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Growth of three-dimensional silver fractal electrodeposits under damped free convection
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Quasispherical three-dimensional Ag electrodeposits grown at constant potential and damped free
convection exhibit a quasi-isotropic radial growth up to a critica1 radius r, -=0.3 cm and a mass fractal
dimension DM=2. 5. For r))r„DM~3. The product v„g' is nearly constant, v, being the radial
growth velocity, and g the apparent medium viscosity. It appears that v, is determined by the Lapla-
cian field operating between cathode and anode.

PACS number(s): 68.70.+w, 68.55.Jk, 82.20.Wt

The formation of a new solid phase through electro-
deposition of material on conducting substrates leads to
dense radial, needlelike, and branched aggregate struc-
tures, depending on the experimental conditions [1].
Since the pioneering works on the matter appeared [2,3],
there has been increasing interest in exploring the fractal
nature of rough metal electrodepo sits. Commonly,
branched metal aggregates are grown using quasi-two-
dimensional (2D) electrochemical cells leading to quasi-
2D patterns [1,3] which evolve from diffusion-limited ag-
gregation (DLA) patterns with a fractal dimension
DM = 1.7 [4] to den—se radial patterns with DM-=2 [5].

Despite the relevance of 3D metal electrodeposits, the
fractal characterization of these objects is seldom found
in the literature. It was shown [2] that 3D Cu electro-
deposits in the micrometer size range behave as self-
similar fractals with D~ =2.43, as predicted by DLA 3D
models [4—7]. In contrast, very little is known about 3D
objects with larger sizes than the corresponding di6'usion
layer thickness, and conclusions derived from 2D objects
[8—10] were taken for granted for 3D systems [11,12].
The main problem in dealing with 3D electrodeposit
growth in aqueous solutions is the interference of free
convection, which tends to produce anisotropic growth
patterns [13—16].

This Rapid Communication describes aspects related
to constant-potential damped-free-convection grown 3D
Ag electrodeposits with a Qnal size on the order of 1 cm.
Results demonstrate the role played by the decrease of
free convection in favoring the growth of isotropic elec-
trodeposits with DM values compatible with the predic-
tions of models in Laplacian fields [4]. A change of the
deposit structure from DLA-like to a dense radial pattern
can also be observed at advanced growth stages.

Runs were made using a Pt spherical cathode (0.076
cm average diameter, sphericity deviation less than 10%)
placed at the symmetry axis of a 3D cylindrical cell. The
counterelectrode was a Ag spiral around the working
electrode to approach a homogeneous primary current
distribution. A saturated calomel electrode (SCE) was
used as a reference.

The base solution was O.SOM Na2S04+ 0.010M
HzSO4+0. 005M AgzSO4, and agarose (0.033—0.5 g/100
ml range) was added to cover both sol and gel ranges.

Sols behave as pseudoplastic Auids, with q' the apparent
viscosity coefficient reading at 450-s shear rate, in the
1.61—2.18-P range.

Ag electrodeposits were made at constant potential
Ed= —0.200 V (vs SCE), i.e., —0.580 V apart from the
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FIG. 1. Plots of r vs time for silver electrodeposits.
Ed = —0.200 V, 0.50M Na2SO4+0. 010M HpSO4+ 0.005M
Ag2SO4+x g agarose/100 m1, 25'C. (a) x =0; (b) x=0.07; (c)
x =0.5.
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equilibrium potential of the Ag/Ag+(aq) reversible elec-
trode [17]. Current (I vs t) and the charge (g vs t) tran-
sients were run with a Princeton Applied Research equip-
ment. Runs were performed at 25'C under argon. A de-
tailed description of the experimental procedure is given
elsewhere [16—18].

In all solutions, the radius of gyration (r) vs time (t)
plots display two difFerent regions with a crossover
defined at (r„t,), where r, is a critical radius involving a
change in either the object shape and/or density, and t, is
the time required to reach r, .

In agarose-free solution the r vs t plot shows a linear
portion (constant U„)followed by another r vs t relation-
ship [Fig. 1(a)] involving an increase in U„[16].For r (r,
a quasi-isotropic object grows, whereas for r ) r, a
pinecone-shaped object develops [Fig. 2(a)], although the
object density remains constant with growth.

