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I. INTRODUCTION AND RESULTS

Three dimensional gauge theories coupled to matter are relevant both in Field Theory and Condensed Matter
physics. An important feature of these theories is that, appart from the usual Maxwell or Yang-Mills actions, there
exists the possibility of considering a Chern-Simons (CS) term as a part [1] or as the entire [2] gauge field action.
Moreover, even if the CS term is not included ab initio, it will be induced through fluctuation of Fermi fields [3]- [4],
by the parity violating fermion mass and/or by the celebrated parity anomaly [1].
A fundamental property of the CS action is that its presence forces a quantization law: the (non-Abelian) CS

term is non-invariant under “large” gauge transformations (i.e. gauge transformations carrying non-trivial winding
number), this implying that the coefficient of the CS term should be quantized so that exp(iSCS) remains single
valued. Concerning the induced (through matter fluctuations) CS term, it is well established that any gauge invariant
regularization of the massless fermionic determinant introduces a parity anomaly in the form of ± 1

2SCS whose gauge
non-invariance compensates the gauge non-invariance of the otherwise parity preserving effective action [3]. This parity
anomalous contribution is also present in the case of massive fermions [5], when other canonical parity violating terms
associated to the fermion mass come into play.
The results above correspond to Quantum Field Theory at zero temperature. What about T 6= 0 ? To our

knowledge this question was first addressed in [6] where it was argued that the coefficient of the induced CS term
remains unchanged at finite temperature. Contrasting with this analysis, perturbative calculations yielded effective
actions with CS coefficients which are smooth functions of the temperature [7]- [16]. It is important to notice that
these computations dealt with the fermion mass dependent parity breaking and ignored the parity anomaly related
to gauge invariant regularizations.
The issue of renormalization of the CS coefficient induced by fermions at T 6= 0 was reanalysed in refs. [17]- [18]

where it was concluded that, in perturbation theory and on gauge invariance grounds, the effective action for the gauge
field cannot contain the smoothly renormalized CS coefficient which was the answer of perturbative calculations. More
recently, the exact result for the effective action of a 0 + 1 massive fermion system [19] as well as non-perturbative
calculations of the effective action in the 2+1 Abelian case [20] and its explicit temperature dependent parity breaking
part [21] have explicitly shown that although the perturbative expansion leads to a non-quantized T -dependent
CS coefficient, the complete effective action can be seen to be gauge invariant under both small and large gauge
transformations, the temperature depending shift in the CS coefficient being just a byproduct of considering just the
first term in the expansion of the effective action.
We extend in the present work the analysis presented in [21] for the Abelian model to the case of 2 + 1 massive

fermions in a non-Abelian gauge background. By considering a particular class of gauge field background configurations
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we compute exactly the induced parity breaking part of the effective action for three dimensional massive fermions in
the fundamental representation of SU(N).
To be precise, we are concerned with

Γodd(A,M) =
1

2
(Γ(A,M)− Γ(A,−M)) (1)

where

exp (−Γ(A,M)) =

∫

DψDψ̄ exp [−SF (A,M)] , (2)

and SF (A,M) is the action for massive fermions (with mass M) in a gauge background Aµ. As mentioned above
(see [20] for a discussion), the mass dependent parity violating term is not the only one arising in Γ(A,M); there is
also a local parity anomaly contribution in the form of half a CS term arising in any gauge invariant regularization.
This term, first noticed at T = 0 in [3] for massless fermions and in [5] for massive fermions, is mass and temperature
independent and can be removed by a local counterterm at the price of breaking large gauge invariance. It is in fact not
taken into account in most of the literature analysing 2 + 1 dimensional massive fermion models. To understand the
interplay between the two contributions, one can regard the mass dependent parity violating term as naturally arising
due to the fact that the Lagrangian already contains at the classical level a parity violating mass term. Concerning
the mass-independent contribution which comes from the parity anomaly, it can be seen as a necessary consequence
of any gauge invariant regularization of the path integral fermionic measure. After these remarks, it is clear that our
definition of Γodd excludes this last anomalous contribution but since it is temperature independent, it does not affect
our analysis.
The calculation of (1) for the general case, namely, for any gauge field configuration is not something we can

do exactly. Instead of making a perturbative calculation dealing with a small but otherwise arbitrary gauge field
configuration, we shall consider a restricted set of gauge field configurations which can however be treated exactly.
In order to get an exact result we choose a particular gauge field background which corresponds to a vanishing color

electric field and a time-independent color magnetic field,

A3 = A3(τ), (3)

Aj = Aj(x) (j = 1, 2) (4)

or any equivalent configuration by gauge transformations. In the non-Abelian case we further restrict A3 to point in
a fixed direction in the internal space,

