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Abstract-The concentration profiles of reacting species at the electrode-solution interface under a periodic 
square wave perturbing potential are calculated by solving the diffusion equation for the case of a fast 
reversible metal-metal ion reaction. This situation is particularly interesting in the electrochemical facetting 
of metals. The model exnlains the denendence of current density and charge density on the frequency and 
number of cycles of the-perturbing potential. 

INTRODUCTION 

Periodic perturbations, either current or potential 
have been used in electrochemistry in connection to 
electrochemical techniques such as ac voltammetry, 
and impedance measurements[ 1,2] as well as electro- 
lysis with a pulsating current[3-91. The latter has been 
extensively used in pulse plating, electrodissolution 
(electrochemical shaping and polishing of metals) an- 
odizing and UC corrosion processes. Pulsed current 
can produce considerable modifications on electro- 
deposits as far as the morphology, uniformity, 
compactness and adherence to the substrate are con- 
cerned. These effects are largely due to the influence of 
the periodic perturbation on the mass transport pro- 
cesses and accordingly, on the kinetics of the electrode 
reaction. The periodic perturbation produces a pulsa- 
ting diffusional boundary layer wherein the concen- 
trations of the ionic species oscillate with time near the 
electrode surface. This means that for instance, for a 
pulsating current the concentration and surface reac- 
tion overpotential depend not only on the magnitude 
but also on the frequency of the oscillating current. 

the electrochemical treatment. This has been clearly 
proved by chemical analysis, rotating disc and 
ring-disc electrode techniques for various metals[ 131. 
Therefore, the electrochemical facetting implies the 
build-up of concentration profiles related to the an- 
odic and cathodic reactions, that is the existence of a 
pulsating diffusional boundary layer. 

Recently the application of periodic perturbing 
potentials under certain well-established conditions to 
various noble metal electrode has allowed study of 
the electrochemical facetting of those electrode 
surfaces[lO-121. Electrochemical facetting requires an 
anodic and a cathodic potential limit located at the 
negative and positive potential values, respectively, of 
the equilibrium potential of the corresponding 
metal-metal ion redox couple, to allow the electrodis- 
solution and electrodeposition of the metal during the 
potential cycling. It has been demonstrated that the 
two processes are not exactly symmetric from 
the standpoint of the charge playing part in the 
oxidation-reduction cycles and this leads to an accu- 
mulation of dissolved metal in solution in the course of 

For process modelling let us firstly assume that the 
overall electrochemical reaction involves a redox pro- 
cess under ionic diffusion control in the solution 
phase. Hence, to solve this problem the analytical 
solution of the Fick’s diffusion equation is required to 
obtain the concentration profile, current density and 
charge density at any cycle. This can be done ex- 
clusively on the basis of the pure diffusion equations 
because as the metal ion concentration initially is null 
and along the process is much smaller than the acid 
electrolyte concentration, migration effect can be 
neglected. Analogously, provided that the period of 
the perturbing potential is adequately chosen and the 
electrode size is sufficiently small, it is possible to 
suppose that convection and double layer effects can 
be also disregarded[14]. It is further assumed that the 
values of j,,, the exchange current density for the 
metal-metal ion electrochemical reaction, is suffi- 
ciently large to avoid any activation polarization. 

Furthermore, the perturbing potential is a periodic 
symmetric square wave potential for which the bound- 
ary conditions of the problem can be easily 
established. 

The purpose of this work is to find out the depen- 
dence of the concentration profiles on frequency and 
number of cycles of the periodic potential and simplest 
electrochemical kinetic conditions. 

