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Abstract

The projected random phase approximation (PRPA) for charge-exchange excitations is de-

rived from the time-dependent variational principle. Explicit results for the unperturbed

energies (including the self-energy corrections), the PRPA matrices, and the transition ma-

trix elements are presented. The effect of the projection procedure on the two-neutrino ββ

decay in 76Ge is briefly discussed.
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In a recent work [1] simple formulae have been designed for the 0+ → 0+ double beta

decay (ββ) matrix elements within the quasiparticle random phase approximation (QRPA).

In particular, it has been shown that the exact calculations for the 2ν amplitude, when

evaluated with a zero-range force, can be nicely fitted by a (1, 1)-Padé approximant of the

form

M2ν
∼= M2ν(t = 0)

1− t/t0
1− t/t1

, (1)

where t = vppt /vpairs is the ratio between the spin-triplet strength in the particle-particle chan-

nel and the spin-singlet strength in the pairing channel, and t0 and t1 denote, respectively,

the zero and the pole of M2ν and are treated as free parameters. In the same work it has

been suggested that this result is of general validity and that any alteration of the nuclear

hamiltonian or the configuration space cannot lead to a different functional dependence. 1

Thus, in order to modify the theoretical predictions for the ββ moments in a qualitatively

way, the QRPA itself has to be altered. The simplest amendment is to set up a particle

number projection. This has been done by Faessler and collaborators in several recent pa-

pers [2]. They have also discussed the outcomes of the PRPA on both simple and double

beta decays. We present here a PRPA formalism that differs in several aspects from the one

reported by them.

To evade the disadvantages inherent in the non-conservation of particle number, besides

the usual proton quasiparticle transformation

ap =
(

upcp − vpc
†
p̄

)

; a†
p
=
(

upc
†
p
− vpcp̄

)

,

it is useful to introduce the following canonical transformation 2

dp =
√
σp

(

upcp − vpzpc
†
p̄

)

; d⋆
p
=

√
σp

(

upc
†
p
− vpzpcp̄

)

; σ−1
p = u2

p + z2pv
2
p , (2)

and likewise for neutrons. Here c†
p
(cp), with p ≡ p,mp, p ≡ np ℓp jp and mp ≡ mjp, are the

single particle creation (annihilation) operators for protons, and cp̄ = (−1)p+mpcp,−mp
. The

1When the renormalization coupling constant gpp is used [2] an analogous expression to the eq. (1) is
valid (with gpp’s for t’s).

2 Note that the operation symbolized by star (⋆) does not affect the complex variable zp.
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vacuums for the proton operators dp is the generating function [3, 4]

|zp〉 = zẐ/2
p |BCS; p〉 =

∏

p>0

(

up + zpvpc
†
p
c†
p̄

)

|p〉,

where Ẑ is the particle number operator for protons, and |p〉 and |BCS; p〉 represent, respec-
tively, the particle and the BCS vacuum for protons. The Bogoljubov transformation (2)

has been introduced in the past by Ottaviani and Savoia [5] to perform a number projection

in spaces of two or more BCS quasiparticles. Later, their method has been used by several

authors (e.g., ref. [6]).

First, we derive the following relations for the matrix elements of the model hamiltonian

H:

〈BCS|HP̂0|BCS〉 = T 〈z|H|z〉, (3)

〈BCS|[A(pnJ̄)HP̂µA
†(p′n′J)]0|BCS〉 = T 〈z|[Dµ(pnJ̄)HD⋆

µ(p
′n′J)]0|z〉, (4)

where |BCS〉 ≡ |BCS, p〉|BCS, n〉 and |z〉 ≡ |zp〉|zn〉. The projection operators are: P̂0 =

P̂ZP̂N , P̂+1 = P̂Z+1P̂N−1, and P̂−1 = P̂Z−1P̂N+1, with P̂N being the operator for projecting

states of good particle number N [7]. The transformation

T = (
1

2πi
)2
∮

dzp
zZ+1
p

∮

dzn
zN+1
n

,

is a contour integration including the origin, and

A†(pnJ) = [a†
p
a†
n
]J ; D⋆

µ(pnJ) =
√
σpσnz

(1−µ)/2
p z(1+µ)/2

n [d⋆
p
d⋆
n
]J ,

are the proton-neutron excitation operators in the spaces of the operators a and d, respec-

tively.

For the norms, we get

〈BCS|P̂0|BCS〉 ≡ N0 = T N0, (5)

and

Ĵ−1〈BCS|[A(pn; J̄)P̂µA
†(pnJ)]0|BCS〉 ≡ Nµ(pn) = T Nµ(pn), (6)
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where

N0 = 〈z|z〉; Nµ(pn) = z1−µ
p z1+µ

n σpσn〈z|z〉.

