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Abstract

Within an early Universe scenario, nonextensive thermostatistics (NET) is

investigated on the basis of data concerning primordial Helium abundance.

We obtain first order corrections to the energy densities and weak interactions

rates, and use them to compute the deviation in the primordial Helium abun-

dance. After compare with observational results, a severe bound is stablished.
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For a variety of physical reasons much work is nowadays devoted to nonlinear formalisms.

Among them we can single out nonextensive thermostatistics (NET) [1] as an active area of

research. NET is based upon the following two postulates [2,3]:

Postulate 1.- The entropy of a system that can be found with probability pi in any of

W different microstates i is given by

Sq = (q − 1)−1

W
∑

i=1

[pi − pqi ], (1)

with q a real parameter. We have a different statistics for every possible q−value. Of course,

∑

i

pi = 1, (2)

and it is easy to see that, for q = 1, one regains the Boltzmann-Gibbs form [2]. The resulting

physics is extensive just for q = 1. Otherwise we are led into the realm of nonextensivity

[1–4].

Postulate 2.- An experimental measurement of an observable A, whose expectation value

in microstate i is ai, yields the q- expectation value (generalized expectation value (GEV))

< A >q =
W
∑

i=1

pqi ai, (3)

for the observable A.

Unappealing as the above postulates may perhaps be considered, it should be strongly

stressed that these two statements have the rank of axioms. As such, their validity is to be

decided exclusively not by vague discomfort feelings but by the comparison with experiment

of the conclusions to which they lead. One such a test was recently reported in refs. [5,6],

where bounds to |q−1| were stablished using the cosmic blackbody radiation. Also, present

day determination of Stephan-Boltzmann constant σ puts a similar constraint, for which the

order of magnitud is |q − 1| < 10−4. However, it was later noted [7], that in both cases, the

application of thermodynamics to these contexts is strictly local, and thus, a non-violation of

non-extensivity in a large scale could not be sustained on this basis. In this communication,

we intend to find bounds on non-extensivity not affected by such criticism, which we deem

fair.
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The phenomenal success of thermodynamics and statistical physics crucially depends

upon certain mathematical relationships involving energy and entropy, and much work has

been devoted to i) show that many of these relationships are valid for arbitrary q, and ii)

to find appropriate generalizations for the rest. In this vein we just mention that, by suit-

ably maximizing (1), Curado and Tsallis [3] found that the whole mathematical (Legendre-

transform based) structure of thermodynamics becomes invariant under a change of the

q−value (from unity to any other real number), while the connection of NET both with

quantum mechanics and with Information Theory was established in [4], where it was shown

that all of the conventional Jaynes-Boltzmann-Gibbs [8] results generalize to the Tsallis’ en-

vironment. For more details see [1]. Of course, to verify that NET is useful, it is necessary to

show that it appropriately describes certain physical systems with q-values that are different

from unity. Much work in this respect has been been performed recently. We may cite

applications to astrophysical problems [9,10], to Lévi flights [11], to turbulence phenomena

[12], to simulated annealing [13], etc. The interested reader is referred to [1] for additional

references. Now, NET establishes a different (from the orthodox) fashion of doing ‘statis-

tics’, i.e., a non-conventional way of counting, that has proved to be useful in a variety of

contexts. The difference is governed by the value of the Tsallis parameter q. It is clearly

recommended to use data concerning diverse natural phenomena to estimate the q-value

with reference to different scenarios. In the present communication we shall attempt to use

early Universe Helium abundance data so as to find one of such estimates.

For the canonical ensemble, (1) gives [4]

ρ̂ =
1

Zq

[

1̂− (1− q)βĤ
]

1

1−q , (4)

as the appropriate density operator and

Zq = Tr
[

1̂− (1− q)βĤ
]

1

1−q , (5)

as the associated generalized partition function [4]. Here, as usual, β = 1/kT and Ĥ is the

hamiltonian of the system.
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We shall focus our attention upon the β(q−1) → 0 limit, in which a first order expansion

allows for analytical computations. The expression of the generalized mean value of an

operator was computed in this limit by Tsallis, Sa Barreto and Loh [6]. When applied to

particle number operators, the concomitant result reads

< n̂ >q=< n̂ >BG Zq−1

BG

[

1 + (1− q)x

[

< n̂2 >BG

< n̂ >BG

+
x

2

(

< n̂2 >BG −
< n̂3 >BG

< n̂ >BG

)]]

, (6)

where x stands for ǫ/kT (ǫ is the energy of a single particle) and the symbol BG means to

be computed within Boltzmann-Gibbs’ statistical tenets.

With the standard values of < n̂2 >BG and < n̂3 >BG, for fermions and bosons, the

corrections to the energy density in the early universe may be computed [14]. When the

particles are higly relativistic, T ≫ m, and non-degenerate T ≫ µ, we get

ρbosons =
gb
2π2

∫ ∞

0

dEE3 < n̂ >bosons,q, (7)

ρfermions =
gf
2π2

∫ ∞

0

dEE3 < n̂ >fermions,q, (8)

gb,f stands for the degeneracy factor of each one of the species involved. Using (6), we finally

obtain

ρtotal = ρbosons + ρfermions =
π2

30
gT 4 +

1

2π2
(40.02 gb + 34.70 gf) T

4(q − 1), (9)

where g = gb + 7/8gf . At high enough temperatures, the energy density of the universe

is essentially dominated by e−, e+, ν and ν̂. Interactions among these particles keep all of

them at nearly the same temperature. Accordingly, we set gb = 2 and gf = 2 + 2 + 2 × 3

and reach thus the final form of the Tsallis correction to the energy density, namely

ρtotal = ρstandard + 21.63 T 4(q − 1). (10)

