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Abstract

We consistently quantize a class of relativistic non-local field equations characterized

by a non-local kinetic term in the lagrangian. We solve the classical non-local equations of

motion for a scalar field and evaluate the on-shell hamiltonian. The quantization is realized

by imposing Heisenberg’s equation which leads to the commutator algebra obeyed by the

Fourier components of the field. We show that the field operator carries, in general, a

reducible representation of the Poincare group.

We also consider the Gupta-Bleuler quantization of a non-local gauge field and analyze

the propagators and the physical states of the theory.

PACS: 11.10.-z, 11.10.Lm
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1 Introduction

The interest in non-local field theories has always been present in theoretical physics and it has

been associated to many different motivations.

In Ref. [1], Wheeler and Feynman considered these theories as a description of the interac-

tion between charged particles where the electromagnetic field does not appear as a dynamical

variable. Before the renormalization theory became well established, physicists considered the

possibility of formulating a finite theory, in order to describe elementary particle interactions by

means of higher order lagrangians or non-local lagrangians. Pais and Uhlembeck [2] were the

first in analyzing non-local theories in this context.

More recently, there were efforts to use non-local theories in connection with the under-

standing of quark confinement and anomalies [3][4], and also in string field theories containing

non-local vertices [5][6].

Another aspect of non-local theories, is the possibility of relating them to a regularization

scheme. Specifically, the analytic regularization introduced by Bollini and Giambiagi in Ref.

[7] can be thought as associated to a non-local kinetic term in the lagrangian. On the other

hand, dimensional regularization [8][9] does not admit a lagrangian formulation for non-integer

values of the regulating parameter d, and although the Pauli-Villars regularization [10] admits

a lagrangian formulation, the corresponding canonical quantization leads to an indefinite-metric

Fock-space and the related unitarity problem.

Non-local effective theories, containing non-local kinetic terms, also arise when integrating

over some degrees of freedom that belong to an underlying local field theory (see Refs. [11][12]).

Then, among the different non-local theories that can be formulated, it is natural to ask for

the possibility of a consistent quantization of theories containing non-local kinetic terms.

At the classical level, Bollini and Giambiagi [13] have studied non-local equations containing

arbitrary powers of the d’alambertian operator and in particular they established a non-trivial

relation between the space-time dimension and the power of the d’alambertian, in order to satisfy

the Huygens principle [14]. In particular, in (2+ 1) dimensions, the usual wave equation ✷φ = j

leads to a Green function that does not satisfy the Huygens principle, while the non-local equation

✷
1/2φ = j does satisfy this principle.

So, it is not by chance that the pseudo-differential operator✷1/2 also appears in the context of

bosonization in (2+1) dimensions. In Ref. [15], Marino has established the following mappings,

iψ̄γµ∂µψ ↔ Φ+
✷

1/2Φ
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iψ̄γµ∂µψ ↔ −1

4
F µν

✷
−1/2Fµν +

1

2
θǫµνρAµ∂νAρ + nqt

where ψ is a two-component Dirac spinor, ϕ is a complex scalar field, Aµ is a U(1) gauge field,

and nqt are non-quadratic terms that can be eliminated in a long wavelength approximation. In

a very interesting paper by Marino [16] this lagrangian appears when (3+1)D QED is projected

to a physical plane. The kinetic term of the (2 + 1) dimensional effective theory is proportional

to F µν
✷

−1/2Fµν . In the static limit, this term reproduces correctly the 1/r Coulomb potential

instead of the usual logarithmic behavior of (2+ 1)D QED, this fact was first noted in Ref. [14].

In Refs. [17][15][16], the quantization of higher order and non-local lagrangians has been

realized using the functional integral formalism.

This technique is naturally formulated in the euclidean space. In order to go back to

Minkowski space it is necessary to perform a Wick rotation. As it was pointed out in many

previous works (see Refs. [18][19][20][21][22]), the analytic properties of these theories may be

highly non-trivial. So, it would be convenient to quantize these theories following canonical

procedures, which are naturally defined in Minkowski space.

In Ref. [23], Amaral and Marino developed the Dirac quantization for theories containing

fractional powers of the d’alambertian operator. When using this method some difficulties arise:

there is an infinite set of second class constraints and the Poisson brackets between canonical

variables are not well defined.

