
Figure 1. Raw speckle image 
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Abstract - This paper introduces Field Programmable Gate Array 
(FPGA) technology as an alternative platform to implement 
algorithms for speckle patterns analysis in real time. Functions 
and algorithmic procedures have been expressed in pseudo 
languages then in Hardware Description Languages (HDL). For 
all cases, time performances are presented for the Xilinx Virtex-6 
family. Comparisons are also made with PC platform 
implementations presented in the literature. 
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I. INTRODUCTION

Physical surface variations with time can be monitored and 
controlled through image capture and analysis. The application 
of Dynamic Speckle Interferometry (DSI) to the drying of 
paints has been reported in [1-6], while a practical development 
has been presented as an Adaptive Speckle Imaging for 
monitoring the formation process of film on a regular surface 
topography [7]. The purpose of this paper is to customize and 
implement granular computing algorithms using FPGA 
technology; this includes procedures for image processing and 
analysis through real time monitoring. Taking advantage of the 
increasing performances of modern FPGA devices, some 
designs are presented with promising perspectives with respect 
to time and hardware costs. Applications examples are inspired 
from the algorithms presented in [6]. The basis of the Granular 
Computing with Fuzzy Sets (GCFS) and the Speckle Signal 
Processing (SSP) techniques are reviewed in section 2. Section 
3 is dedicated to the implementations and hardware 
requirements on FPGA. Section 4 presents the results in 
performances, compared to implementations on PC’s platform.  

II. THEORETICAL BACKGROUND

A. Dynamic Laser Speckle pattern 
Interference phenomena take place whenever a coherent 

light source (laser) illuminates a rough surface. The surface of 
most materials are extremely rugged in the scale of an optical 
wavelength (λ ~ 5 x10-7 m.). When nearly monochromatic laser 
light is reflected in this kind of surface, optical waves which 
contain several components are originated from the reflection 
of different microscopic elements of the surface. The 
interference of coherent waves provides a granular pattern of 
intensity that is called speckle. The phenomenon is originated 
by the different path lengths between the different scattering 

points from the surface and the observation source. Optical 
systems can be used for obtaining a scan of the phenomenon 
and register it in successive images. The images show peculiar 
speckle patterns depending on surface roughness, on the 
incoming light wavelength and on the numerical aperture of the 
imaging optical system (Fig. 1). 

The speckle pattern varies when the illuminated surface 
presents some type of activity. If the movement is slow the 
speckles may be recognized within the successive images, but 
in the presence of higher activity the speckles intensity varies 
randomly with a rough boiling aspect. The activity variations 
permit the assessment of diverse phenomena such as 
microorganism motility [12], seeds viability [13], fruits 
bruising [14], drying of coatings [1], [3], [4] some of them with 
considerable economic and/or biological interest.  

Images are captured periodically in order to scan the 
phenomenon. These images capture the intensity of the 
speckles although they do not permit to identify the illuminated 
object or surface.  

Image activity is associated with pixel intensity variations, 
within a sequence of images, in a given lap of time. Activity is 
assumed when there are significant intensity changes in the 
signals. The notion of significant intensity variation is difficult 
to define, it is a notion depending of the application at hand, 
and it can be subjective and uncertain. 

The intensity variation of each pixel, through the successive 
images, determines a one-dimensional signal known as Time 
History Speckle Pattern (THSP) [15]; using this signal the 
activity index is computed. 
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Figure 2. Fuzzy sets and membership functions 

0.20

0.40

0.60

0.80

1.00
Dark Medium dark Medium Medium light Light

32 64 128 255
Intensity

cut

Many efforts have been done to evaluate these activity 
variations, so many algorithms with different approaches have 
been proposed [16]. Among them, those algorithms that 
process the intensity time series belonging to the pixels of an 
image sequence within the time domain are considered more 
adequate to be hardware implemented using FPGA. This paper 
proposes the use of the Granular Computing with Fuzzy Sets 
(GCFS) methodology [6] to compute the dynamic speckle 
activity index. 

