the overall surface-associated polysaccharide. The first region has three cps gene clusters (1–3), and the second region comprises the cps4 gene cluster and is conserved in other L. plantarum strains (ST-III, ATCC14917). In L. plantarum WCSF1, the polymerase genes implicated in the polymerization of the polysaccharide repeating units were found in the 4 cps clusters (Remus et al., 2012). DNA of L. plantarum CIDCA 8327 was amplified with the cps3E-F primers giving only one PCR product. At the 1112418 base position of the genome of WCSF1 strain, a guanine breaks the reading frame of the cps3F gene, but this not is the case in L. plantarum CIDCA 8327, like other strains sequenced (L. plantarum subsp. plantarum ST-III, Accession Number CP000222.1 or L. plantarum ZJ316, Accession Number CP004082.1).

In L. plantarum WCSF1, Remus et al. (2012) reported that it was unclear if a functional Wzy protein can be composed of Cps3F and CpsG. In L. plantarum CIDCA 8327, no putative conserved domains were detected, although the predicted amino acid sequence of the
Fig. 3. 1H NMR spectra of EPS produced by *L. plantarum* CIDCA 8327 in milk (EPS3).

Fig. 4. Suggested structures for EPS produced by *L. plantarum* CIDCA 8327 in milk. Linear $\alpha-(1 \rightarrow 4)-\beta$-glucopyranosyl units and $(1 \rightarrow 4)-\beta$-glucopyranosyl units substituted at O-3 by single α-β-glucopyranosyl residues (A) or $\alpha-(1 \rightarrow 4)$ disaccharidic side chains (B).

PCR fragment presented high identity with polysaccharide polymerase Wzy proteins like *L. rhamnosus* GG strain that produces a galactose-rich EPS (Lebeer et al., 2009).

When grown in milk, *L. plantarum* CIDCA 8327 produces a homopolysaccharide of around 10^4 Da composed only of glucose. The milk fermented with this strain presented a pseudoplastic behavior with a hysteresis loop that did not differ from the flow curve of an acid gel obtained with D-gluconolactone (Hamet et al., 2015) in concordance to the expected behavior of an EPS with low molecular mass distribution. The FTIR spectrum of the EPS produced in milk showed typical polysaccharide signals, and all the vibrational peaks were similar to those obtained for α-glucans. Enzymes involved in α-glucans synthesis are glucansucrases that catalyze the polymerization of the homopolysaccharide out of
sucrose as donor of the corresponding monosaccharide, and transfer the molecule to the reducing end of the glucon (Leemhuis et al., 2013). L. plantarum CIDCA 8327 synthesize α-glucan from lactose, in consequence the existence of another pathway involved could not be ruled out. According to the main glycosidic linkages, α-glucans are classified into dextran (α-1,6), mutants (α-1,3), reuteran (α-1,4) and alternans (α-1,3 and α-1,6) (Leemhuis et al., 2013). Both 1H NMR and methylation analysis allowed to determine that this polysaccharide consists of a α-(1→4)-d-glucan with 19% branching at positions O-3. Side chains could be made up of a single α-D-glucopyranosyl unit or of a α-(1→4)-glucopyranosyl disaccharide.

Dextran-producer lactic acid bacteria belong to the genera Lactobacillus, Pediococcus, Leuconostoc and Weissella (Torino, de Valdez, & Mozzi, 2015). Focusing on Lactobacillus isolated from sugary kefir, Moura de Paiva et al. (2016) demonstrated that L. kefiranofaciens IP3 and L. satsumensis IP10 and IP2 are grown in the presence of sucrose produced an α-glucan linked by α(1,6) glycosidic bonds (~90%).

Production of α-glucans by L. plantarum strains was reported by Das and Goyal (2013). When grown in medium with sucrose, L. plantarum DM5 produces an α-glucan that contains 86.5% α-(1→6) linear linkages, with 13.5% α-(1→3) branched linkages. L. plantarum CIDCA 8327 produces an α-glucan with α(1→4) glycosidic linkages similar to reuteran, but in this case the main chain is branched at positions O-3 and not in O-6, which distinguishes the EPS described here from other α-(1→4)-glucans. To the best of our knowledge, this is the first report of a polysaccharide from LAB with this structure. Up to the moment, strains of L. reuteri were described as reuteran producers (Patel, Majumder, & Goyal, 2012; Tiekink & Gän泽, 2005). It is noteworthy that L. plantarum CIDCA 8327 produces α-glucan after growth in milk and this fact may contribute to the probiotic properties of this strain.

Among α– glaucans, dextran and dextran-derived oligosaccharides have been reported to elicit some probiotic effect in vitro (Das et al., 2014; Rao & Goyal, 2013). Sarbini, Kolid, Deaville, Gibson, and Rastall (2014) correlated this effect on intestinal microbiota elicited by dextran with obesity management. Recently, two dextrans synthesized by L. sakei MN1 and L. mesenteroides RTF10 demonstrated to have antiviral and immunomodulatory activity against salmonid viruses (Nácher-Vázquez et al., 2015). Otherwise, it was described that α-(1→4) glucans have a role in the induction of phagocytosis (Bittencourt et al., 2006; Nair, Melnick, Ramachandran, Escalon, & Ramachandran, 2006), nevertheless the ability to escape digestion of each EPS should be demonstrated.

It can be concluded that L. plantarum CIDCA 8327 isolated from kefir grain produces EPS with different sugar composition depending on the growth medium. In a SDM with glucose as the carbon source, several monosaccharides are released upon acid hydrolysis of the obtained polymer, suggesting the presence of heteropolysaccharides, while when grown in milk an extracellular α-glucan was synthetized. The EPS remains loosely bond to the bacterial cell. Taking into account that these strains associate to epithelial cells in vitro and exert a protective in vitro effect against Salmonella invasion (Golowczyz et al., 2008; Londero et al., 2012) the presence of this EPS could be a relevant factor in health promoting properties. This is the first report of an α-glucan producer strain isolated from kefir after growth in milk. Further studies to provide additional information on the structure of the glucan (periodate oxidation, Smith-degradation of oxidized products, more detailed NMR characterization) will be performed in future work. Our results encourage further investigations about the role of α-glucans produced by L. plantarum CIDCA 8327 that could contribute to comprehend the potential probiotic properties of this strain.

Acknowledgments

MVG is a member of the Research Career of CICPBA. PP, MM and AGA are members of Scientific Career of CONICET. AIP and MTD are supported by Universidad del Pais Vasco. AP is researcher from CSIC.

This study was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), CONICET and UNLP, the Spanish Ministry of Science and Innovation (AGL2012-40084-C03), the Basque Government (no. IT666-13). M.G.L. acknowledges the ‘Gobierno Vasco, Dpto. Agricultura, Pesca y Alimentación’ for the fellowship. We also thank Microscopy: Polymer Characterization Service (SGiker) from the University of the Basque Country.

References

Moura da Paiva, I., da Silva Steinberg, R., Lula, I. S., de Souza-Fagundes, E. M., de Oliveira Mendes, T., Bell, M. J. V., et al. (2016). Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications. LWT-Food Science and Technology, 72, 390–398.

Zvárová, M., Příhoda, P., Smolíek, M., Bagčík, M., Veljović, M., & Veljović, K. (2016). EPS-Σ exopolysaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BSSJ-8 is involved in adhesion to epithelial intestinal cells and decreases on E. coli association to Caco-2 cells. Frontiers in Microbiology, 7, 286.