In this work we develope the Schwinger quantization for theories containing a general non-

local kinetic term, including the case analyzed in Ref. [23] as a particular case. The method is

based on the observation that the hamiltonian must be the generator of time translations, that

is, we quantize the theory by imposing Heisenberg’s equation. In this way, we do not need to

define infinite momenta which lead to an infinite number of second class constraints.

Here we will be interested in Lorentz-invariant actions of the form

S =
∫

dνxdνy ϕ(x)V (x− y)ϕ(y) (1)

Note that the Klein-Gordon equation ✷φ+m2φ = 0 projects onto an irreducible representation

of the Poincare group labeled by the mass m. However, for non-local fields, the action (1) do not

lead to a Klein-Gordon type equation, and therefore the on-shell field will carry, in general, a

reducible representation of the Poincare group. This fact will be reflected in the mass spectrum

of the theory.
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Changing variables in (1) we can write this action in a different way

S =
∫ ∫

dνxdνz ϕ(x)V (z)ϕ(x+ z)

=
∫

dνx ϕ(x)
{
∫

dνzV (z)ez.∂
}

ϕ(x)

=
∫

dνx ϕ(x)f(✷)ϕ(x) (2)

where we used that V (z) is a function of z2 (due to Lorentz covariance) and therefore its Fourier

transform is a function of k2 only.

If f(✷) is a polynomial in ✷, we are in the case of a higher order theory. The Shwinger

quantization of different models belonging to this case has been analyzed in Refs. [18][19][20][24].

But, if f(✷) cannot be expanded in a finite series, we are in the case of the non-local theories

that we will consider in this paper.

In the higher derivative case, the model is completely defined by the roots of the polynomial,

that is, by giving the set of “masses” that participate in the model. Similarly, we will see that,

in non-local theories, the physical content depends on the zeros and cuts of the function f . That

is, the choice of the cuts that leads to a given analytic determination of f is a physical data that

must be fixed “a priori”; indeed, the mass spectrum will be given by the singularities of f−1.

In section §2 we develope the mode expansion for a field obeying a general non-local equation.

In section §3 we evaluate the canonical hamiltonian, we define the vacuum state and evaluate

the propagators.

In section §4 we quantize the non-local gauge field and we define the physical states using

the Gupta-Bleuler method to deal with the gauge invariance of the theory. Then we evaluate

the field propagator. Finally, we interpret the mass spectrum and the form of the propagators

in the case of the (2 + 1)D non-local gauge theory given by L = −1
4
Fµν✷

− 1
2F µν , introduced in

Ref. [16].

2 Mode expansion for a field obeying a non-local equation

In this section we will obtain the mode expansion for the on-shell field that corresponds to the

quadratic lagrangian

L =
1

2
φf(✷)φ (3)

where f(z) is a general analytic function having a cut contained in the negative real axis. For

instance, when f(z) = (z + m2
0)

α and α is non integer, the cut is taken along the real axis,
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running from −m2
0 to −∞. Note that in the Fourier-transformed space the operation ✷ amounts

to a multiplication by −k2 (k2 = k20−k2), implying that the functions f(−k2) we are considering
have a cut contained in the space k2 ≥ 0 of time-like or light-like vectors.

As it occurs with the poles of f−1 (isolated singularities) that they are associated with a

possible isolated massive mode of the field, we will see that the cuts of f−1 (a continuum of

singularities) are associated with a continuum of massive modes that the field can support; then,

the determination we are using for f(z) simply corresponds to a determination of our physical

system. That is, the cut contained in k2 ≥ 0, fixes the possible modes in the continuum to be

normal massive modes (k2 > 0) or light-like modes (k2 = 0). Note that a light-like mode will be

present in the continuum if z = 0 is a brunch point of f(z); this is the case, for f(z) = (z+m2
0)

α,

when m0 = 0.

In order to obtain the Euler-Lagrange equation for the system (3) we first expand f in a

power series: f(✷) =
∑

n an✷
n, and then apply higher order lagrangian procedures (see Ref.