A3 = |A3|ň, (5)

and Aj to commute with A3,

[Aj , A3] = 0 (j = 1, 2) . (6)

Although for SU(2) this implies that all of the components of Aµ commute, and can be thus seen as an “Abelian-
like” configuration, for SU(N) with N > 2 one can see that genuine non-Abelian effects are incorporated. The
configurations under consideration are reminiscent of the ones treated in [4] for massless fermions at T = 0; in
that case Lorentz covariance of the local result allowed straightforward generalization to arbitrary backgrounds.
Unfortunately, this will not be the case here.
Our main result can be presented through the formula we obtain for Γodd,

Γodd =
ig

4π
tr

(

arctan[tanh(
βM

2
) tan(

g

2

∫ β

0

A3dτ)]

∫

d2x ǫijFij

)

(7)

where g is the coupling constant, β = 1/T and tr is an adequate trace in SU(N) (matrix functions are defined as
usual as power series).
The paper is organized as follows. We give in section II a more detailed description of the results presented in [21]

for the Abelian case so as to clarify the method of computation, which relies on the ability to factorize the piece of the
efective action depending on the sign of the fermion mass. The same method is applied in section III to the analysis
of the SU(N) case leading to formula (7). Finally, in section IV we summarize and give a discussion of our results.
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II. THE ABELIAN CASE

We are interested in evaluating the parity-odd piece of the effective action (1) which is induced by integrating out
massive fermions coupled to an Abelian gauge field Aµ in 2 + 1 dimensions at finite temperature.
The Euclidean action SF (A,M) is given by

SF (A,M) =

∫ β

0

dτ

∫

d2x ψ̄(6∂ + ie 6A+M)ψ . (8)

We are using Euclidean Dirac’s matrices in the representation

γ1 = σ1 γ2 = σ2 γ3 = σ3 (9)

where σi are the familiar Pauli matrices and β = 1/T is the inverse temperature. The label 3 is used to denote
the Euclidean time coordinate τ . The fermionic fields in (2) obey antiperiodic boundary conditions in the timelike
direction

ψ(β, x) = −ψ(0, x) , ψ̄(β, x) = −ψ̄(0, x) , ∀x , (10)

with x denoting the two space coordinates. The gauge field satisfies periodic boundary conditions instead

Aµ(β, x) = Aµ(0, x) , ∀x . (11)

We want to make a calculation which preserves an interesting property of the imaginary time formulation, namely,
that there is room for gauge transformations with non-trivial winding around the time coordinate, and any approxi-
mation which assumes the smallness of A3 may put the symmetry under those large transformations in jeopardy.
Let us first discuss the non-trivial gauge transformations at finite temperature. The set of allowed gauge transfor-

mations in the imaginary time formalism is defined in the usual way:

ψ(τ, x) → e−ieΩ(τ,x)ψ(τ, x) , ψ̄(τ, x) → eieΩ(τ,x)ψ̄(τ, x)

Aµ(τ, x) → Aµ(τ, x) + ∂µΩ(τ, x) (12)

where Ω(τ, x) is a differentiable function vanishing at spatial infinity (|x| → ∞), and whose time boundary conditions
are chosen in order not to affect the fields’ boundary conditions (10) and (11). It turns out that Ω(τ, x) can wind an
arbitrary number of times around the cyclic time dimension:

Ω(β, x) = Ω(0, x) +
2π

e
k (13)

where k is an integer which labels the homotopy class of the gauge transformation.
Invoking gauge invariance of the fermionic determinant

det(6∂ + ie 6A + M) =

∫

DψDψ̄ exp

{

−

∫ β

0

dτ

∫

d2xψ̄(6∂ + ie 6A + M)ψ

}

, (14)

we can always perform a gauge transformation of the fermionic fields in the functional integral (14)

ψ(τ, x) = e−ieΩ(τ,x)ψ′(τ, x) ψ̄(τ, x) = eieΩ(τ,x)ψ̄′(τ, x) (15)

in order to pass to an equivalent expression where the gauge field is traded for A′
µ = Aµ + ∂µΩ:

det(6∂ + ie 6A + M) =

∫

Dψ′ Dψ̄′ exp

{

−

∫ β

0

dτ

∫

d2xψ̄′(6∂ + ie 6A′ + M)ψ′

}

, (16)

We consider the configurations given by eqs.(3) and (4), namely A3 is only a function of τ , and Aj is independent
of τ . Under these assumptions, we see that the only τ -dependence of the Dirac operator comes from A3. This
dependence can however be erased by a redefinition of the integrated fermionic fields like in eq.(15) if we take
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Ω(τ) = −

