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Abstract. A mathematical model to describe the line shape of an x-ray diffraction
peak from stacks of different layers such as, for instance, an interstratified clay
mineral has been evolved. The aim was to be able to analyse the proportions of
different specific stacking sequences in two-component interstratified samples. A
maximum-entropy algorithm was applied to observed powder-diffraction intensities
in order to obtain the probability of each stacking sequence. Application to natural
smectite–illite clays gave reasonable results.

1. Introduction

The kinematical description (the single-scattering approxi-
mation) of the diffraction of x-rays by a crystal allows for a
theory of diffraction which is known to be valid within the
limit of small crystals [1]. In this paper we apply such a
description in order to model the diffraction peak produced
by the scattering of x-rays impinging on an interstratified
stack. These materials differ from small crystals in that,
since the diffracting stack is composed of layers of differ-
ent types, its charge density is non-periodic in one direction
and therefore, strictu sensu, the stack is not a crystal. The
assumption of small crystals that guarantees the validity
of the kinematical approximation is kept here under the re-
quirement of considering the number of layers that compose
the corresponding stack small.

The motivation for this work is that of facilitating the
determination of stacking-sequence distributions in mixed-
layer (interstratified) clay minerals. The seminal early work
on interstratified clay (IC) minerals was that by Weaver,
published in 1956 [2]. The pertinent modern literature is
rather extensive, [3] providing one with a good summary.

Any investigation of mixed-layer clays (be they
petrological or mineralogical in nature) critically depends
on the ability to interpret their x-ray diffraction peaks
[4]. We shall present here a framework that allows the
observed x-ray diffraction peak to be modelled as arising
from the contributions due to each interstratified stack (for
every conceivable stacking sequence), weighted according
to the distribution of sequences. Since the dimension of
the pertinent configuration space is very large, compared
with the information that can be directly obtained from

the available diffraction measurements, recourse to the
maximum-entropy principle is to be recommended [5–7].

The paper is organized in the following fashion. In
section 2 the maximum-entropy approach is described,
whereas section 3 deals with the particular case of mixed-
layer systems of two components. Illustrations of the
concomitant formalism are discussed in section 4, in which
relevant realistic situations are considered. Finally, some
conclusions are drawn in section 5.

2. The maximum-entropy approach

Here, we consider the analysis of the diffraction intensity
coming from an interlayering of l different types of layer.
The intensity distribution in the x-ray diffraction peaks
is sensitive to the proportions of each different stacking
sequence, so we will apply a maximum-entropy method
to determine sequence distributions from intensities. In
order to obtain this information we need to ascertain the
response of a given sequence when x-rays of wavelength λ

(of the order of the interplanar distance) impinge upon an
appropriate sample.

Consider an interstratified stack that is formed by
stacking up N layers. The position of each layer, along
the stacking direction, will be labelled with an integer j

that runs form one to N . Because we are dealing with l

different types of layer we have lN possible sequences. Let
ν stand for the set of indices needed to specify a given
sequence. Using the single-scattering approximation [1],
the diffraction intensity Fν(θ) produced by a stack in the
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configuration ν turns out to be

Fν(θ) ∝
NX

i=1
H 2(i) + 2

NX
i<j

H(i)H(j) cos
�

φ(j) − φ(i)

+4π

λ

j−1X
s=1

(R(s + 1) − R(s))

�
(2.1)

where R(j) is the distance from the site j to the detector,
while H(j) and φ(j) are, respectively, the modulus and
phase of the pertinent structure factor, which will depend
upon the type of layer located at the site j .

Consider now that the number N of layers per stack is
not fixed but can run from one to Nm. Then, the number
of all possible sequences in the sample, Nc, say, is

Nc =
NmX

N=1
lN = lNm+1 − l

l − 1
.