[25]):

∑

l

✷
l ∂L
∂✷lφ

=

=
∑

l

al✷
lφ = 0 (4)

By summing up the series we obtain the non-local equation of motion:

f(✷)φ = 0 . (5)

Now, by Fourier transforming the spatial part of φ,

φ(x) =
∫

dkφk(t)e
−ik.x (6)

we obtain:

f
(

∂2t + k2
)

φk(t) = 0 . (7)

In the simple case of a Klein-Gordon equation, where f = ✷+m2
0, a general solution to (7) can

be written as

φk(t) =
1

2πi

∫

L++L−

dk0 e
ik0t ×

[

1

k20 − ω2
0

]

a(k0,k) (8)

where ω0 =
√

k2 +m2
0, and L+ (resp. L−) is a loop sorrounding the pole at ω0 (resp. −ω0) in the

positive (resp. negative) sense. The function a(k0,k) is supposed to be analytic in k0 and after

the loop integration we are left with to different functions of k (a(ω0,k), a(−ω0,k)) representing

the arbitrarieness in the initial conditions.
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Now, we will construct a general solution to the equation (5). In order to do so, we proceed

by analogy to the Klein-Gordon case. In eq. (8), the presence of the pole (isolated singularity)

prevents the paths of integration to be deformed to a point. On the other hand, when we apply

the operator ∂2t − ω2
0 in (8), an additional factor −k20 + ω2

0 = −(k0 − ω0)(k0 + ω0) is produced in

the integrand, the poles are canceled, and the loops can be shrinked to a point, showing that (8)

is a solution to the equation (∂2t − ω2
0)φk(t) = 0.

In the general case, according to the physical determination of f , the singularities are con-

tained in k2 ≥ 0. For a fixed value of k, the cuts in the k0 variable are contained in the intervals

(−∞,−ω), (+ω,+∞), where ω =
√
k2. For instance, in the case f(z) = (z + m2

0)
α, the cuts

are given by the points in (−∞,−ω0), (+ω0,+∞), ω0 =
√

k2 +m2
0. Then, confronting (8), we

propose the general solution to eq. (7):

φk(t) = i
∫

Γ++Γ−

dk0e
ik0t

[

1

f(−k2)

]

a(k0,k) (9)

where Γ+ (resp. Γ−) is a path surrounding in the positive (resp. negative) sense, all the singu-

larities of 1/f(−k2), which are present in the positive (resp. negative) k0-axis. Actually, when

we apply the operator f(∂2t + k2) on (9), we obtain

f
(

∂2t + k2
)

i
∫

Γ++Γ−

dk0e
ik0t

1

f(−k2)a(k0,k) =

i
∫

Γ++Γ−

dk0e
ik0t

f(−k2)
f(−k2)a(k0,k) = 0 (10)

then, while the integration paths in (9) are not homotopic to zero due to the presence of both

types of singularities, poles and cuts in f−1, the application of f turns the integrand an analytic

function of k0.

From (6) and (9) we obtain the expression for the on-shell field associated with equation (5):

φ(x) = i
∫

Γ++Γ−

dkeikx
1

f(−k2)a(k) (11)

where dk integrates over the whole of the space-time, with k0 moving along Γ+ + Γ− (a(k) =

a(k0,k)).

Now, we can introduce the distributions δ+G(k) and δ−G(k) (k0 ∈ ℜ):

δ+G(k) ≡ −i δ [1/f ] θ(k0) , δ−G(k) ≡ −i δ [1/f ] θ(−k0) (12)

where

δ [1/f ] =

[

1

f(−(k0 + iǫ)2 + k2)
− 1

f(−(k0 − iǫ)2 + k2)

]

(13)
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so as to obtain

φ(x) =
∫

dkeikx[δ+G(k) + δ−G(k)]a(k) (14)

and using δ−G(−k) = δ+G(k), results:

φ(x) =
∫

dk[eikxa(k) + e−ikxā(k)]δ+G(k) (15)

where we have also taken into account that δ+G(k) is a real distribution, and used a(−k) = ā(k)

(when k0 is real) so as to work with a real φ(x).

The functional δ [1/f ] is the “discontinuity functional” at the cut of 1/f , and is analogue to

the functional 2πiδ(k2 −m2
0), when f(−k2) = −k2 +m2

0 This can be seen by using (k2 −m2
0 −

iǫ)−1 = P ((k2 −m2
0)

−1) + iπδ(k2 −m2
0) in eq. (12).