∫ τ

0

dτ ′A3(τ
′) +

(

1

β

∫ β

0

dτ ′A3(τ
′) +

2πk

eβ

)

τ (17)

where k is the arbitrary integer labeling the homotopy class. Such a transformation renders A′
3 constant. The freedom

to choose k could be used to further restrict the values of the constant A′
3

0 ≤ A′
3 <

2π

eβ
(18)

or any of the intervals obtained by a translation of this one by an integer number of 2π
eβ
. In this sense, the value of

the constant in such an interval is the only ‘essential’, i.e., gauge invariant, A3(τ) dependent information contained

in the configurations (3)-(4), describing the holonomy
∫ β

0 dτ̃A3(τ̃ ) around the time direction (notice that the F3j

components of the field curvature tensor identically vanish for this configurations). However, we will limit ourselves to
small gauge transformations (k = 0) in order to avoid any assumption about large gauge invariance of the fermionic
measure in (14) and safely discuss the effect of large gauge transformations on the final results. Thus the constant
field A′

3 takes the mean value of A3(τ),

Ã3 =
1

β

∫ β

0

dτ A3(τ) . (19)

Note that the spatial components of Aµ remain τ -independent after this redefinition.
After redefining the fermionic fields according to this prescription, we see that the fermionic determinant we should

consider is now

det(6∂ + ie 6A + M) =

∫

DψDψ̄ exp[−SF (Aj , Ã3,M)] , (20)

where

SF (Aj , Ã3,M) =

∫ β

0

dτ

∫

d2x ψ̄(6∂ + ie(γjAj + γ3Ã3) +M)ψ , (21)

and we removed the primes for the sake of clarity.
Since the Dirac operator in the previous equation is invariant under imaginary time translations it is convenient to

perform a Fourier transformation on the time variable for ψ and ψ̄

ψ(τ, x) =
1

β

+∞
∑

n=−∞

eiωnτψn(x)

ψ̄(τ, x) =
1

β

+∞
∑

n=−∞

e−iωnτ ψ̄n(x) , (22)

where ωn = (2n + 1)π
β
is the usual Matsubara frequency for fermions. Then the Euclidean action is written as an

infinite series of decoupled actions, one for each Matsubara mode

SF (Aj , Ã3,M) =
1

β

+∞
∑

n=−∞

∫

d2xψ̄n(x)
[

6d + M + iγ3(ωn + eÃ3)
]

ψn(x) (23)

where 6d is the 1+ 1 Euclidean Dirac operator corresponding to the spatial coordinates and the spatial components of
the gauge field

6d = γj(∂j + ieAj). (24)

As the action splits up into a series and the fermionic measure can be written as

Dψ(τ, x)Dψ̄(τ, x) =
n=+∞
∏

n=−∞

Dψn(x)Dψ̄n(x) (25)
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the 2 + 1 determinant is an infinite product of the corresponding 1 + 1 Euclidean Dirac operators

det(6∂ + ie 6A + M) =

n=+∞
∏

n=−∞

det[ 6d+M + iγ3(ωn + eÃ3)] . (26)

Explicitly, the 1 + 1 determinant for a given mode is a functional integral over 1 + 1 fermions

det[ 6d+M + iγ3(ωn + eÃ3)] =
∫

Dχn Dχ̄n exp

{

−

∫

d2xχ̄n(x)(6d +M + iγ3(ωn + eÃ3))χn(x)

}

. (27)

In order to compute Γodd we factorize now these determinants in a piece which is sensitive to the sign of M and
a piece which is not. The Euclidean action Sn corresponding to the mode n may be conveniently recasted in the
following form

Sn =

∫

d2x χ̄n(6d+ ρne
iγ3φn)χn (28)

with

ρn =

√

M2 + (ωn + eÃ3)2 ;φn = arctan(
ωn + eÃ3

M
) . (29)

We next realize that the change of fermionic variables

χn(x) = e−i
φn
2

γ3χ′
n(x) , χ̄n(x) = χ̄′

n(x)e
−i

φn
2

γ3 (30)

makes the action Sn independent of φn. This is not a gauge transformation but a global chiral rotation in the 1 + 1
Euclidean fermionic variables. Correspondingly, the fermionic measure picks up an anomalous Fujikawa jacobian [22]
so that one ends with

det[ 6d+M + iγ3(ωn + eÃ3)] = Jn[A,M ] det[ 6d+ ρn] (31)

where

Jn[A,M ] = exp(−i
eφn
2π

∫

d2xǫjk∂jAk) , (32)

with ǫjk denoting the 1 + 1 Euclidean Levi-Civita symbol.
Recalling the definition of Γodd, we see that the second factor in expression (31) does not contribute to it, since it

is invariant under M → −M . The Jacobian (32), instead, changes to its inverse. As a consequence, the parity odd
piece in the effective action is given in terms of the infinite set of n-dependent Jacobians:

exp[−Γodd] =

n=+∞
∏

n=−∞

Jn[A,M ] (33)

or

Γodd = −

n=+∞
∑

n=−∞

log Jn[A,M ] = i
e

2π

n=+∞
∑

n=−∞

φn

∫

d2xǫjk∂jAk . (34)

