Darstellung und spektroskopische Charakterisierung von Sn₂PO₄Br

Preparation and Spectroscopic Characterization of Sn₂PO₄Br

G. E. Narda^a, J. C. Pedregosa^a, E. J. Baran^{b,*}, M. C. Apella^{b,+}

^a Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis,

5700-San Luis, Argentinien

^b Química Inorgánica (QUINOR), Facultad de Ciencias Exactas,

Universidad Nacional de La Plata, C. Correo 962, 1900-La Plata, Argentinien

Z. Naturforsch. 50b, 1527-1530 (1995); eingegangen am 5. April 1995

Tin(II) Phosphate Bromide, Synthesis, IR Spectra, Raman Spectra, ¹¹⁹Sn-Mößbauer Spectra

The synthesis of a new Sn(II) phosphate halogenide, Sn₂PO₄Br, is described. The compound was characterized by means of infrared and Raman spectroscopies as well as by its ¹¹⁹Sn-Mößbauer spectrum. The results are compared with those of other Sn₂PO₄X species.

Zinn(II) Phosphat, $Sn_3(PO_4)_3$ [1, 2], sowie eine Reihe gemischter Sn(II) Phosphat-Halogenide der Stöichiometrie Sn_2PO_4X mit X = OH⁻ [3], F⁻ [2] und Cl⁻ [4] sind schon seit längerer Zeit bekannt. Einige dieser Verbindungen wurden auch öfters im Zusammenhang mit Hydroxylapatit/Sn(II)-Systemen untersucht, die eine gewisse Bedeutung bei der Blockierung von Zahn-Karies besitzen (vgl. z. B. [5–11]).

Obwohl, wie bereits erwähnt, Sn_2PO_4F und Sn_2PO_4Cl bekannt sind, wurde eine entsprechende Bromverbindung bisher nicht beschrieben. In Fortsetzung früherer Arbeiten an gemischten Zinn(II)-Phosphaten [8–10, 12–14] gelang uns jetzt auch die Darstellung dieses gemischten Phosphat Halogenids.

Ergebnisse und Diskussion

Wie im experimentellen Teil der Arbeit ausführlicher beschrieben wird, gelang die Synthese der Verbindung auf einem ähnlichen Wege wie diejenige des Sn_2PO_4Cl [4], ausgehend von einem SnF_2/H_3PO_4 -Gemisch und anschließende Behandlung mit HBr. Hinsichtlich der Reinheit der Proben erwies sich die Dauer des Kristallisierungsprozesses als besonders wichtig. Tab. I. Röntgenpulverdiagramm von Sn₂PO₄Br.

d (Å)	I/I _o	d (Å)	I/I _o
4,43	62	2,780	100
4,23	16	2,615	48
4,03	48	2,416	46
3,76	24	2,380	30
3,56	22	2,173	13
3,23	54	2,156	13
3,10	24	2,101	24
		1,992	38

Das Pulverdiagramm der Verbindung, das in Tab. I wiedergegeben ist, wies keine Zusammenhänge mit denjenigen anderer Sn_2PO_4X -Verbindungen auf, was eine eventuelle Isotypie mit einer von diesen ausschließen läßt. Deswegen haben wir im weiteren versucht, einen Einblick in die strukturellen Eigenschaften des Bromophosphats mittels spektroskopischen Methoden zu bekommen.

Das IR-Spektrum des Bromophosphats ist in Abb. 1 wiedergegeben. Das entsprechende Raman-Spektrum zeigt im Bereich der inneren Phosphatschwingungen nur einige mittelstarke Linien, während die intensivsten Linien im Bereich der äußeren Schwingungen zu beobachten sind. Die vorgeschlagene Zuordnung des gesamten Schwingungsspektrums ist Tab. II zu entnehmen.

Anscheinend erreicht im IR-Spektrum eine der Komponenten der antisymmetrischen Valenzschwingung ν_3 nicht genügende Intensität, um beobachtet zu werden. Andererseits deuten sowohl die starke Aufspaltung dieser Komponenten, sowie die ungewöhnlich hohe IR-Intensität der ent-

^{*} Sonderdruckanforderungen an Prof. Dr. E. J. Baran.

⁺ Derzeitige Anschrift: CERELA-Centro de Referencia para Lactobacilos, S. M. de Tucumán, Argentinien.

sprechenden symmetrischen Schwingung ν_1 auf eine ziemlich niedere Lagesymmetrie (C₁, C₂ oder C_s) und auf erhebliche Störungen der Phosphatgruppen im Kristallgitter von Sn₂PO₄Br.

Auch die IR-Intensität der symmetrischen Deformationsschwingung ν_2 würde für diese vermutete Störung sprechen. Wie in anderen Fällen kann man aber in diesem Bereich auch Kopplungen zwischen den Deformationsschwingungen mit Sn-O-Bewegungen annehmen [13], die wiederum für die

Tab. II. Zuordnung der Schwingungsspektren von Sn_2PO_4Br (Bandenlagen in cm⁻¹).