3 The canonical hamitonian and the field propagator

If we take the lagrangian

L = φ(
n
∑

k=0

ak✷
k)φ (16)

we can compute the corresponding hamiltonian as the magnitud which is conserved due to the

time-translation symmetry of the system. By using lagrangian procedures for higher order field

theories, the hamiltonian is obtained from the density (see Ref. [25]):

T 00 =
n
∑

s,t=0

{✷s ∂L
∂φ(s+t+1)

φ̈(t) − ∂0✷s ∂L
∂φ(s+t+1)

φ̇(t)} − L (17)

where φ(t) = ✷
tφ. From ∂L

∂φ(s+t+1) = as+t+1φ, it results

T 00 =
n
∑

s,t=0

as+t+1(✷
sφ✷tφ̈−✷

sφ̇✷tφ̇)− L (18)

Now, if we take Ln = φ✷nφ we have

T 00
n =

∑

s+t=n−1

(✷sφ✷tφ̈− ✷
sφ̇✷tφ̇)−Ln (19)

where s and t run from 0 to n− 1. If we Fourier transform the field φ (here we are not using the

on-shell field yet), we obtain:

Hn =
∫

dx
∫

dkdk′eikxeik
′xφ(k)φ(k′)(k′20 − k0k

′
0)

∑

s+t=n−1

(i2)s+t+1(k2)s(k′2)t −
∫

dxLn (20)
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Also we have

∑

s+t=n−1

(i2)s+t+1(k2)s(k′2)t = (k2)n−1
∑

s+t=n−1

(−1)n(k2)s−n+1(k′2)t =
(−k2)n − (−k′2)n

k2 − k′2
(21)

and therefore

Hn =
∫

dx
∫

dkdk′eikxeik
′xφ(k)φ(k′)(k′20 − k0k

′
0)
(−k2)n − (−k′2)n

k2 − k′2
−

∫

dxLn (22)

We will now evaluate the hamiltonian for (3). By taking the development

f(z) =
∞
∑

n=0

anz
n (23)

we have

L = φf(✷)φ =
∞
∑

n=0

anφ✷
nφ =

∞
∑

n=0

anLn (24)

In this way we get the expression

H =
∞
∑

n=0

anHn =

=
∫

dx
∫

dkdk′eikxeik
′xφ(k)φ(k′)(k′20 − k0k

′
0)
f(−k2)− f(−k′2)

k2 − k′2
−

∫

dxL

(25)

We can see that in spite of the local validity of the development we are using for f , the final

result can be expressed in terms of f , irrespective of the particular coefficients of the series.

Now, let us consider the field on-shell, that is, we use in (25) the expression (11):

H = −
∫

dx
∫

Γ++Γ−

dk
∫

Γ′

++Γ′

−

dk′eikxeik
′x a(k)a(k′)

f(−k2)f(−k′2)(k
′2
0 − k0k

′
0)
f(−k2)− f(−k′2)

k2 − k′2
(26)

Integrating in x and then in k′ we get

H = −
∫

dk
∫

Γ++Γ−

dk0

∫

Γ′

++Γ′

−

dk′0
ei(k0+k′0)t

k0 + k′0
a(k0,k)a(k

′
0,−k)

k′0
f(−k′02 + k2)

+
∫

dk
∫

Γ++Γ−

dk0

∫

Γ′

++Γ′

−

dk′0
ei(k0+k′0)t

k0 + k′0
a(k0,k)a(k

′
0,−k)

k′0
f(−k02 + k2)

(27)

Now, for a given k, the paths Γ+ and Γ′
+ (resp. Γ− and Γ′

−) surround the points that belong to

the cut contained in the interval (+ω,+∞) (resp. (−∞,−ω)). If in addition we choose the path

Γ′
+ (Γ′

−) surrounding all the points of the paths −Γ− and Γ+ (resp. −Γ+ and Γ−), we have:
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In the first term of (27), the integrand has no cuts in the variable k0 and only presents a

pole at −k′0 (a(k0,k) is analytic in k0). But for the paths we are considering, we can see that

when k′0 belongs to Γ′
+ +Γ′

−, the point −k′0 is not encircled neither by Γ+ nor by Γ−. Therefore,

making the k0-integral, we obtain that the first term is equal to zero.