MATHEMATICAL MODELLING 

*Part II: Electrochimica Acta, Vol. 35, No. 1, pp. 215-223 Let us consider that the following reaction takes 
(1989). place at a planar solid electrode (M) immersed in an 
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acid electrolyte: 

M=M’+ +ze-. (1) 

Reaction (1) is assumed to be under diffusional control 
as the corresponding exchange current density value, 
j,, is large. Therefore, for a semi-infinite diffusion at a 
plane electrode the concentration profile of the 
reacting species, can be obtained by solving Fick’s 
equation: aci a%, 

z=Dis* (2) 

where ci corresponds to the concentration of the M’+ 
species, its diffusion coefficient being D,. The diffusion 
of MI+ takes place only along the x-axis, ie the 
direction perpendicular to the electrode surface. The 
electrode is subjected to a symmetric square wave 
perturbing potential at frequency f= l/T= l/22, where 
T and 7 being the period and half period, respectively. 
The upper, E,, and the lower, E,, potential limits are 
selected as, E, > E, and E, c E,, E, being the equilib- 
rium potential of reaction (1). This perturbing poten- 
tial brings about time-dependent boundary conditions 
to equation (2). Thus, the initial and boundary condi- 
tions are: 

t=O 

t>o 

where: 

ci=o 
x=0 1 ci =f w 

(3) 
x+cO c,=o ' 

f(t) = c: for N odd 

f(t)=0 for N even ’ (4) 

N is the number of halfcycles and t is given by the 
expression: 

t=(N-l)r+t’ 

O<f<z. (5) 

Then, for the first anodic halfcycle (N = l), the classic 
solution for equation (2) for the concentration profile 
is obtained: 

ci=cf I-erf: . 
2(Dit’)“’ 1 (6) 

As cf represents the equilibrium concentration of 
soluble species at the electrode surface, its value for a 
completely reversible reaction depends on E,, the 
applied potential, as given by Nernst’s equation for a 
single phase metal of unit activity: 

cr=exp[$E’-EF)] (7) 

where E: is the standard potential of the reaction, and 
the others symbols have their usual meaning. 

Taking into account the boundary conditions (3) to 
(4) the following general analytical solutions comes 
out from the calculation procedure worked out in the 
appendix. 

For the anodic halfcycle (or odd halfcycles): 

ci(x,(N-l)r+t’)= 

'+ i (-'red 2(D,(47+f',)1,2 II i ’ (8) 
k=l 

and for the cathodic halfcycles (or even halfcycles): 

ci(x,(N-l)r+t’)= 

’ 
2{Di~(k-l)r+t’~}“2 II . (9) 

From the concentration profiles given by equations (8) 
and (9) the corresponding fluxes of reacting species at 
the surface, expressed as anodic and cathodic current 
densities, j, and j,, respectively, and charge densities 
for the anodic and cathodic halfcycles, qa and qc, 
respectively, determined as a function of time and 
number of cycles can be immediately obtained. Thus: 

=z.Fc?D!/~~-‘/~ 
I I I 

and: 

=z.F~*D!~~,-‘/~ 
L I I k$l f-1)’ l 

((k-l)r+t’)“2’ 
(11) 

From equations (10) and (11) the values of qs and qc for 
an interval of time 7, are calculated by integration as 
follows: 

and: 

q.=l ‘j,dt’l, 
s 0 

(12) 

qe=l ‘j.dt’l. 
s 0 

(13) 

Accordingly, the difference between q. and qc per cycle 
Aq=q. -qc decreases progressively as the number of 
cycles increases, as given by the equation: 

Aq=zF~-‘~2D~~2c~~‘~2 

Xk$i (-lr+r(&I-Jk). (14) 

In this case, Aq, implies an accumulation of species 
M’+ in the solution per cycle. Likewise, the overall 
accumulation of charge, Aq,, after N halfcycles results: 

Aqr= i (q.-qc) (15) 
k=l 

BEHAVIOUR OF THE THEORETICAL 
MODEL 

The theoretical model predicts certain critical func- 
tionalities, some of them relevant from the standpoint 
of a direct comparison to experimental data. 