There only remains to perform the summation over the φn’s. This can be done by using standard techniques in Finite
Temperature Field Theory. We define

S =

n=+∞
∑

n=−∞

arctan(
ωn + eÃ3

M
) , (35)

whose sign will obviously depend on the sign of M . We make this explicit by rewriting S as
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S =
M

|M |

n=+∞
∑

n=−∞

arctan(
ωn + eÃ3

|M |
) (36)

or, using the expression for ωn

S(x, y) =
M

|M |

n=+∞
∑

n=−∞

arctan(
(2n+ 1)π + x

y
) (37)

where x = eβÃ3, and y = β|M | are the two dimensionless parameters built from the original ones. This series must
be regularized, and the standard technique consists in subtracting the zero-field value of each term; notice that the
sum of these zero-field contributions conditionally converges to 0. Then

S(x, y) =
M

|M |

n=+∞
∑

n=−∞

∫ x

0

du
d

du
arctan(

(2n+ 1)π + u

y
) (38)

As the series now converges absolutely we can first perform the summation. The sum to be evaluated is then

n=+∞
∑

n=−∞

y

y2 + [(2n+ 1)π + u]2
(39)

which is solved by the summation formula

n=+∞
∑

n=−∞

1

(n− x1)(n− x2)
= −

π(cot(πx1)− cot(πx2)

x1 − x2
. (40)

After performing the integral we get

S =
M

|M |
arctan

[

tanh(
β|M |

2
) tan(

1

2
eβÃ3)

]

. (41)

Thus the parity-odd part of Γ finally reads

Γodd = i
e

2π

M

|M |
arctan

[

tanh(
β|M |

2
) tan(

e

2

∫ β

0

dτA3(τ))

]

∫

d2xǫjk∂jAk . (42)

There are several observations to be made about our result (42). First we observe that this result has the proper
zero temperature limit

lim
T→0

Γodd →
1

2

M

|M |
SCS (43)

where SCS is the Chern-Simons action

SCS = i
e2

4π

∫

d3xǫµναAµ∂νAα (44)

which shows up in our particular configuration (3)-(4) as e2

2π

∫

dτA3(τ)
∫

d2xǫij∂iAj . So we get the induced Chern-
Simons term at zero temperature. As it is well known, in the zero temperature case the result is not invariant under
large gauge transformations. The quantization of the spatial integral that measures the flux of the magnetic field
through a space-like manifold τ = constant in units of 2π

e
shows that (43) changes by the addition of an odd multiple

of iπ under a large gauge transformation with odd winding number when the magnetic flux is odd. This gauge non-
invariance is compensated by the parity anomaly discussed in the Introduction when the complete result is regularized
in a gauge invariant scheme.
The same situation occurs in the finite temperature result (42). A large gauge transformation with odd winding

number k = 2p+ 1 shifts the argument of the tangent in (2p + 1)π. Although the tangent is not sensitive to such a
change, one has to keep track of it by shifting the branch used for arctan definition. This amounts to the same result
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as in the T → 0 limit: the gauge non-invariance of Γodd under large gauge transformations is compensated by the
parity anomaly ± 1

2SCS.
Now we observe that a perturbative expansion in terms of e yields the usual perturbative result

Γodd =
1

2

M

|M |
tanh(

|M |β

2
)SCS +O(e4) (45)

where the coefficient of the Chern-Simons term acquires a smooth dependence on the temperature. Were we consider-
ing only the first non trivial order in perturbation theory, we would find a clash between temperature dependence and
gauge invariance [17]- [18]: the gauge non-invariance of the induced CS term is no longer compensated by the parity
anomaly. Now we learn, as it was stressed in [19] in a 0 + 1−dimensional example and in [20] in 2 + 1 dimensions,
that one has to consider the full result in order to analyse gauge invariance.
Finally, we observe that the result (42) is not an extensive quantity in Euclidean time. It is however extensive in

space, and that is indeed all one expects in Finite Temperature Field Theory. In contrast, the T = 0 limit becomes
an extensive quantity in space-time, as is expected from zero temperature Field Theory.
We shall now extend the previous results, obtained for space-independent A3 and time-independent Aj to the

somewhat more general situation of a smooth spatial dependence ofA3 besides the previous arbitrary time dependence.
The fermionic determinant we should calculate, after getting rid of the τ dependence of A3 will have a form

analogous to (20) with the only difference of having an x dependence in Ã3. As there is no explicit time-dependence
in the Dirac operator, we again pass to a Fourier description of the time coordinate. Defining the x-dependent fields
ρn(x) and φn(x),