Infrarot	Raman	Zuordnung	
-	1123 s		
1085 m	1084 ss	ν_3	
1011 sst	1003 s		
942 sst	945 m	ν_1	
622 sst	620 ss		
533 sst	537 s	ν_4	
417 st	418 s	ν_2	
_	355 ss	2	
323 m	-		
	237 sst		
	192 st	äußere Schwingungen	
	158 sst	5 6	
	125 s		
	92 st		

sst: sehr stark; st: stark; m: mittelstark; s: schwach; ss: sehr schwach.

erwähnte Intensitätserhöhung verantwortlich sein könnten.

Interessant ist weiterhin die Beobachtung, daß entsprechende IR- und Raman-Banden sehr ähnliche Frequenzwerte aufweisen. Dies bedeutet, daß diese Banden jeweils von Phononen gleicher Symmetrie hervorgerufen werden, ein Verhalten, das das Vorhandensein eines Symmetriezentrums im Kristallgitter ausschließt, da nur in solchen Fällen das sog. Alternativverbot [15] gültig ist, wodurch entsprechende Raman- und IR-Banden gewöhnlich weitaus verschiedene Werte aufweisen, da sie einen verschiedenen Phononen-Ursprung haben.

Ein Vergleich des IR-Spektrums von Sn_2PO_4Br mit demjenigen von Sn_2PO_4Cl [13] läßt gewisse Ähnlichkeiten erkennen, obwohl dasjenige von Sn_2PO_4Br besser ausgeprägt erscheint. Im Falle der Chlorid-Verbindung besetzen die PO_4^{3-} -Gruppen Lagen mit C_s-Symmetrie [4], so daß die Ähnlichkeiten beider Spektren auf eine ähnliche Lage der Phosphatgruppen in der Bromverbindung zu schließen erlaubt. Die Frequenzwerte liegen aber beim Sn_2PO_4Br deutlich höher, ein Verhalten, das etwas kürzere P–O-Abstände in dieser Verbindung vermuten läßt.

Das Mößbauer-Spektrum ist in Abb. 2 wiedergegeben. Dieses Spektrum ist mit seiner charakte-

Abb. 2. ¹¹⁹Sn-Mößbauer-Spektrum von Sn₂PO₄Br.

ristischen Dublett-Struktur demjenigen anderer Sn_2PO_4X -Spezies sehr ähnlich [13]. Die Isomerieverschiebung beträgt 3,645 mm \cdot S⁻¹, während die Quadrupolaufspaltung einen Wert von 1,189 mm \cdot S⁻¹ aufweist.

Diese Werte liegen zwar im gleichen Bereich wie diejenigen verwandter Verbindungen [10, 13, 16], zeigen jedoch einige signifikante Unterschiede. Die beobachtete Isomerieverschiebung liegt deutlich höher als bei Sn_2PO_4Cl und Sn_2PO_4OH [13], während die Quadrupolaufspaltung bedeutend niedriger als bei diesen beiden Verbindungen ausfällt.

In allen Zinn(II)-Phosphaten, für die komplette Strukturanalysen vorliegen, hat es sich gezeigt, daß die Sn(II)-Ionen sehr ähnliche Koordinationsverhältnisse aufweisen, indem man praktisch das Vorliegen von SnO_3 -Einheiten annehmen kann, welche die Form einer verzerrten trigonalen Pyramide besitzen, deren Basis durch die drei Sauerstoffatome gebildet wird, während das Sn(II)-Ion die Spitze besetzt. Das freie Elektronenpaar, das stark lokalisiert ist, liegt in der zu den Sn–O-Bindungen entgegengesetzten Richtung. Die jetzt bei Sn_2PO_4Br gemessene Isomerieverschiebung läßt vermuten, daß in diesem Falle die Sn_-O -Bindungslängen etwas größer als bei Sn_2PO_4Cl und Sn_2PO_4OH sind [13], während die niedere Quadrupolaufspaltung auf eine ausgeglichenere Koordinationssphäre des Sn(II)-Ions in dieser Verbindung deutet. Ein Vergleich der Werte der drei Verbindungen ($Sn_2PO_4OH = 1,88$ [13]; $Sn_2PO_4Cl = 1,77$ [13]; $Sn_2PO_4Br =$ $1,19 \text{ mm} \cdot \text{S}^{-1}$), zeigt deutlich, daß mit größer werdender X-Einheit, die Störung der Sn(II)-Umgebung vermindert wird.