Let us firstly consider on the basis of the theoretical 
equations the behaviour of the concentration of the 
soluble species as a function of three independent 
variables, namely, the distance perpendicular to the 
electrode, the time elapsed from the initiation of each 
pulse, and the frequency of square wave perturbing 
potential. 
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The development of the concentration profile 
arising from the first anodic halfcycle, ie the initial 
halfcycle which produces through the reversible elec- 
trochemical reaction a source of diffusing species at 
x=0, is the classic one given by equation (6). The 
concentration profiles plotted as c&, t)/c: US x*, 
where x* = 10x/xmaX and x,,,=4JDit, is shown in 
Fig. la. Otherwise, the development of the concentra- 
tion profiles resulting from the cathodic halfcycle 
subsequent to the first anodic halfcycle is depicted in 
Fig. 2a. According to the boundary conditions im- 
posed by the model, these profiles (cathodic halfcycle), 
initiated at ci(x, t)/cF =O, increase up to a maximum 
and reach again asymptotically ci(x, t)/c: =0 when x* 
increases. These profiles are broadened, the maximum 
ci(x, t)/cT value decreases and appear at larger values 
of x* as t’ increases. This behaviour results in a 
crossing of profiles. These effects are related to the fact 
that the decrease of ci(x, Q/c: with x* becomes slower 
as t’ increases. 

The evolution of the concentration profile for each 
halfcycle during the subsequent cycles is considerably 
influenced by the preceding anodic and cathodic 
halfcycle. The greatest changes in the anodic profiles 
are produced in going from the first to the third cycle, 
and as the number of cycles further increases the whole 
profile tends asymptotically to the stationary profile, 
but the values of ci(x, t)/c* continues to increase with 
N for large values of x*. For a preset number of cycles, 
the inflexion points in Fig. 1 b appear for greater 

“‘1 , , , , , , , 
0 I2 3 4 5 6 7 8 

X' 

Fig. 1. Concentration profiles resulting from the model 
for the anodic halfcycles. Di = 1O-6 cm* s- ‘; At =r/lO. 

(a) 1”’ halfcycle (anodic); (b) 19”’ halfcycle (anodic) 

0 3 4 5 6 7 8 9 

X’ 

Fig. 2. Concentration profiles resulting from the model 
for the cathodic halfcycles. D,= 10e6 cm2s-‘; At =~/10. 

(a) Znd halfcycle (cathodic); (b) 20”’ halfcycle (cathodic). 
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Fig. 3. Concentration profiles for t=At for different cycles 
as identified by the numbers. (a) Anodic; (b) cathodic. 

D,= 10e6 cm’s_‘; At=r/lO. 

values of x*, as t’ increases. Likewise, for a constant t’ 
the inflection points remain at the same x* for any 
cycle as one should expect from the derivation of 
equations (8) and (9) with respect to x* (Fig. 3a). 

Analogously, the concentration profiles resulting 
during the sequence of cathodic halfcycles show up a 
shift of the ci(x, t)/ct maximum value towards greater 
values of x* with t’ (Figs 2a and b). This shift with t’ is 
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Fig. 4. Anodic and cathodic current transients for different halfcycles. 7 = 0.1 s. 

independent whether the first cathodic halfcycle or a 
large number of cathodic halfcycles are considered. 
Likewise, for a constant t’, the maximal value of 
ci(x, t)/c: changes slightly with x* but its decay be- 
comes smoother as N increases (Fig. 3b). 

On the basis of the concentration profiles one can 
immediately derive the current transient behaviour 
associated with the reversible electrochemical reaction 
under the influence of the square wave perturbating 
potential. As shown in Fig. 4, the current transient 
either anodic or cathodic resulting during the corre- 
sponding halfcycle decay with time elapsed from the 
beginning of the halfcycle, but for a constant t’ the 
cathodic current is smaller than the anodic one. This 
difference tends asymptotically to zero as the number 
of cycles, at a constant frequency, increases. 

Similar relevant conclusions are accomplished for 
the charge resulting by integrating the current transi- 
ents. Thus, the charge accumulated in each cycle 
decreases with N in the anodic halfcycles and increases 
with N in the cathodic halfcycles approaching asymp- 
totically to a constant value as N+co (Fig. 5). There- 
fore, the charge difference, Aq,, as given by equation 
(15) between anodic and cathodic charges, results in 
the increase in concentration of the soluble product in 
the bulk of the solution, The value of AqT depends on 
the number of cycles considered and on the frequency 
(Fig. 6). This means that Aqr for a given time t, 
increases asfincreases, although the opposite effect is 
observed when Aq per cycle is considered. 