ρn(x) =

√

M2 + (ωn + eÃ3(x))2 ; φn(x) = arctan(
ωn + eÃ3(x)

M
) , (46)

we have for the complete fermionic determinant an expression equivalent to the previous case:

det(6∂ + ie 6A + M) =

∞
∏

n=−∞

det
[

6d+ ρn(x)e
iγ3φn(x)

]

. (47)

The determinant corresponding to the n-mode is again written as a functional integral over 1 + 1 dimensional fields,
but a transformation like (30) is now a local chiral rotation of the 1 + 1 dimensional fermions and gives rise to

det
[

6d+ ρn(x)e
iγ3φn(x)

]

= Jn det[ 6d′ + ρn(x)] , (48)

where:

6d′ = 6d −
i

2
6∂φnγ3 (49)

and the anomalous Jacobian reads

Jn = exp

{

−i
e

2π

∫

d2x[φn(x)ǫjk∂jAk +
1

4
φn(x)∆φn(x)]

}

. (50)

The x-dependence of the phase factor φn affects the result in two ways: first, we see that the field redefinition
changes the operator 6d to 6d′ which depends on the sign ofM , and so there will be a contribution to Γodd coming from
the determinant of 6d′+ρn(x). Second, the Jacobian is now a more involved function of φn, since the field redefinition
affects the Dirac operator which is used to define the fermionic integration measure. In a first approximation, we shall
only take into account the contribution coming from the Jacobian, since the one that follows from the determinant
of the Dirac operator is of higher order in a derivative expansion (and we are assuming that the x-dependence of

Ã3 is smooth). The contribution which is quadratic in φn is irrelevant to the parity breaking piece, since it is even

in M . Thus, neglecting the terms containing derivatives of Ã3, we have for Γodd a result which looks like a natural
generalization of the previous case

Γodd = i
e

2π

M

|M |

∫

d2x arctan

[

tanh(
|M |β

2
) tan(

e

2

∫ β

0

dτA3(τ, x))

]

ǫjk∂jAk(x) . (51)

It is not hard to check that the reliability of the approximation of neglecting derivatives of Ã3 is assured if the
condition

|e ∂jÃ3| << M2 (52)

is fulfilled. To end with this example, let us point that all the remarks we made for the case of a space-independent
A3 also apply to this case.
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III. THE NON-ABELIAN CASE

We extend in this section the previous analysis to the non-Abelian case. Although we shall consider, as in the
Abelian case, particular background field configurations which allow to make exact computations, the results will
exhibit genuine non-Abelian effects through non trivial commutators of spatial components of the gauge field. Our
analysis will be valid for the SU(N) case although some points are made explicit for the particular N = 2, 3 cases.
As we shall see, details arising in calculations are due to technicalities associated with handling the non-Abelian
symmetry; once they are overcome, the results appear as a natural extension of the Abelian ones.
The Euclidean fermionic action which describes the system is now written as

SF (A,M) =

∫ β

0

dτ

∫

d2x ψ̄(6D +M)ψ , (53)

where the covariant derivative acting on the fermions in the fundamental representation of SU(N) is defined as

Dµ = ∂µ + ig Aµ , (54)

and the gauge connection Aµ is written as

Aµ = Aa
µ τa (55)

with τa denoting hermitian generators of the Lie algebra (a = 1, . . . , N2 − 1), verifying the relations

τ†a = τa, [τa, τb] = ifabcτc, tr(τaτb) =
1

2
δab , (56)

with fabc the totally antisymmetric structure constants. For the particular case of SU(2), which we shall consider in
more detail, we have fabc = ǫabc since the generators will be taken to be the usual Pauli matrices.
We are concerned with the parity-odd piece of the efective action defined in (1). Fermionic (bosonic) fields satisfy

again antiperiodic (periodic) boundary conditions in the timelike direction.
We shall in this case restrict the set of configurations for the gauge fields given by (3)-(6) in order to be able to

calculate Γodd exactly. Before doing so, let us clarify a point about the nature of the gauge group boundary conditions
in imaginary time.
Non-Abelian gauge transformations are defined by their action on the fermionic and gauge fields