B. Fuzzy Granular computing 
Granular computing is a technique based on the 

representation of the information in the form of a number of 
entities or information granules [17]. 

Granules can be viewed as linked collections of objects 
(data points, in particular) and drawn together by the criteria of 
indistinguishability, similarity, proximity or functionality [18]. 
Granules and the ensuing process of information granulation 
are vehicles of abstraction leading to the emergence of high-
level concepts that support and ease our perception of the 
surrounding physical and virtual world [17] [19]. For example, 
the images perceived by human beings are full of information 
granules, defined by colors, shapes, combinations of colors and 
shapes. The image processing is naturally split into two main 
and overlapping levels of processing. At the lower end, one 
deals with image segmentation, edge detection, noise removal, 
and so on. At the higher end, the interest rests upon the image 
description and interpretation, when the level of abstraction 
depends on the task at hand. This is a spatial granulation. 

Another example is the temporal granulation, associated to 
the processing of times series or signals, where the granulation 
information is built up over time forming information granules 
over predefined time intervals. The lower signal processing 
level deals with measurement and classification of signals, as 
well as with reduction of interferences and noise. At the higher 
level, the description, comparison and interpretation of signals 
is somewhat more complicated because it needs more specific 
knowledge about the application context. 

Granular computing starts with building intelligent 
systems that are capable of understanding and describing 
concepts inherently associated to the human activity, to 
provide a better understanding of the problem at hand, and 
coming up with an efficient problem-solving strategy. Like a 
classic strategy, this paradigm breaks a problem down into 
sub-problems more affordable. 

The fuzzy set approach holds useful features to support 
granular computing and the processes of information granules. 
Fuzzy sets support modeling of concepts that exhibit 
continuous boundaries such as tall, old, big, light, which are 
vague concepts and dependent on the context. The allowed 
overlapping between fuzzy sets, key feature of the fuzzy 
theory, allows avoiding the brittleness effect which may occur 
when swapping one concept for another. This becomes 
particularly essential when dealing with noise sensitive data. 

In the classical set theory, let X be a set of objects, whose 
elements are denoted xi, and let A be a subset of X, the 

membership of each xi to A is viewed as a function μA(xi) from 
X onto {0,1} such that: 

μA(xi) = 1 iff xi ∈ A, μA(xi) = 0 otherwise (1)

If the μA takes values in the real interval [0, 1], A is called a 
fuzzy set, while μA is the grade of membership of xi in A. A has 
no sharp boundaries, as shown at Fig. 2, where five intensity 
related membership functions are defined. Algebraically, A 
may be expressed as 

 A = {(xi, μA(xi)), xi � X and μA(xi) ��[0,1]}  (2) 

One defines the support of a fuzzy set A as the subset of X
such as 

 Supp A = {xi X, μA(xi) > 0} (3)

The α-cut of a fuzzy set A is defined as 

Aα = {(xi, μA(xi)), xi � X and μA(xi) ≥�α} (4) 

Aα can be used to reduce the overlapping zones. 

C. Speckle signal processing procedure concept 
Most of the descriptors used for the activity monitoring 

[16] using dynamic speckle, require a large amount of images, 
sometimes involving pre-processing before being processed at 
regular intervals. Most implementations are based on 
programs running on general purpose processors; so, they 
generally cannot be carried out in real time when significant 
activity, involving a great number of images, is dealt with. 
Special purpose devices are then of interest when real time 
process is a must. 

As seen in section 2.A the dynamic speckle activity index 
AI characterizes the dynamics of the illuminated sample. It is 
computed, from the quantity of granules QNf generated along 
each THSP, in Nf instances of intensity observations, as: 

 AI = QNf/Nf (5) 
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Figure 3. Typical THSP granules diagram 

In speckle image processing, the speckle intensity 
evolution can be seen as temporal granulation [5], where 
levels of brightness are merged.  