In the second term, the integrand has no cuts in the variable k′0 and only presents a pole

at −k0. Again, taking into account the paths we choosed, we see that for k0 belonging to Γ+,

−k0 is encircled by Γ′
−, while for k0 belonging to Γ−, −k0 is encircled by Γ′

+. Then, making the

k′0-integral first and using Cauchy’s theorem, results:

H = 2πi
∫

dk
∫

Γ+

dk0a(k0,k)a(−k0,−k)
k0

f(−k02 + k2)

−2πi
∫

dk
∫

Γ−

dk0a(k0,k)a(−k0,−k)
k0

f(−k02 + k2)
(28)

which is time independent as it was expected.

Changing variables k0 → −k0 in the second integral and recalling that Γ+ (Γ−) goes in the

positive (negative) sense, we get:

H = 2πi
∫

dk
∫

Γ+

dk0[a(k0,k)a(−k0,−k) + a(−k0,−k)a(k0,k)]
k0

f(−k02 + k2)

or in terms of the distribution δ+G:

H = 2π
∫

dk k0 δ
+G(k)[a(k0,k)ā(k0,k) + ā(k0,k)a(k0,k)] (29)

We can see that the hamiltonian H is real (δ+G is real); we note also, from (12) and (13) that

the weight δ+G is essentially a function of k2:

δ+G(k) ≡ i

[

1

f(−k2 + iǫ)
− 1

f(−k2 − iǫ)

]

θ(k0) (30)

Then, from (15), (29) and (30), the modes which are present in the spectrum of the theory are

those having k2 at the cut, where the function f−1 has a jump. These modes participate with

a weight δ+G. We will denote the mass spectrum of the model, or equivalently the support of

δ+G, by S.
Now we will obtain the quantum version for the system (3). Recalling that H is conserved

due to the time-translation symmetry of the system, in order to quantize the theory we require,

after the replacement a→ â, ā→ â†, that the hamiltonian be the generator of time-translations,

that is, we impose Heisenberg’s equation:

[φ,H ] = iφ̇ (31)
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Using (15) it results as usual:

[a,H ] = k0a , [a†, H ] = −k0a† (32)

then, for k0 > 0, a(k) (resp. a†(k)) is a lowering operator (resp. raising operator). The vacuum

is the Poincare-invariant state and is given by:

a(k)|0〉 = 0 , k0 > 0 (33)

where k2 belongs to S, the support of δ+G. Then, by taking normal ordering, we set the vacuum

energy to zero, and the hamiltonian results (up to a factor)

H =
∫

dk k0 δ
+G(k)a†(k0,k)a(k0,k) (34)

Using now (15), (34) and (32) we obtain the algebra (k0 > 0, k′0 > 0):

δ+G(k)[a(k), a†(k′)] = δ(k − k′) , [a(k), a(k′)] = 0 (35)

which is valid for k2, k′2 ∈ S.
The two-point correlation function is:

〈0|φ(x)φ(y)|0〉 =
∫

dkdk′δ+G(k)δ+G(k′)×

〈0|(eikxa(k) + e−ikxa†(k))(eik
′ya(k′) + e−ik′ya†(k′))|0〉

=
∫

dkdk′eikx−ik′yδ+G(k)δ+G(k′)〈0|a(k)a†(k′)|0〉

=
∫

dkeik(x−y)δ+G(k) (36)

which can also be written as:

〈0|φ(x)φ(y)|0〉 = ∆+(x− y) , ∆+(x) = i
∫

Γ+

dk
eikx

f(−k2) (37)

We clearly see from (37) that ∆+(x) is a solution to the homogeneus equation:

f(✷)∆+(x) = i
∫

Γ+

dkeikx = 0 (38)

On the other hand, the propagator is:

〈0|T{φ(x)φ(y)}|0〉 = θ(x0 − y0)∆+(x− y) + θ(y0 − x0)∆+(y − x)

= θ(x0 − y0)
∫

dkeik(x−y)δ+G(k) + θ(y0 − x0)
∫

dkeik(x−y)δ−G(k)