ψ(τ, x) → ψU (τ, x) = U(τ, x)ψ(τ, x), ψ̄(τ, x) → ψ̄U (τ, x) = ψ(τ, x)U †(τ, x)

Aµ(τ, x) → AU
µ (τ, x) = U(τ, x)Aµ(τ, x)U

†(τ, x) −
i

g
U(τ, x)∂µU

†(τ, x) . (57)

In order to decide the boundary conditions the gauge group element should satisfy in the timelike direction, one
requires that the periodicity of the gauge field and the antiperiodicity of the fermions is unaltered under a gauge
transformation. Concerning the gauge field, this only imposes on U the condition

U(β, x) = hU(0, x) (58)

where h is an element of ZN , the center of SU(N). Now, concerning fermions, the condition on U depends on whether
they are in the fundamental or adjoint representation. In the fundamental one, it is easily seen that

U(β, x) = U(0, x) (59)

while in the adjoint representation, condition (58) follows instead. As we assume fermions are in the fundamental
representation, the group elements U(τ, x) are taken to be strictly periodic (a condition in fact analogous to the one
used for the Abelian case in eq.(13)). One can then prove [23] that for compact groups

w(U) =
1

12π2N
tr

∫

d3xǫµναU
−1∂µUU

−1∂νUU
−1∂αU (60)

is an integer number that labels homotopically equivalent gauge transformations. Thus the disctintion between large
and small gauge transformations has a different origin here than in the Abelian case.
We thus consider a class of configurations equivalent by gauge transformations to

8



A3 = |A3|(τ)ň, (61)

Aj = Aj(x) , [Aj , ň] = 0 (j = 1, 2) . (62)

where ň is a fixed direction in the Lie algebra (ň = naτa, n
ana = 1).

We note that conditions (61)-(62) assure the vanishing of the colour electric fields, as well as the time independence
of the colour magnetic fields. Regarding the condition (62), which requires the spatial gauge field components to
commute with A3, it is worth remarking that its consequences depend strongly on whether the group considered is
SU(2) or SU(N) with N > 2. In the former case, the only solution to (62) corresponds to a configuration with all
the gauge field components pointing in the same direction ň in internal space, i.e. an ‘Abelian like’ configuration. In
contrast, for N > 2, configurations with [A1, A2] 6= 0 are indeed possible.
To make the point above more explicit let us analyse the simple specific example of SU(3) with the generators given

by the standard Gell-Mann matrices; one can then take A1 and A2 as linear combinations of τ1, τ2 and τ3 (generators
of a SU(2) subgroup) and A3 pointing in the direction of τ8. This situation easily generalizes to N > 3 since one can
construct the set of generators for a higher N in such a way that it contains the generators corresponding to SU(N−1)
as a subset of block-diagonal matrices, and one of the extra generators can be always defined as to commute with
them. Thus it is possible to take A1 and A2 as non commuting vectors in the subalgebra corresponding to SU(N − 1)
and A3 commuting with them.
Coming back to the general case, let us point that, as in the Abelian case, one can erase the τ dependence of A3

component by considering a change of variables for the fermionic fields corresponding to a gauge transformation of
the form

U(t) = eigΩ(τ)ň (63)

and

Ω(τ) = −

∫ τ

0

dτ ′A
(ň)
3 (τ ′) +

(

1

β

∫ β

0

dτ ′A
(ň)
3 (τ ′)

)

τ. (64)

Now, because of condition (62) the space components of the gauge field remain unchanged under this transformation,

while A3 takes the constant value Ã3 = 1
β

∫ β

0
dτA3(τ) = |Ã3|ň. After these remarks, we assume a gauge transformation

has been made on the fermions in order to reach a constant Ã3 and the rest of conditions (61)-(62) for the gauge field.
After a Fourier transformation on the time variable for ψ and ψ̄ of the form (22) the Euclidean action can be written

as an infinite series of decoupled actions,

SF =
1

β

+∞
∑

n=−∞

∫

d2xψ̄n(x)
[

6d + M + iγ3(ωn + gÃa
3τa)

]

ψn(x) (65)

where 6d = γj(∂j + igAj) is the non-Abelian Dirac operator corresponding to the spatial coordinates and the spatial
components of the gauge field. Concerning the fermionic measure, we write it in the form

Dψ(τ, x)Dψ̄(τ, x) =

n=+∞
∏

n=−∞

Dψn(x)Dψ̄n(x) , (66)

so that again the 2+1 determinant becomes an infinite product of the corresponding 1+1 Euclidean Dirac operators

det(6∂ + ig 6A + M) =

n=+∞
∏

n=−∞

det[ 6d+M + iγ3(ωn + gÃa
3τa)] . (67)