In the applications at hand only gray-scale images are 
considered. Each pixel of the pattern is given an intensity 
value between 0 (black) and 255 (white). Images from the 
camera are coded and transmitted through registers associated 
to the matrix of pixel addresses with correlated intensities. The 
signals, generated by the pixel intensity changes through the 
sequence of images, are processed with the finality of 
identifying underlying activity. This can be modeled with the 
use of fuzzy granular computing (see section 2.B). 

This activity index concept has shown good performances 
to identify both stationary and non-stationary dynamics, in a 
wide statistical sense. On a first approach, fuzzy membership 
functions are defined for three fuzzy sets dark, medium, and 
light; the selected intensity parameters of the fuzzy functions 
are obtained through the observation of the gray-level 
histogram of the first image in the image sequence. Then 
trapezoidal functions with media overlapping are adopted. In 
order to detect image contrast effects, membership functions 
are defined in such a way that equal numbers of elements 
would belong to each fuzzy set. To control the activity 
transformations in real time, the activity index must be re-
calculated at every instant when a new image is captured, 
taking into account the number of accumulated granules and 
the current membership functions values.  

For a given pixel, the THSP may be graphically 
represented as a set of instances with the associated pixel 
intensity as registered by the camera, this defines the X signal. 
Each granules of the X signal is defined as a continuous time 
sequence of elements belonging to the same fuzzy set. As 
fuzzy sets are overlapping, such will be the case for the 
granules. Fig. 3 shows a typical THSP with 3 overlapping 
main zones tagged dark, medium and light, generating two 
overlapping zones tagged medium-dark and medium-light. The 
example of Fig. 3 illustrates 50 instances creating 19 granules. 

D. Computing activity indexes 
Considering the general case of R main intensity zones, 0 

to R-1, one defines a coding system using R bits xR-1, xR-2, – , 
x0; zone k code will be set to xk = 1, xi≠k = 0, while overlapping 
zone k∩k+1 will be assigned code xk = xk+1 = 1, xi≠k,k+1 = 0. 
Fig. 3 shows the coding for three main zones. The activity 
index AI is readily computed as the ratio of the quantity of 
granules QNf and the quantity of instances Nf (5). Let the 
vector xR-1(i) xR-2(i) – x0(i) be the coded intensity of a given 
pixel at instance i, and let Nf be the quantity of instances in the 
THSP of a given pixel p. The quantity of granules QNf may be 
computed as 

QNf (k) = Σi =0 → Nf    (x’R-1(i)∧xR-1(i+1) + x’R-2(i)∧xR-2(i+1) + – 
+ x’0(i)∧x0(i+1)),  (6) 

where xR-1(0) xR-2(0) – x0(0) is set to (0 0 – 0) to cope with 
the first THSP granule(s). Without ambiguity, Σ and + stand 
for the arithmetic integer sum, while symbols ’ and  ∧ stand 
for the Boolean complementation and the Boolean AND 
respectively. 

Clearly, whenever bit xj(i) changes from 0 to 1 at instance 
i+1, an integer 1 is added to the sum in (6), as a new granule is 
detected in the THSP. 

The data sources (images) consist of Nf frames of Np = Nr x
Nc pixels with their respective intensity values. Nr and Nc are 
the respective quantities of rows and columns of each frame.  

The activity index of a given pixel k is computed 
according to (6). The average activity index AIa will be 
computed as 

 AIa = Σk =1 → Np   QNf (k)/(Nf x Np) (7)
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III. ACTIVITY COMPUTATION ALGORITHM AND MEMORY 
REQUIREMENTS

The following algorithm consists of 3 steps. The first two 
steps are actually preset procedures: the first step sets the 
intensity histogram; the second step computes the actual 
intensity region limits, featuring a balanced distribution of 
pixels in each region. The third step computes granules 
quantities and activity indexes. 