The r vs t plots of objects grown in sols [Fig. 1(b)] ex-
hibit a first linear portion for r &r, with a v„value
greater than that resulting for r ) r, . The value of r,
determines the size of the object related to the quasi-
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FIG. 3. log»oQ vs log, or plots for silver electrodeposits,
Ed = —0.200 V, 0.50M Na2SO4+0. 010M H2SO4+0. 005M
AgzSO4+ x g agarose/100 ml, 25 C. (a) x =0.07; (b) x =0.5.
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isotropic to anisotropic growth transition.
As the agarose concentration is increased, 3D Ag

branched aggregates grown up to Q = 1 C [Figs.
2(a) —2(d)] change! their contour from an anisotropic
(conelike) to a quasi-isotropic (spherical) one. Simultane-
ously, the isotropic growth range extends to greater
values of Q due to free convection damping. Besides, for
r & r„v„decreaseswith agarose concentration.

The r vs t plots for objects grown in the gel [Fig. 1(c)]
are similar to those already described for sols, although
in gel U, is smaller than in sols, and its change at r, takes
place without an appreciable change in the object shape.

Ag electrodeposits grown in agarose-free solution show
D~ =3.0+0.03 (Euclidean volume), and a surface fractal
dimension, D, =2.5+0.05 [16]. The value of DM of
quasi-spherical Ag electrodeposits (r (r, ) grown in
agarose-containing media was determined from
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FIG. 2. Photographs of silver dendritic deposits.
Ed = —0.200 V, 0.50M Na2SO4+ 0.010M H2SO4+ 0.005M
AgzSO~+x g agarose/100 ml, Q =1C, 25 C. (a) x =0; (b)
x=0.033; (c) x=0.070; (d) x =0.5.
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FIG. 4. log, ~ vs log, or plot for silver electrodeposits,
Ed = —0.200 V, 0.50M Na2SO4+ 0.010M H2SO4+ 0.005M
Ag2SO4+0. 5 g agarose/100 ml, 25 C.
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TABLE I. Parameters related to the growth of the macroscopic object, 0.50M Na&SO4+0. 010M
H2SO4+0. 005M Ag2SO4+ x g agarose/100 ml solutions.

(g/100 ml)

0 (blank)
0.033 (sol)
0.040 (sol)
0.060 (sol)
0.070 (sol)
0.500 (gel)

{10 P)

1.130
1.615
1.820
2.130
2.180

Vr

(10 cm s ')

2.80
2.59
2.51
2.15
1.93
1.23

g Vr

{10 P cms ')

3.16
4.18
4.57
4.58
4.21

5
(D, /v„)

(cm)

0.038
0.042
0.044
0.050
0.056
0.112

(cm)

0.10
0.37
0.35
0.38
0.40
0.30

(r (r, )

300
2.78
2.70
2.66
2.54
2.50

'This value of D~ was obtained from the charge vs volume plots as indicated in Ref. [16].

where Q and M are the Ag electrodeposition charge and
mass, respectively. For r &r„log, oQ vs log, or linear
plots result [Figs. 3(a) and 3(b)], their slopes decreasing
from DM =3 to DM —=2.5 as agarose concentration is in-
creased (Table I). For r ) r, those plots show a slight
positive deviation from linearity which is enhanced in the
gel [Fig. 3(b)], indicating a change in the object density.

The density change in the gel can be better seen
through the proportionality

M (2)

where p, the object apparent density (Ag and void
domains), results from the w ~ Q /EV ratio, wher w A is
the Ag atomic weight, F is Faraday's constant, and V is
the object apparent volume, V=(4/3)m. r . Then, DM

3

can be obtained from the log&op vs log&or plot (Fig. 4).
This plot shows a linear decrease of log&~, with log&or—3 —3reaching r„the minimum value p =- 1.58 X 10 g cm
i.e., the density of Ag+ ions in solution is approached.
For r &r„Eq.(2) leads to DM=2. 5+0.02. Otherwise,
for r )0.4 cm (Fig. 4) the limiting value p=2. 8X10—3

gcrn is attained, i.e., DM —+3. Hence, a constant-
density, more compact object is formed. This is
confirmed by inspecting the front view of an Ag electro-
deposit grown in the gel (Fig. 5). The thickness of the
outer low-density shell remains nearly constant as r in-
creases from r, upwards. For those objects grown in 0.07
g agarose/100 ml and 0.5 g agarose/100 ml and r &r„
(D~ ) =2.52+0.03, a figure that is close to D~ values re-
ported for 3D Cu electrodeposits [2] and computer simu-
lations of 3D DLA models [4].