We now show that the same trick which lead to the decoupling of parity breaking and parity conserving parts of the
determinant for the Abelian case can be applied here. First, we use the property

M + iγ3(ωn + gÃa
3τa) = ρn e

iφn (68)

where

ρn =

√

M2 + (ωn + gÃa
3τa)

2 ;φn = arctan(
ωn + gÃa

3τa
M

) . (69)
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The usual definition of functions of matrices in terms of power series has been used above. It is important to realize
that, being φn a non-trivial Hermitean function of a matrix in the Lie algebra, it will in general have components
along the generators τa and also along the identity matrix, namely,

φn = φ0n1 + φanτa . (70)

As an illustration, we consider the SU(2) case. A somewhat lenghty but otherwise straightforward calculation yields
explicit expressions for these components of φn:

φ0n =
1

2
arctan

(

2Mωn

M2 + g2

4 |Ã3|2 − ω2
n

)

φan = arctan

(

gM |Ã3|

M2 − g2

4 |Ã3|2 + ω2
n

)

na . (71)

The 1 + 1 determinant for a given mode is a functional integral over 1 + 1 fermions that using (68) can be written
as

det[ 6d+M + iγ3(ωn + gÃa
3τa)] =

∫

Dχn Dχ̄n exp

{

−

∫

d2xχ̄n(x)(6d + ρne
iγ3φn)χn(x)

}

. (72)

We now perform the change of fermionic variables

χn(x) = e−i
φn
2

γ3χ′
n(x) , χ̄n(x) = χ̄′

n(x)e
−i

φn
2

γ3 , (73)

and verify that due to the last condition in (62) it indeed decouples the parity violating part of the effective action.
We find, including the anomalous Fujikawa Jacobian

det[ 6d+M + igγ3(ωn + Ãa
3τa)] = Jn det[ 6d+ ρn]. (74)

The Jacobian in (74) reads [22]

Jn[A,M ] = exp

[

−itr
φn
2

∫

d2xA

]

, (75)

with A = Aaτa denoting the 1 + 1 Euclidean anomaly under an infinitesimal non-Abelian axial transformation. As
this transformation is x-independent, there is no difference between finite and infinitesimal transformations and one
can just simply iterate the infinitesimal Fujikawa Jacobian [22] in order to get the finite answer (75). Also note that
φ0n (the component along the identity) does not contribute to the jacobian since tr(φ0nA) = 0. A standard calculation
leads for the two-dimensional non-abelian anomaly the answer (see for example [24])

A =
g

2π
ǫijFij (76)

so that the Jacobian finally takes the form

Jn[A,M ] = exp

[

−
ig

4π
tr

(

φn

∫

d2x ǫijFij

)]

. (77)

We see from eqs.(67) and (74) that the parity odd piece of the effective action is again given in terms of the infinite
set of n-dependent Jacobians,

Γodd[A,M ] = −

n=+∞
∑

n=−∞

log Jn[A,M ] =
ig

4π
tr

(

(

+∞
∑

n=−∞

φn)

∫

d2x ǫijFij

)

. (78)

Now we have to perform the summation over the φn’s. A careful analysis of the steps performed in the Abelian
case shows that the result (41) is valid for matrix valued gauge fields. Thus we get

Γodd =
ig

4π
tr

(

arctan[tanh(
βM

2
) tan(

g

2
βÃ3)]

∫

d2x ǫijFij

)

. (79)
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This is the main result in this section, which extends eq. (42) to SU(N) background fields.

We can check this result by doing explicit computations with the components φan given in eq.(71) for the SU(2)
case. From eq. (78),

Γodd[A,M ] =
ig

8π

+∞
∑

n=−∞

φan

∫

d2x ǫijF
a
ij . (80)

Using eq. (71) we have to compute

Σ =

∞
∑

n=−∞

arctan

(

gM |Ã3|

M2 − g2

4 |Ã3|2 + ω2
n

)

, (81)

or, in terms of dimensionless variables

m = βM x =
g

2
β|Ã3| (82)

Σ(x,m) =
∞
∑

n=−∞

arctan

(

2mx

m2 − x2 + (2n+ 1)2π2

)

. (83)

The sum is convergent, but in order to calculate Σ it will be convenient to write

Σ(x,m) =

∫ x

0

du
∂Σ

∂u
(u,m). (84)

The implicit subtraction of a zero-field contribution vanishes term by term in this case.
After some calculations, one has