A. Gray-level histogram set-up. 
Intensity values are between 0 and 255, 8 bits are used. 

The first captured frame is taken as data for this phase, so     
Np =Nr x Nc pixels are involved. For counting purposes, 256 
bin-registers are defined, one bin for each intensity value. The 
gray-level histogram is built up as a 256-word vector h. Word 
h(i) is formed by the amount of pixels with intensity i. In 
short, for every pixel with intensity i in the frame, one unit 
will be added in the ith bin. The following pseudo-language 
program builds up vector h
{Histogram computation (result in h) from the 
first (Nr*Nc)-pixel image} 
{The gray-level histogram, h, has 256 bins} 
h(i)=0 for all i in [0,255] 
for i in 0 to Nr-1 do 
  for j in o to Nc-1 do 
    h (pixeli,j) := h (pixeli,j) + 1 
  end for 
end for 

where pixeli,j stands for the intensity value captured from the 
image.

B. Region limits computation 
The next step is the computation of the membership 

function parameters. The R functions are overlapping 
trapezoids generating 2R-1 regions or zones (Fig. 2), then two 
values are necessary to define the region limits; this holds for 
each function but for the rightmost and leftmost ones which 
need only one. Those limit values are in [0, 255]. The left limit 
of the leftmost region is 0 and the right limit of the rightmost 
region is 255. Now, the regions are defined in such a way that 
an (closest to) equal number of pixels would belong to each 
region. Therefore, the gray-level histogram is used as input for 
the region limits assignment. For this purpose, a bin look-up 
procedure is carried out adding bin stored values from bin 0 
on, up to the point when the accumulated sum is the closest to

 Nm = Np / (2R-1) (8) 

Let bin k be the last one to be included in the first counting, k
will be the upper limit of the first region and k+1 the lower 
limit of the next region. This process is then repeated from bin 
k+1 up to the point when the accumulated count would be the 
closest to Nm. Fig. 2 displays 9 regions (R=5) quite regular as 
the intensity ranges have been assumed to be equal for all 
regions. In the case of setting the ranges according to the pixel 
distribution, the geometry would most often be unbalanced as 
the intensity intervals (defined as the supports of fuzzy sets) 

would be no more standard. The following pseudo-language 
program computes the region limits. 
{Region limits (regionk) computation} 
{R is the number of overlapping membership 
functions generating 2*R-1 regions} 
{The range of intensity values [0,255] is 
partitioned in such a way that a similar 
number of elements could be included in each 
one of the 2*R-1 regions} 
{region0 := 0; region 2*R-1 := 255} 
Nm := Np/(2*R-1) {Nm: #pixels_in_each_region} 
sp := 0; i := 0 {auxiliary} 
for k in 1 to 2*R-2 do 
  while (sp < Nm*k) do  
    sp := sp + h(i) 
    i := i +1 
  end while 
  regionk := i  
end for  

C. Granular computing. 
At the granular computing stage all the Np THSP signals 

are sequentially built up and analyzed to weigh up activities. 
The pixels are coming from the camera in a serial way, i.e. the 
first Nc pixels from the first row and so on, up to the Nr

th row; 
thus an iterative algorithm is proposed. For each incoming 
pixel (with intensity data), the membership function value is 
computed and compared to the previous value for this same 
pixel. The most intuitive method would first determine the 
related intensity region through comparison of the pixel 
intensity code with the respective regions limits. Then, 
matching up to the pixel data at the preceding instance, up to 
two new granules can be detected and added to the counter. 
An alternative rests upon a preliminary implementation to 
achieve a functional mapping of the intensity code 8-bit vector 
onto a zone coding R-bit vector as defined at section 2.D. 
Further on, the occurrence of an eventual new granule is 
detected whenever, between two successive instances, the 
zone coding vector value changes in such a way that some bit 
0 switches to 1. Due to the overlapping feature of the 
membership functions, up to two bits may switch at the same 
time, in this case two granules are added to the corresponding 
granule-counter (see sec. 2.D). The previous membership zone 
coding values for every pixel are stored in a memory-flag of 
(Nr x Nc) R-bit words. Actually, the following program 
computes formula (6). For this sake one defines the pseudo-
Boolean operator