The one-body charge-exchange operators

O+1(J) =
∑

pn

〈p|O(J)|n〉c†
p
cn; O−1(J) =

∑

np

〈n|O(J)|p〉c†
n
cp,

when expressed in terms of the d operators, and after neglecting the scattering terms that

never contribute within a two quasiparticle space, read

Oµ(J)
.
=
∑

pn

[Λ0
µ(pnJ)D

⋆
µ(pnJ) + Λ0

−µ(pnJ)D−µ(pnJ̄)],

with

Λ0
µ(pnJ) = −Ĵ−1〈p||O(J)||n〉

{

upvn for µ = 1 ,
unvp for µ = −1 .

For their matrix elements we get

〈BCS|[A(pnJ̄)P̂µOµ′(J)]0P̂0|BCS〉 ≡ Oµ(pnJ)δµ,µ′ = T Oµ(pnJ)δµ,µ′ , (7)

with

Oµ(pnJ) = 〈z|[Dµ(pnJ)Oµ(J)]
0|z〉 = Nµ(pn)Λ

0
µ(pnJ).

Relations (3), (4), (5) and (6) reveal that, at the level of the Tamm-Dancoff approximation

(TDA), there is a one to one correspondence between the energy spectrum of H within

the projected basis P̂µA
†(pnJ)|BCS〉 (relative to the ground state P̂0|BCS〉, with energy

E0 = 〈BCS|HP̂0|BCS〉/N0), and that within the basis D⋆
µ(pnJ)|z〉 (relative to the ground

state |z〉, with energy E0 = 〈z|H|z〉/N0). As it is seen from (7) an analogous correspondence

also stands for the transition matrix elements Oµ(pnJ) and Oµ(pnJ). Thus within the TDA

our method consists in the following: after evaluating the matrix elements of H and O±1(J)

within the d-space (< D >), the corresponding projected matrix elements (< P >) are

obtained from the transformation: < P >= T < D >.
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Next, the above method is extended to the RPA by following the linear response procedure

developed by Lane and Martorell [8]. We introduce the Slater determinant

|φ(z)〉 =
∏

pnJµ

(1 + χµ(pnJ)D
⋆
µ(pnJ))|z〉, (8)

and if the quantities χ are assumed to be small, then, to second order

〈φ(z)|φ(z)〉 = N0 +
∑

pnJµ

[

|χµ(pnJ)|2 Nµ(pn) + |χ−µ(pnJ)|2 N−µ(pn)
]

. (9)

The response of the system to an external time-dependent field

Ôµ = Oµe
−iωt +O†

µe
iωt,

is derived from the time dependent variational principle, which for the optimum Slater

determinant solution of the perturbed problem gives

〈δφ(z)|H − E0 + Ôµ − ih̄
∂

∂t
|φ(z)〉 = 0.

If χµ(pnJ) are varied, keeping only the linear terms and assuming 〈z|Ôµ|z〉 = 0, one gets

Aµχµ + Bχ∗
−µ + Oµe

−iωt − ih̄χ̇µNµ = 0,

B∗
µχµ + A∗

−µχ
∗
−µ + O∗

−µe
−iωt − ih̄χ̇∗

−µN
∗
−µ = 0,

where the submatrices are given by

Aµ(pn, p
′n′J) = Ĵ−1〈z|[Dµ(pnJ̄)(H − E01)D

⋆
µ(p

′n′J)]0|z〉
B(pn, p′n′J) = Ĵ−1〈z|[D−µ(pnJ̄)Dµ(p

′n′J)H ]0|z〉.

Attempting a solution of the form

χµ = Xµe
−iωt; χ−µ = Y ∗

µ e
iωt, (10)

and performing the transformation (Aµ, B,Nµ, Oµ) = T (Aµ,B,Nµ,Oµ), we obtain
(

Aµ − h̄ωNµ1 B
B∗ A∗

−µ + h̄ωN∗
−µ1

)(

Xµ

Yµ

)

= −
(

Oµ

O∗
−µ

)

. (11)
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The corresponding RPA eigenvalue problem is:

(

Aµ B
B∗ A∗

−µ

)(

Xµ(α)
Yµ(α)

)

= Eµ(α)

(

Nµ 0
0 −N∗

−µ

)(

Xµ(α)
Yµ(α)

)

, (12)

with the eigenvectors normalized such as to obey the orthogonal relation:

X†
µ(α)NµXµ(β)− Y †

µ (α)N−µYµ(β) =

{

δαβ for Eµ(α) > 0 ,
−δαβ for Eµ(α) < 0 ,

while the closure relations are:

∑

Eµ(α)>0

[Xµ(α)X
†
µ(α)− Y ∗

−µ(α)Ỹ−µ(α)]Nµ = 1,

∑

Eµ(α)>0

[X∗
µ(α)Ỹµ(α)− Y−µ(α)X

†
−µ(α)]N

∗
−µ = 0.