= i
∫

ΓF

dk
eik(x−y)

f(−k2) (39)
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where the path

ΓF = θ(x0 − y0)Γ+ + θ(y0 − x0)Γ− (40)

can be seen to be equivalent to a path that runs above the cut which is contained in the interval

of negative frequencies (−∞,−ω), and runs bellow the cut contained in the interval of positive

frequencies (+ω,+∞). It is also clear that F (x) = 〈0|T{φ(x)φ(0)}|0〉 is i times a Green function:

f(✷)
∫

ΓF

dk
eikx

f(−k2) =
∫

ΓF

dkeikx (41)

now, the path ΓF in (41) is equivalent to R (the real axis) and the integral gives (2π)4δ(x). Then,

from (39), we see that the propagator is the inverse of the kinetic operator f(✷) with Feynman’s

prescription to avoid the singularities.

As an example we can take, f(z) = z1−α, (0 < α < 1) determined by the cut Re z < 0 so

that f(−k2) has the cut in the positive k2-axis:

L = φ✷1−αφ (42)

In this case, we have a weight function δ+G given by 2(k2)α−1
+ sin πα θ(k0), where the distribution

xλ+ is defined by

xλ+ =

{

xλ if x > 0
0 if x < 0

Note that in this case δ+G is positive definite (0 < α < 1); then the contribution to the energy of

every mode is positive definite and the resulting quantization does not present indefinite metric

problems (cf. (35)). In the singular case where α = 0, the distribution (k2)α−1
+ has a pole (see Ref.

[26]), the residue is proportional to δ(k2) and the weight function results δ(k2)θ(k0) =
1
2ω
δ(k0−ω),

obtaining the usual zero-mass dispersion relation. Note also that the commutators (35) which

are valid for k2, k′2 ∈ S, can be written as δ+G(k′)δ+G(k)[a(k), a†(k′)] = δ+G(k′)δ(k−k′) (this is
what one really gets from Heisenberg’s equation). Then, in the usual Klein-Gordon case, where

δ+G(k) = 1/(2ω)δ(k0 − ω), we can integrate in k0, k
′
0 to obtain the usual commutation relation

[a(ω,k), a†(ω′,k′)] = 2ωδ(k− k′). When we are in a region where k2 belongs to a cut, then δ+G

is a well defined non-zero function of k2 and we can write the commutators according to (35).

In the general case there is not a unique dispersion relation for the modes of the field but a

continuum of massive modes (those that belong to the cut), each of which with the corresponding

weight.
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4 The non-local gauge field

Here we will consider the quantization of a non-local abelian gauge theory defined by the la-

grangian

L = −1

4
Fµνg(✷)F

µν + LGF (43)

LGF is the gauge fixing term:

LGF =
ξ

2
Aµg(✷)∂

µ∂νAν (44)

Using the gauge ξ = 1, we get the Euler-Lagrange equation for (43):

✷g(✷)Aµ = 0 (45)

Taking f(✷) = ✷g(✷) we obtain the on-shell field (cf. (15) and (12))

Aµ(x) = −i
∫

dk
3

∑

λ=0

ǫ(λ)µ (k)[eikxa(λ)(k) + e−ikxā(λ)(k)] δ [1/f ] θ(k0) (46)

where δ[1/f ] is given by

δ[1/f ] = δ

[

1

(−k2)g(−k2)

]

(47)

The polarization vectors ǫ(λ)(k) are defined, in a d+1-dimensional space-time, according to:

ǫ(0) = n , (n.n = 1 , n0 > 0) (48)

ǫ(i).k = ǫ(i).n = 0 , ǫ(i).ǫ(j) = −δij , (i = 1, ..., d− 1) (49)

ǫ(d) = [(k.n)2 − k2]−
1
2 (k − (k.n)n) (50)

where n and k are independent vectors. The equation in (45) leads at the classical level, taking

appropriate boundary conditions, to the requirement ∂.A = 0.