According to equation (7) all the calculated magni- 
tudes should depend principally on the value of the 
anodic potential step, ie the potential at which the 
soluble species is produced. Equation (8) holds, in 
principle, for any anodic potential provided that je-+ co. 
Otherwise, the value of the cathodic potential step 
should approach - cc with respect to E, to assure a 
null concentration of the reacting species at the elec- 
trode surface. When j,-,+cc this situation can be 
asymptotically reached for relatively small values 
of E,. 

According to equation (8) when the potential step in 
the anodic half-cycle is considerably large, the value of 
c: can exceed the solubihty product of species accu- 
mulated in the electrolyte solution. Nevertheless, the 
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Fig. 5. Normalized charge densities (q*=q/cr) for anodic 
and cathodic halfcycles us number of cycles: (a) 7 =O.l s; 

(x)s=l s. 
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Fig. 6. Aqr= Aq/c: us N plot for different frequencies. 
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amount of accumulated product either as soluble 3. A. R. Despic and K. I. Popov, J. appl. Electrochem. 1,275 
species or insoluble species always is directly related to (1971). 
AqT. For a preset potential cycling time, the narrower 4. N. Ibl, J. Cl. Puippe and H. Angerer, Sur$ Technol. 6,287 

the period (the greater the frequency) of the symmetric = Us’*’ I-- -I- 

2. perturbing potential, the greater the accumulation of 
product in the solytion. 6. 

7. 

K. Viswanathan and H. Y. Cheh, J. appl. Electrochem. 9, 
537 (1979). 

CONCLUSION 

Most of the experimental data related to the 
electrochemical facetting of metals concern with the 
conditions for developing certain morphologies. There 
is only one paper dealing with the accumulation of 
soluble palladium species in solution during the elec- 
trochemical facetting treatments of this metal. These 
results refer to a repetitive square wave potential 
treatment made either for constant potential limits at 
different frequencies or at a constant frequency and 
variable potential windows[13]. These results, par- 
ticularly those obtained at the lower frequencies, offer 
possibilities for making a preliminary comparison 
with the prediction of the model. It is clear that in 
agreement with the model there is an accumulation of 
soluble palladium during cycling, as it should corre- 
spond to equation (15). 

The amount of soluble palladium accumulated in 
solution as the average amount of palladium dissolved 
per cycle decreases according to 1- ‘I’, whereas the 
amount of metal dissolved per unit time increases with 
t”“. These dependences are in qualitative agreement 
with equation (15) derived from the model. 

A more exhaustive experimental work based on 
various redox system particularly useful for testing 
mass transfer models has already been published[lS].* 
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APPENDIX 

Xhe differential equation to be solved is: 

a*+, t) actx, t) 
D - 

dx2= at ’ 
(la) 

with the boundary and initial conditions: 

c(4 t) =f(t) 

c(x, 0) = 0, 

lim c(x, t) = 0. 
x-m 

(2a) 

(3a) 

(44 

Applying the Laplace transform and taking into account the 
boundary conditions (2a) to (4a), one obtains: 

a(x, s)=L{c(x, t)} =L{c(O, t))exp(-xJZ), (5a) 

and by carrying out the anti-transform, and by using the 
convolution theorem, the following general equation results: 

f(u) 
exp[-x2/4D(t-u)] 

(,-,)a’* 
du, (64 

with f(u) =f(t) as given by equations (3). 
By integrating cycle by cycle [where J(u)=c* for odd 

cycles, andf(u) = 0 for even cycles] from the first cycle to the 
N cycle, and by considering (k- 1)~ and z as the integration 
limits, for each cycle (k) equations (8) and (9) are obtained. 

* Modelling of pulsating diffusional boundary layers-II by C. I. Elsner, C. L. Perdriel, S. L. Marchiano and 
A. J. Arvia appeared in Electrochimica Acta, Vol. 35, No. 1. 