We turn now our attention to the details of the computation of those corrections due

to the weak interaction rate. This rate allows one to compute the neutron abundance as

the universe evolves. We shall denote by λpn(T ) the rate for the weak processes to convert
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protons into neutrons and by λnp(T ) the rate for the associated, reverse ones. Following the

standard computations [15,16], it is possible to see that, for high enough temperatures, the

weak interaction rate is Λ(T ) ≃ λnp + λpn ≃ G2
FT

5, with λnp being related with λpn by the

principle of detailed balance [16]: λnp = exp (−Q/T ) λpn, Q = mn − mp = 1.29MeV and

GF the Fermi constant. We want to compute first order Tsallis corrections ((q − 1)-order)

to Λ(T ). To do this, we need to analyse the individual interaction rates, i.e., each one of

the terms in the sum

λnp = λν+n→p+e+ + λe++n→p+ν̂ + λn→p+e−+ν̂ (11)

given by [15],

λν+n→p+e− = A
∫ ∞

0

dpνp
2

νpeEe(1− < n̂e >) < n̂ν > (12)

λe++n→p+ν̂ = A
∫ ∞

0

dpep
2

epνEν(1− < n̂ν >) < n̂e > (13)

λn→p+e−+ν̂ = A
∫ p0

0

dpep
2

epνEν(1− < n̂ν >)(1− < n̂e >), (14)

where A is a constant fixed by the experimental value of λn→p+e−+ν̂ . In the preceding

equations, we have to consider, of course, energy conservation as a boundary condition

which relates Eν and Ee. Due to the high temperature limit we are interested in, several

approximations are in order [16].

i) All temperatures involved in the present game will be taken as equal, Te = Tγ = Tν =

T , which ensures that reverse reactions have the same form as the direct ones.

ii) We shall neglect Pauli factors (1− < n̂ν >) and (1− < n̂e >), and also the electron

mass in (12) and (13).

With these approximations (12) and (13) become identical. Using pe = Ee = Q + Eν in

(12), the standard result follows.

Passing now to the nonextensive context, we must consistently use the < n̂ >q distribu-

tions functions. Performing the previous integrations, we obtain the leading order corrections

terms in the fashion

5



λν+n→p+e− = λstandard
ν+n→p+e− +

(

480T 5 + 2× 84T 4Q+ 18T 3Q2
)

(1− q)A (15)

where,

λstandard
ν+n→p+e− =

(

4!T 2 + 2× 3!TQ+ 2!Q2
)

AT 3. (16)

In order to get some fresh insight into the problem, we shall consider here only the

first correction, proportional to T 5. A more detailed analysis of these weak rates and the

neutron–proton abundance ratio they yield is considered elsewhere [17]. As explained in [16],

the high temperature regime makes λnp ≃ 2× λν+n→p+e− and Λ ≃ 2λnp. As a consequence,

the change in the weak reaction rate adopts the form

δΛ

A
= 1920 T 5 (1− q). (17)

We have now all the ingredients of the nucleosynthesis recipe at our disposal. Basically,

nucleosynthesis is the competition between the weak interaction rate and the expansion

rate, given by the Hubble constant via the Einstein equations. The 4He production may be

estimated –in the standard Big Bang model– as

Yp = λ
(

2x

1 + x

)

tf

(18)

where λ = exp(−(tnuc − tf)/τ) stands for the fraction of neutrons which decayed into pro-

tons between tf and tnuc, with tf (tnuc) the time of freeze out of the weak interactions

(nucleosynthesis), τ the neutron mean lifetime, and x = exp(−Q/kT ) the neutron to proton

equilibrium ratio [18]. It is straightforward to compute the deviation produced in Yp by a

variation in Tf , and correspondingly, tf . We get

δYp = Yp

[

(

1−
Yp

2λ

)

ln

(

2λ

Yp

− 1

)

+
−2tf
τn

]

δTf

Tf

, (19)

where a radiation era relationship between time and temperature of the form (T ∝ t−
1

2 )

is assumed and the one puts δTnuc = 0, because it is fixed by the binding energy of the

deuteron. Similar studies concerning bounds on gravitational theories were analized in

[19–21]. Considering now, Yp = Y obs
p = 0.23 and δYp = 0.01, which is the observational error
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[22], and standard values for the times and the mean life of neutron –which in fact, is not

modified at order (q − 1)–, we must ask for

0.01 > 0.3766|
δTf

Tf

| (20)

to be satisfied in order to get an estimate of primordial 4He production compatible with

observational data.

In order to obtain a value for
δTf

Tf
in nonextensive statistics, we equate

Λ ≃
(

ȧ

a

)

=

√

8πG

3
ρtotal. (21)

Adding up the corrections due to the changes in the energy density and in the weak

interaction rate, our first order result up to (q − 1) reads

|
δTf

Tf

| = 1276.4 (q − 1), (22)

which allows for a stringent bound, using (20), on the value of q

|q − 1| < 2.08× 10−5. (23)

In obtaining this bound we reach the main goal of the present communication: the

early universe physics places a bound upon the Tsallis parameter q. Since the measured

value of Yp comes from a sample which has been thoroughly mixed, at least during the

life of the galaxy, and our estimate of q is based on a volume of the order of the horizon at

nucleosynthesis epoch, the present test avoides the locality problem pointed out in ref. [7]. Of

course, for other kinds of processes, different bounds may be obtained. Our result pertains

to those taking place during the early childhood of our Universe. Thus, non-extensivity

is severely constrained upon all epochs of cosmic evolution, with separate, independently

tested, observational evidence.

The authors acknoledge partial support from CONICET and valuable conversations with

D.E. Barraco.
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