At the quantum level we have the algebra (k0 > 0):

− iδ[1/f ][a(λ)(k), a(λ
′)†(k′)] = −ηλλ′

δ(k − k′) , [a(λ)(k), a(λ
′)(k′)] = 0 (51)

Now, according to the Gupta-Bleuler quantization we impose the gauge condition by defining

the space of physical states that satisfy the Lorentz condition ∂.A−|phys〉 = 0, where A− is the

annhilation part of A; this is equivalent to:

L(k)|phys〉 = 0

L(k) = (a(0)(k)− αa(d)(k)) , α =

√

(k.n)2 − k2

(k.n)
(52)
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A basis is obtained from the vacuum |0〉 by repeated application of a(i)†(k), i = 1, ..., d− 1 and

M †(k) = a(0)†(k)− α−1a(d)†(k) (53)

(these operators commute with L(k)).

For k2 = 0, we have α = 1. In this case, M † = L† and then, L† and L commute. A state

containg at least an M †-type particle (k2 = 0) has zero-norm. If we add such a state to any

physical state, the norm of the latter is not modified.

For k2 > 0, the operator L annhilates particles having polarization k/
√
k2, which is pro-

portional to ǫ(0)(k) + αǫ(d)(k). The physical massive states have particles with polarizations ǫ(i)

(i = 1, ..., d − 1) and the polarization ǫ′(d), which is proportional to ǫ(0)(k) + α−1ǫ(d)(k), carried

by the particles created by M †. Here, α 6= 1 and ǫ′(d), k are independent vectors satisfying

ǫ′(d).k = 0. The physical states containing M †-type particles (none of them having zero mass)

have non-zero norm.

If we take a matrix element of the vector field between two physical states and we add to one

of them a state containing a zero mass M †-type particle, then, this matrix element changes by a

gauge transformation; on the other hand, when we add a massive M †-type particle the change

is non-trivial. In this regard, note that in a matrix element of the form

gµ = 〈phys|AµM
†(k)|ψ〉 (54)

only when k2 = 0 we have 〈phys|M †(k) = 〈phys|L†(k) = 0 and we can write

gµ = 〈phys|[Aµ,M
†(k)]‖ψ〉 (55)

to obtain from (46), (53) and (51):

gµ = ∂µα(x) , α(x) = −(k.n)−1eik.x〈phys|ψ〉 (56)

Then, the states containing at least a zero-mass M †-type particle are associated to gauge

transformations. The coexistence of massive states and gauge symmetry is possible because of

the presence of the zero mass modes. For instance, if k2 = 0 does not belong to the cut of g,

then 1/f has a pole at k2 = 0; for g(✷) = ✷
−α, (0 < α < 1) we have f = ✷

1−α and k2 = 0 is

a brunch point of 1/f . In both cases the on-shell field is a superposition of fields with a given

mass spectrum that contains the zero-mass. Then, the gauge transformation Aµ → Aµ + ∂µα

can be thought as operating on the zero-mass sector of the vector field.
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We end this section discussing the interpretation of the mass spectrum and the form of the

propagators when we take the (2 + 1) dimensional gauge theory corresponding to g(✷) = ✷
− 1

2 :

L = −1

4
Fµν✷

− 1
2F µν + LGF + jµAµ (57)

In Ref. [16], Marino has shown that this lagrangian describes, at the tree-level, the projection

of QED from (3 + 1) to (2 + 1) dimensions. That is, the (2 + 1)D effective action (obtained by

path-integrating over the gauge field)

∫

dt dx dy jµ(x)G(2+1)
µν (x− y)jν(y) , ✷

1
2G(2+1)

µν (x) = ηµν(2π)
3δ(x) (58)

corresponds to the (3 + 1)D effective action

∫

d4x Jµ(x)G(3+1)
µν (x− y)Jν(y) , ✷G(3+1)

µν (x) = ηµν(2π)
4δ(x) (59)

when the currents are constrained to live on the plane z = 0:

Jµ = δ(z)jµ (µ = 0, 1, 2) , J3 = 0 (60)

In other words, the projected non-local (2+1)D theory given by (57) displays a static coulombic

interaction (∼ 1/R) between charges, instead of the logarithmic behavior present in (2 + 1)

dimensions, when L = −(1/4)FµνF
µν .