We interpret Eµ(αJ) as the PRPA approximation for the exact excitation energies from

the ground state in the nucleus (Z, N) to the states |αJ ;µ〉 in the neighboring odd-odd

nuclei: Eµ(αJ) = 〈αJ ;µ|H|αJ ;µ〉PRPA−〈0|H|0〉PRPA. Note that in contrast with the usual

charge-conserving RPA problem, the eigenvalues do not occur in pairs ±Eµ(αJ). Besides,

both positive and the negative solutions are physically meaningful. For µ = ±1 the positive

solutions describe excitations in the (Z±1, N∓1) nuclei, while the negative energy solutions

represent the de-excitations in the (Z ± 1, N ∓ 1) nuclei, and the positive energy excitations

in the (Z ∓ 1, N ± 1) nuclei as well. Thus only one RPA equation has to be solved for

the evaluation of single β− and β+ transitions. This is a well known feature of the charge-

exchange modes [8, 9, 10].

We can express the solution of eq. (11) in terms of the eigenvectors of (12),

(

Xµ

Yµ

)

= −
∑

α

sgn(Eµ(α))

(

Xµ(α)
Yµ(α)

)

1

Eµ(α)− h̄ω
(X†

µ(α) Y
†
µ (α))

(

Oµ

O∗
−µ

)

,

and hence from (8), (9) and (10) we derive the response function [8],

R(h̄ω) ≡ −1

2

T 〈φ(z)|Ôµ|φ(z)〉
T 〈φ(z)|φ(z)〉 =

∑

αJ

sgn(Eµ(αJ))
|Λµ(αJ)|2

Eµ(αJ)− h̄ω
,

5



where

Λµ(αJ) = N
−1/2
0

∑

pn

[Λ0
µ(pnJ)Nµ(pn)X

∗
µ(pn;αJ) + Λ0

−µ(pnJ)N−µ(pn)Y
∗
µ (pn;αJ)],

is the PRPA approximation to the matrix element of Oµ(J) between the exact counterparts

of |αJ ;µ〉 and the ground state, i.e., Λµ(αJ) = 〈αJ ;µ||Oµ(J)||0〉PRPA.

Introducing the normalized amplitudes,

Xµ(pn;αJ) = N1/2
µ (pn)Xµ(pn;αJ); Yµ(pn;αJ) = N

1/2
−µ (pn)Yµ(pn;αJ),

the PRPA equation takes the standard form
(

Aµ(J) B(J)
−B†(J) −A∗

−µ(J)

)(

Xµ(αJ)
Yµ(αJ)

)

= Eµ(αJ)

(

Xµ(αJ)
Yµ(αJ)

)

,

with

Aµ(pn, p
′n′; J) =

Aµ(pn, p
′n′; J)

√

Nµ(pn)Nµ(p′n′)
,

B(pn, p′n′; J) =
B(pn, p′n′; J)

√

Nµ(pn)N−µ(p′n′)
.

The orthogonality and closure relations are, respectively,

X †
µ(α)Xµ(β)− Y†

µ(α)Yµ(β) =

{

δαβ for Eµ(α) > 0 ,
−δαβ for Eµ(α) < 0 .

and:

∑

Eµ(α)>0

[Xµ(α)X †
µ(α)− Y∗

−µ(α)Ỹ−µ(α)] = 1,

∑

Eµ(α)>0

[X ∗
µ (α)Ỹµ(α)− Y−µ(α)X †

−µ(α)] = 0,

while the transition amplitudes read

Λµ(αJ) = N
−1/2
0

∑

pn

[Λ0
µ(pnJ)N

1/2
µ (pn)X ∗

µ (pn;αJ) + Λ0
−µ(pnJ)N

1/2
−µ (pn)Y∗

µ(pn;αJ)], (13)
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and for Jπ = 0+ and 1+ satisfy the sum-rule [8]

∑

Eµ=1(αJ)>0

|Λµ(αJ)|2 −
∑

Eµ=−1(αJ)>0

|Λ−µ(αJ)|2 = (2J + 1)(N − Z).