The macroscopic behavior of Ag electrodeposits
formed for r & r, in sols fits a Stokes-like relation-
ship, as the product U„q' remains practically constant
(4.4+0.3 X 10 P cm s ') within the range of g' covered
in this work (Table I). The value of 5, the thickness of
the diffusion layer, can be estimated from the quotient
D;/U„=5, where D; is the diffusion coefBcient of Ag+
ions in solution. The value of D; becomes practically g'
independent; it results in D;=1.1X10 cm s ' for all
media. The value of 5 is always smaller than r, and it in-
creases with agarose concentration. In addition, for con-
stant Q, as g' is increased, p, v„,and DM decrease, and
the object size increases (Table I). Mass transport rate
equations [19],for a constant density gradient at a plane

surface, yield values of 5 considerably smaller than in the
gel. This difference reflects the inhuence of free convec-
tion on the Ag growth pattern. The significance of the
comparative scale of 5 and the aggregate has been exam-
ined for 2D growth [8—10]. The DLA morphology is as-
sociated with r & 5. This effect is clearly shown in Table I
as the increase of q' leads to an increase of 5, and to a DM
value consistent with DLA morphology. The transition
from a DLA to a dense aggregate resembles that de-
scribed from 2D electrodeposits grown far from equilibri-

(c)
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FICx. 5. Photographs of an Ag electrodeposit at different
stages of growth. Ed= —0.200 V, 0.50M Na~SO4=0. 010M
H~SO4+0. 005M Ag2SO4+0. 5 g agarose/100 ml, 25 C. {a)
Q=0.040C; (b) Q=0.073C; (c) Q=0.400C; (d) Q=0.700C. The
value of r, for this electrodeposit is 0.30 cm.



GROWTH OF THREE-DIMENSIONAL SILVER FRACTAL. . . R2377

50

E 40-

1.6

E
ls2

(b)

30—

20

10—

0
0

I

10
I

15
I

20
I

25 30

r '(cm ')

0, 8—

0. 4

+
y+

~+
0

W~
0 500

+
+++

f I

1000 1500
I

2000
I

2500
I

3000 3500

t (s)

FIG. 6. (a) I ' vs r ' plot and (b) I vs time plot for silver electrodeposits, E&= —0.200 V, 0.50M Na&SO4+0. 010M
H&SO4+ 0.005M Ag&SO4+ 0.07 g agarose/100 ml, 25 'C.

um [20,21].
Ag electrodeposition in agarose-free solution produces

density gradients at the solution adjacent to the electrode
surface that induce a visible free convection effect at t, .
Then, for r & r„5is no longer uniform, and the growth
of an anisotropic and compact object (D~ =3) is favored.
In this case, individual branches may penetrate the
diffusion layers, leaving pockets of undepleted solution
between them.

On the other hand, isotropic Ag branched aggregates
are grown in the gel irrespective of r, and in this case, an
increase in compactness is observed. This effect may be
due to penetration of branch tips into the diffusion field.
Then, as 5 increases, the diffusion layer forms a smooth
envelope around the aggregate. Then, under damped free
convection the growth of the object appears to be deter-
mined by the advance of the growing object front in the
solution under a Laplacian field. Accordingly, a particu-
lar deposit morphology is related to a certain diffusion

layer profile.
The cell can be modeled as two concentric spheres with

r and ro the inner and outer spheres radii, respectively.
Then, the primary current distribution is given by

I=4rrtc V„/[(1/r)—(1/ro)], (3)

where ~ is the solution-specific conductance and V„is
the anode-cathode potential difference corrected for the
overvoltage terms. Data given in Fig. 6(a) show that Eq.
(3) is fulfilled when Q &0.4 C. It should be noted that
I oc- r results for ro »r. Then, the linear portion in the r
vs t plot (Fig. 2) should correspond to a linear I-vs-t rela-
tionship. This prediction of the Ohmic model is, in prin-
ciple, fulfilled by experimental data [Fig. 6(b)].
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