This can be seen by noting that, for z = 0, the Maxwell propagator (in the Feynman gauge)

can be written as:

iG(3+1)
µν (x)|z=0 = iηµν

∫ +∞

0
dk2z (k

2
z)

− 1
2

∫

d3k
eik(3)x(3)

(−k2(3) + k2z + iǫ)
(61)

= iπηµν

∫

d3k
eik(3)x(3)

(−k2(3) + iǫ)
1
2

(62)

where k(3) and x(3) are the (2 + 1)D part of the four-vectors k and x, respectively; and we used
∫∞
0 ds s−1/2(1 + βs)−1 = β−1/2B(1

2
, 1
2
). On the other hand, from (51), we obtain the propagator

corresponding to (57), computed as the vacuum expectation value of the T -product for two fields

(cf. (39)):

iηµν

∫

ΓF

d3k
eik(3)x(3)

(−k2(3))
1
2

(63)

which is proportional to the projected propagator given in (62), as the iǫ prescription is equivalent

to integrating over the path ΓF that runs above the cut (−∞,−ω), and runs bellow the cut

(+ω,+∞).
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Then, in the case of the (2 + 1) dimensional non-local gauge theory defined by (57), we see

that the form of the propagator coincides with that obtained by projecting QED from (3 + 1)

to (2 + 1) dimensions. Also, we can see that the existence of a continuous mass spectrum in

the non-local theory can be traced back from the dispersion relation k2 = 0, present in (3 + 1)D

QED, which in the projected theory reads as k2(3) = k2z , giving a mass spectrum that goes from

zero to infinity (cf. eq. (61)).

5 Conclusions

In this work, we have solved a general class of non-local field equations characterized by a

non-local kinetic term. The obtained mode expansion for the on-shell field coincides with that

proposed in Ref. [23], where fractional powers of the d’alambertian operator are considered.

We have seen that a non-local equation projects the field onto a reducible representation of

the Poincare group. That is, the on-shell field carries a representation which is the direct sum

of irreducible representations labeled by the mass. The possible values of k2 that appear in the

representation are the singularities of the function f−1(−k2) that characterizes the kinetic term.

Each mode is associated with a corresponding weight δ+G = σ(k2)θ(k0), where σ(k
2) = −i δ [1/f ]

(cf. eq. (12)). Then, we have seen that the analytic determination of f(−k2) fixes our physical
system, that is, the mass spectrum of the model. These facts can be displayed more clearly by

using

δ+G =
∫

ds σ(s)δ(k2 − s)θ(k0)

in eq. (15), to write the field as

φ(x) =
∫

ds σ(s)φs(x) , φs(x) =
∫

dk[eikxa(k) + e−ikxā(k)]δ(k2 − s)θ(k0)

φs is the expression for the field that corresponds to particles having mass squared s. Similar

expressions can be obtained for the hamiltonian and propagators, as both quantities are linear

in δ+G (cf. (34) and (36)).

In order to quantize the theory we have first computed the hamiltonian and verified that it

is conserved when the field is on-shell. Then, we have imposed Heisenberg’s equation and have

obtained the commutation rules obeyed by the Fourier components of the field.

If the model is characterized by a kinetic term that leads to a mass spectrum that contains

normal modes only (k2 ≥ 0) and δ+G(k) (see eq. (12)) has a positive definite sign, then the

energy is positive definite, we can define the vacuum state in the usual way, and we can construct
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a Fock-space with a positive definite metric (cf. eq. (35)). In this case the obtained propagators

are of the Feynman type and it is a simple matter to make a Wick rotation in order to make

contact with the path integral formulation. This is the case for the theory defined by (42) where

the lagrangian L = φ✷1−αφ leads to the mass weight function 2(k2)α−1
+ sin πα θ(k0).

Applying the canonical formalism to a non-local gauge theory we obtained a continuum

mass spectrum that contains the zero mass modes. That is, the vector field is a continuum

superposition of modes that has a zero mass component. The gauge invariance is preserved due

to the presence of these component. When a gauge transformation is performed, we can consider

that the zero mass component of the field changes, while the rest of the modes remain unchanged.

Finally we considered a particular case, by specializing to (2 + 1) dimensions and considering a

kinetic term Fµν✷
−1/2F µν . In this case, we have interpreted the mass spectrum and have shown

that the form of the propagator coincides with that obtained in the context of the projected

effective action of Ref. [16]. Essentialy the massive modes of the electromagnetic field take into

account that we are making a model where the matter is confined to live on a physical plane

while the electromagnetic field is not confined.
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