The explicit results for the projected RPA matrices are:

Aµ(pn, p
′n′; J) = ǫZ−1+µ,N−1−µ(pn)δpn,p′n′ +RZ−1+µ,N−1−µ

22 (pnp′n′; J),

B(pn, p′n′; J) = RZ,N
40 (pn, p′n′; J),

where

ǫk,k
′

(pn) = [Rk
0(p) +Rk

11(pp)]I
k′(n) + [Rk′

0 (n) +Rk′

11(nn)]I
k(p)

+ Rk,k′

0 (pn) +Rk,k′

11 (pn)−E0I
k(p)Ik

′

(n), (14)

are the unperturbed energies, and

E0 =
RZ

0

IZ
+

RN
0

IN
+

RZ,N
0

IZIN
. (15)

is the ground state energy. The norms are:

N0 = IZIN ; Nµ(pn) = IZ−1+µ(p)IN−1−µ(n),

and the remaining quantities are defined as follows:

Rk
0(p1 · ·) =

∑

p

ĵ2pv
2
pepI

k−2(pp1 · ·)

+
1

4

∑

pp′
ĵpĵp′ [2v

2
pv

2
p′f(pp

′)Ik−4(pp′p1 · ·) + upvpup′vp′g(pp
′)Ik−2(pp′p1 · ·)],

Rk
11(p1p2 · ·) = ep1[u

2
p1
Ik(p1p2 · ·)− v2p1I

k−2(p1p2 · ·)]
+ ĵ−1

p1

∑

p

ĵp{v2pf(pp1)[u2
p1I

k−2(pp1p2 · ·)− v2p1I
k−4(pp1 · ·)]

− upvpup1vp1g(pp1)I
k−2(pp1p2 · ·)},
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Rk,k′

0 (p1 · ·, n1 · ·) =
∑

pn

ĵpĵnv
2
pv

2
nf(pn)I

k−2(pp1 · ·)Ik
′−2(nn1 · ·)),

Rk,k′

11 (pn) = ĵ−1
p [u2

pI
k(pp)− v2pI

k−2(pp)]
∑

n′

ĵn′v2n′f(pn′)Ik
′−2(nn′)

+ ĵ−1
n [u2

nI
k′(nn)− v2nI

k′−2(nn)]
∑

p′
ĵp′v

2
p′f(np

′)Ik−2(pp′),

Rk,k′

22 (pn, p′n′; J) = [upvnup′vn′Ik(pp′)Ik
′−2(nn′) + vpunvp′un′Ik−2(pp′)Ik

′

(nn′)]F(pn, p′n′; J)

+ [upunup′un′Ik(pp′)Ik
′

(nn′) + vpvnvp′vn′Ik−2(pp′)Ik
′−2(nn′)]G(pn, p′n′; J)

RZ,N
40 (pn, p′n′; J) = IZ−2(pp′)IN−2(nn′) [(vpunup′vn′ + upvnvp′un′)F(pn, p′n′; J)

− (upunvp′vn′ + vpvnup′un′)G(pn, p′n′; J)] .

where ep are the proton single particle energies (s.p.e.), f(pp′) ≡ F(pp, p′p′; J = 0), g(pp′) ≡
G(pp, p′p′; J = 0), f(np) ≡ F(nn, pp; J = 0) and

Ik(p1p2 · ·pn) =
1

2πi

∮ dzp
zk+1
p

σp1σp2 · ·σpn

∏

p

(u2
p + z2pv

2
p)

ĵ2p/2.

The starting point of a self-consistent numerical work is the minimization of E0 with

regard to the parameters u and v. This leads to a set of coupled equations [4, 5]:

2êpupvp −∆p(u
2
p − v2p) = 0, (16)

where the quantities êp and ∆p are defined as follows:

∆p = −1

2
ĵ−1
p

∑

p′
ĵp′up′vp′g(pp

′)IZ−4(p),

êp = ēpI
Z−2(p) + ĵ−1

p

∑

p′
v2p′f(pp

′)IZ−4(pp′)

+
1

2
ĵ−2
p

∑

p′
ĵ2p′v

2
p′ ēp′

[

νp(p
′)DZ−4(pp′)− νpD

Z−2(p′)
IZ−2(p)

IZ

]

+
1

8
ĵ−2
p

∑

p′p′′

ĵp′ ĵp′′

{

2v2p′v
2
p′′f(p

′p′′)

[

νp(p
′p′′)DZ−6(pp′p′′)− νpD

Z−2(p)
IZ−4(p′p′′)

IZ

]

+ up′vp′up′′vp′′g(p
′p′′)

[

νp(p
′p′′)DZ−4(pp′p′′)− νpD

Z−2(p)
IZ−2(p′p′′)

IZ

]}

8



with

ēp = ep + ĵ−1
p

∑

n

ĵnv
2
nf(pn)I

N−2(n)/IN ,

νp(p
′ · ·) = ĵ2p − 2(δpp′ + ··),

Dk(p · ·) = Ik(p · ·)− Ik+2(p · ·).