Experimentelles

Darstellungsvorschrift für Sn₂PO₄Br

3,66 g SnF₂ werden in einem Ni-Tiegel mit 1 ml konz. H₃PO₄ versetzt und anschließend bis zum Entstehen einer klaren Lösung erwärmt. Nach Abkühlen wird der entstandene Brei in 36,66 ml einer 1 M HBr-Lösung aufgenommen und kurz erhitzt, um seine Auflösung zu beschleunigen. Die zurückbleibende Lösung (welche im Falle eines anhaltenden Rückstandes filtriert wird), wird etwa 20 h lang im Kühlschrank stehen gelassen, wobei ein feinkristallines weißes Pulver ausfällt. Dieses wird mehrmals mit Ethanol ausgewaschen und anschließend im Vakuum, über P_4O_{10} , getrocknet. Es ist sehr wichtig, die Verbindung nicht allzulange im Kontakt mit der Mutterlauge im Kühlschrank zu lassen, da sich in diesem Falle schnell Nebenprodukte bilden.

Typische Analysenwerte für die erhaltenen Produkte lagen für P ständig zwischen 7,7 und 7,9% und für Sn bei 57,0 bis 57,4% (berechnet für Sn₂PO₄Br: P = 7,52% und Sn = 57,57%). Phosphor wurde gravimetrisch als Phosphomolybdat [17] und Zinn jodometrisch [18] bestimmt.

Röntgenographische Messungen

Die Pulverdiagramme wurden mit einem Rigaku-Miniflex 2005-Diffraktometer erhalten. Benutzt wurde $Cu-K_{\alpha}$ -Strahlung (Ni-Filter) und NaCl als Eichsubstanz.

Spektroskopische Messungen

Die Infrarotspektren wurden mit einem Perkin-Elmer 683-Spektrometer an KBr-Preßlingen der feingepulverten Proben erhalten. Die Raman-Spektren wurden an einem Bruker FRA-106-Gerät, aufgebaut auf einer IFS-66-FT-optischen Bank, gemessen. Zur Anregung diente ein Nd/ YAG-Laser. Die ¹¹⁹Sn-Mößbauer-Spektren wurden bei Raumtemperatur an einem Standard Multikanalspektrometer unter den bereits früher ausführlicher beschriebenen Bedingungen [16] erhalten. Die benutzte Ca^{119m}SnO₃-Quelle hatte eine Aktivität von *ca.* 5 mCi. Bei der Auswertung der Spektren wurden die Meßpunkte rechnerisch an *Lorentz*-Kurven (mit Einschränkungen) mit einem linearen Minimus-Quadrate-Verfahren angepaßt. Dank

Wir danken dem "Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina" für Unterstützung und Herrn Prof. Dr. R. C. Mercader für die Messung der Mößbauer-Spektren.

- [1] R. Collins, W. Nebergall, H. Langer, J. Am. Chem. Soc. 83, 3724 (1961).
- [2] M. Mathew, L. W. Schroeder, T. H. Jordan, Acta Crystallogr. B33, 1812 (1977).
- [3] T. H. Jordan, L. W. Schroeder, B. Dickens, W. E. Brown, Inorg. Chem. 15, 1810 (1976).
- [4] A. F. Berndt, J. M. Sylvester, J. Appl. Crystallogr. 5, 248 (1972).
- [5] A. F. Berndt, J. Dental Res. 51, 53 (1972).
- [6] P. Gron, Caries Res. 11, (suppl. 1), 172 (1977)
- [7] W. D. Nordquist, D. J. Krutchkoff, S. H. Y. Wei, Caries Res. 11, 39 (1977).
- [8] G. E. Narda, M. C. Apella, S. B. Etcheverry, E. J. Baran, Z. Anorg. Allg. Chem. 515, 207 (1984).
- [9] S. B. Etcheverry, G. E. Narda, M. C. Apella, E. J. Baran, Caries Res. 20, 190 (1986).
- [10] G. E. Narda, Dissertation, U. N. de San Luis (1990).

- [11] E. J. Baran, Acta Farm. Bonaerense 11, 93 (1992).
- [12] M. C. Apella, E. J. Baran, Arch. Oral Biol. 26, 629 (1981).
- [13] M. C. Apella, E. J. Baran, S. B. Etcheverry, R. C. Mercader, Monatsh. Chem. **114**, 1149 (1983).
- [14] G. E. Narda, J. C. Pedregosa, E. J. Baran, Z. Chem. 27, 228 (1987).
- [15] A. Fadini, F. M. Schnepel, Schwingungsspektroskopie. Methoden, Anwendungen, S. 98, G. Thieme Verlag, Stuttgart (1985).
- [16] R. C. Mercader, E. J. Baran, A. R. López-García, J. Radioanal. Nucl. Chem. Lett. 85, 13 (1984).
- [17] K. Kodama, Quantitative Inorganic Analysis, S. 426, J. Wiley, New York (1963).
- [18] I. M. Kolthoff, R. Belcher, Volumetric Analysis, Vol. 3, S. 319, J. Wiley, New York (1957).