∂Σ

∂x
(x,m) = 2m

∞
∑

n=−∞

m2 + (2n+ 1)2π2 + x2

[m2 + (2n+ 1)2π2 − x2]2 + 4m2x2
(85)

One could now arrange this expression to use the summation formula (40). With the purpose of illustration we use
instead the standard Regge-type trick to rewrite (85) as a contour integral of the form

∂Σ

∂x
(x,m) = −

m

2πi

∮

C

dz tanh(z/2)
m2 − z2 + x2

[m2 − z2 − x2]2 + 4m2x2
(86)

where C is a contour including all the poles of tanh(z/2). After continuing C into the upper and lower half-planes to
pick up the 4 poles of the fraction only, we end with

∂Σ

∂x
(x,m) =

i

2
[tanh(

x− im

2
)− tanh(

x+ im

2
)] (87)

Using this expression in (84) we finally get

Σ(x,m) = 2 arctan[tanh(m/2) tan(x/2)] (88)

so that Γodd can be written as

Γodd =
ig

4π
arctan[tanh(

βM

2
) tan(

g

4
β|Ã3|)]n

a

∫

d2x ǫijF
a
ij . (89)

Finally, observing that (naτa)
(2k+1) = 1

22k
naτa and only odd powers enter the expansions of the functions involved,

we see that the result is identical to eq.(79).

In order to analyze the result (79) let us write it in the most general form

11



Γodd =
ig

4π
tr

(

arctan[tanh(
βM

2
) tan(

g

2

∫ β

0

dτA3(τ))]

∫

d2xǫijFij

)

(90)

Then we note that in the zero-temperature limit one has

lim
T→0

Γodd =
ig2

8π

M

|M |
tr

(

∫ β

0

dτA3(τ)

∫

d2x ǫijFij

)

. (91)

This result is the usual one, namely

lim
T→0

Γodd =
1

2

M

|M |
SCS , (92)

restricted to the particular background we have considered. Here SCS is the non-Abelian CS action

SCS =
ig2

8π

∫

d3xǫµναtr(FµνAα −
2

3
AµAνAα) (93)

which for a gauge field satisfying the restrictions (62) reads

SCS =
ig2

4π
tr

∫

d3xA3ǫijFij . (94)

We thus recover the zero-temperature result first obtained in [3] by calculating the v.e.v. of the fermion current in
a constant non-Abelian field strength tensor background or in [4] in a static non-Abelian magnetic background like
ours. We recall, however, that gauge invariance under large gauge transformations is obtained only when the parity
anomaly ± 1

2SCS is added to the mass- and temperature-dependent expression for Γodd.
We finally note that a perturbative expansion in powers of the coupling constant g shows a smooth temperature

dependence of the CS coefficient,

Γodd =
1

2
tanh(

Mβ

2
)SCS +O(e4). (95)

Concerning gauge invariance of the finite temperature result we note that, in contrast to the Abelian case, there is no
room for large gauge transformations preserving the conditions (61) and (62) under wich our result (90) was obtained.
We can only quote gauge invariance under small gauge transformations that do not mix spatial and time components.
However, we expect that the large gauge invariance apparently broken by the perturbative expansion (95) should be
recovered by the full result.

IV. SUMMARY AND DISCUSSION

We have been able to compute the exact form of the parity violating contribution to the finite temperature effective
action for 2+1 massive fermions in a restricted set of gauge backgrounds, both for Abelian and non-Abelian gauge
groups. Our computation reproduces the standard results both at zero temperature and/or perturbation theory.
The Abelian case allows for a complete analysis of the gauge invariance under large transformations; we have found

that the mass and temperature dependent contribution is not invariant but its variation is cancelled (modulo 2πi)
when the parity anomalous contribution ± 1

2SCS is incorporated. We recall that in the zero temperature limit the
gauge invariant result contains two contributions in the form of CS terms, one arising canonically from the fermion
mass parity violating term and the other coming from the necessary parity anomaly of the gauge invariant fermionic
measure in odd dimensions. The present analysis gives a closed answer to the puzzle of gauge invariance of the effective
action at finite temperature: the perturbative result in which the CS coefficient acquires a smooth dependence on the
temperature is correct, but shows that any perturbative order is insufficient to maintain large gauge invariance.
The non-Abelian case follows the pattern described above in every detail. Although the restrictions imposed on

the background fields do not allow the study of large gauge transformations, notice that the zero temperature limit
shows the presence of two CS contributions with appropriate coefficients so as to cancel the gauge non invariance of
each other. This strongly suggests that the same behavior is to be expected concerning large gauge transformations
at finite temperature.
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