To inquire into the effect of the number projection method we have done numerical

calculations for several 2νββ emitting nuclei, following the procedure outlined in ref. [12].

This implies the employment of the s.p.e. from the neighboring odd-odd nuclei, and therefore

all self-energy corrections in eqs. (14), (15) and (16), for both like and unlike particles, have

been neglected. Besides, and for the sake of comparison with results presented in ref. [2],

the 0+ → 0+ 2ν transition amplitude has been approximated as

M2ν =
1

2

∑

α,α′

(

1

Eµ=1(αJ = 1) + ∆
+

1

Eµ=−1(α′J = 1)−∆

)

×Λµ=1(αJ = 1)〈αJ = 1;µ = 1|α′J = 1;µ = −1〉Λµ=−1(α
′J = 1), (17)

where unbarred and barred quantities indicate that the quasiparticles and excitations are

defined with respect to the initial (Z, N) nucleus, and final (Z+2, N−2) nucleus, respectively,

and ∆ =
(

E0 −E0

)

/2.

As an example, the PQRPA and QRPA calculations for the 76Ge → 76Se transition

are displayed in fig. 1. Also, in the same figure it is shown the result of a hybrid model

calculation, in which the PQRPA is used, but with the BCS parameters u and v employed

within the QRPA. It can be observed that all the three results are qualitative similar, in the

sense that the ββ moments always vary rather abruptly in the physically relevant interval

t0>∼t>∼t1, and are well represented by eq. (1); the corresponding parameters t0 and t1 that fit

the exact results, together with M2ν(t = 0), are listed in table 1. The single mode model for

the ββ decay [1, 13] suggests that the dominant effect of the projection method is to insert,

into the numerator and the denominator of eq. (1), terms of the order of
(

Ω−1
p + Ω−1

n

)

, where

2Ωp and 2Ωn are, respectively, the degeneracy of the proton and neutron levels.

We end the present letter by mentioning the main differences between the PRPA formal-

ism reported in ref. [2] and the one presented here:
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a) They solve two different RPA equations for the (Z +1, N − 1) and (Z − 1, N +1) nuclei.

Contrarily, we only deal with one RPA problem, in which the β+ spectrum is viewed as an

extension of the β− spectrum to negative energies [8, 9, 10].

b) Their matrices A and B are defined through the method of commutation relations. Yet,

we feel that this technique cannot be applied with the projected procedure, as it automati-

cally excludes the R0 terms in the expression (14) for the unperturbed energies. But these

terms in no way cancel among themselves [5, 6], and thus, our unperturbed energies are

necessarily distinct from those obtained in ref. [2]. (It is worth noting that the commutation

method has neither been used in the derivation of the PRPA for like particles [11].)

c) Their result for the matrix B also disagrees with our result and we do not find any expla-

nation for such a discrepancy. In our formalism the ground state correlations always occur

in the (Z, N) nucleus.

d) We do not have to deal with spurious components in the wave functions of the intermedi-

ate double-odd nucleus as it apparently happens in ref. [2], and therefore Aµ=1, Aµ=−1 and

B are square matrices of dimension equal to the number of proton-neutron states with a

given spin and parity.

e) The matrix element for the one-body transition operator, given by eq. (13), has not been

explicitly shown in their previous works.

In summary, the QRPA and PQRPA yield qualitatively similar results, and, in spite of

above mentioned differences between the formalism employed by the Tübingen group and

ours, the numerical results that we get for the moments M2ν are not in essence distinct from

those obtained in ref. [2].
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Figure Captions

Figure 1: Calculated double beta decay matrix elements M2ν (in units of [MeV ]−1) for
76Ge, as a function of the particle-particle S = 1, T = 0 coupling constant t. Solid and dotted
curves correspond to the projected (PQRPA) and unprojected (QRPA) results, respectively.
For comparison a hybrid model result, in which the PQRPA is used with parameters u and
v determined as in the QRPA, is also presented (dashed curve).

Tables

Table 1: The coefficientsM2ν(t = 0), t0 and t1 for
76Ge in the parametrization of 2ν moments

by eq. (1). The exact curves, shown in fig. 1, are not distinguished visually from the fitted
ones with the parameters listed here.

QRPA PQRPA PQRPA
(hybrid)

−M2ν(t = 0) 0.385 0.370 0.297
t0 1.170 1.038 0.950
t1 1.591 1.447 1.421
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