Gi,j(k+1) = (x’R-1(k)∧xR-1(k+1) + x’R-2(k)∧xR-2(k+1) + – + 
x’0(k)∧x0(k+1)),  (9) 

associated without ambiguity to zone coding vector (i,j):       
xR-1(k+1), xR-2(k+1), – x0(k+1).
{Activity index computation, results in Gri,j} 
{Nf is the number of Np-pixel frames (=2b)} 
fi,j = 0 for all i in [0, Nr], j in [0, Nc] 
{One Granule counters per pixel} 
k := 0  
while k <= Nf-1 do {Current frame} 
   for i in 0 to Nr-1 do {Current frame row} 
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     for j in 0 to Nc-1 do {Current frame 
column} 
  {granules counting} 
 compute Gi,j(k+1) 
        fi,j := fi,j + Gi,j(k+1) 
         Gri,j:= fi,j/(k+1) 
 end for 
   end for 
end while

D. Memory requirements 

• Granules counters 

Np = (Nr x Nc) granules counters are needed to cope which 
every pixel activity monitoring. This involves a memory 
requirement of 

Gcount = Np × L (10)

where L stands for the register-cell size. As the maximum 
quantity of instances (frames) is Nf = 2b, b bits are required for 
L. Actually, b-1 bits are enough to count from 0 up to 2b-1, but 
two granules could be involved at each counting step (for the 
overlapping feature), so an extra bit is needed. 

• Histogram set-up 

Assuming intensity values in [0, 255], 256 bin-memory 
registers are needed to store quantities in [0, Np]. The bit size 
memory requirement is given as 

 Hcount = 256 x log2Np (11) 

• Zone-code memory flags 

At each new instance, the pixel intensity (expressed by a 
zone-code flag) has to be matched to the flag of this same 
pixel at the preceding instance. So flags have to be stored and 
this require the following amount of memory 

 Fmem = R x Np  (12)

where R stands for the quantity of main intensity zones.

IV. PERFORMANCES AND TIME COMPARISONS

High level software have been used to implement the fuzzy 
granular algorithm; a typical average time to process 128 
instances for 6 THSP samples, using Matlab® software in a 
personal desktop computer, is 0.01 sec., as reported in [5]. As 
an order of magnitude, one can assume that high level 
software’s would process 100 instances of (512 x 512)-frames, 
in 500 to 600 sec. range time delays.  

Table 1 shows the experimental results carried out on 
FPGA platform Xilinx® Virtex-6 (xc6vlx130t ff484 -3). The 
first column has image sizes. The minimum time period, tp, the 
number of flip-flops, the number of slice-LUTs, and the 
number of RAM blocks (RAMB36E1+RAMB18E1) are 
shown for THSPs of 64 and 128 instances. Considering a 

latency of 10 clock cycles for 8-bit precision activity indexes, 
it is clear that this implementation can be used for very 
challenging real-time applications. 

#inst 64 128

128x128

tp (ns) 5.07 5.67

#ff 331 331

#LUT 386 396

#RAMB 4+3 5+2

256x256

tp (ns) 6.79 7.49

#ff 319 339

#LUT 405 416

#RAMB 20+1 22+1

512x512

tp (ns) 10.05 10.34

#ff 329 349

#LUT 412 426

#RAMB 80+1 88+1

Table 1. FPGA Results 

Note that the required memory for the biggest images 
consumes only 33% of available resources in the selected 
device, one of the smallest in the Virtex-6 family. Although 
area and time results enable real-time applications, significant 
progress is expected through optimization of algorithms and 
related implementations. 

V. CONCLUSIONS

The main feature of the Fuzzy Granular algorithm is the 
smaller amount of image sequences required to process the 
THSP compared with other methodologies [5]. As a field of 
application, this fast embedded algorithm could be addressed 
to the analysis of drying time of specific film coatings in an 
automated manufacturing process.  

Furthermore for other applications, where time could be a 
critical factor, real time processing could be a must. For this 
purpose, FPGA implementations provide low cost handy 
solutions whose performances could be a key feature. The 
concepts of this paper will be explored further according to 
some specific applications. Within precise sets of constraints, 
explicit values of hardware and time consumption will be 
readily defined. 
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