The probability of the sequence ν will be denoted by ρν .
We assume that we have at our disposal the results of M

diffraction measurements performed upon an l-component
sample. Considering that the measurement Ik is performed
at the angle θk , we write

Ik = I (θk) = A

NmX
N=1

lNX
ν=1

ρνFν(θk) + B + ek

k = 1, . . . , M (2.2)

where the proportionality factor A allows for introduction
of the normalization condition

NmX
N=1

lNX
ν=1

ρν = 1 (2.3)

and the constant B is used to represent the effects of a
constant background. The terms ek are ‘noise’ ones. Let
ek with k = 1, . . . , M be independent random variables,
normally distributed with zero mean and variance σ 2

k and
define the quadratic form

9(ρ1, . . . , ρNc
, B)

=
MX

k=1

(Ik − A
PNm

N=1
PlN

ν=1 ρνFν(θk) − B)2

σ 2
k

. (2.4)

The estimator of maximum likelihood is obtained by
minimizing (2.4) and renders the classical generalized least-
square solution. However, since we are dealing with
a problem in which the number of unknowns is larger
than the number of data, we are in the presence of
an undetermined least-square problem. In general, the
unrestricted minimization of (2.4) leads to solutions for
which 9(ρ1, . . . , ρNc

, B) vanishes on a hyperplane (of
dimension (Nc + 1 −M)) whose equation is given by (2.2)
with ek = 0 with k = 1, . . . , M . In order to incorporate
into the desired solution the restriction of positivity, but in
a manner compatible with the nature of the errors affecting
the data, we shall build a maximum-entropy solution that
fixes a numerical value of 9(ρ1, . . . , ρNc

, B) that is only
decided upon by actually taking into account the errors
in the data. This is achieved by means of the iterative
algorithm proposed in [6, 7], whose operational steps we
describe below.

We start by determining the appropriate generalized
least-square equations, that are obtained by demanding that

∂9

∂ρν

= 0 ν = 1, . . . , Nc (2.5)

∂9

∂B
= 0. (2.6)

Conditions (2.5) and (2.6) are tantamount to solving the
equations

Tµ = A

NmX
N=1

lNX
ν=1

ρνaν,µ µ = 1, . . . , Nc (2.7)

where

Tµ =
MX

k=1

IkFµ(θk)

σ 4
k

−
� MX

k=1

Ik

σ 4
k

�� MX
k=1

Fµ(θk)

σ 4
k

�
×

� MX
k=1

1
σ 4

k

�−1

(2.8)

aν,µ =
MX

k=1

Fµ(θk)Fν(θk)

σ 4
k

−
� MX

k=1

Fµ(θk)

σ 4
k

�
×

� MX
k=1

Fν(θk)

σ 4
k

�� MX
k=1

1
σ 4

k

�−1

. (2.9)

The system of equations (2.7) is, of course, redundant. In
order to eliminate this redundancy we use these equations,
in successive fashion (one by one), as constraints to be
satisfied by a maximum-entropy solution. Accordingly, if
several (indeed an infinite number) ρν are candidates that
fulfil the given constraints, the one to be selected is that
which maximizes the statistical entropy S [8–10]

S = −
NmX

N=1

lNX
ν=1

ρν ln ρν. (2.10)

We regard each Tµ in (2.7) as proportional to the mean
value of a random variable that adopts the values aν,µ

with ν = 1, . . . , Nc with probability ρν and we solve the
set of equations (2.7) in an iterative manner. In order to
estimate the unknown constant A we choose just one of the
equations (2.7), the αth say, so that we have

A = Tα

� NmX
N=1

lNX
ν=1

ρνaν,α

�−1

(2.11)

and the system to be solved can be re-cast in the form

NmX
N=1

lNX
ν=1

ρνQν,µ = 0 µ 6= α; µ = 1, . . . , Nc (2.12)

where
Qν,µ = Tαaν,µ − Tµaν,α. (2.13)

We start the iterative process now by employing the
maximum-entropy principle in each step. The zeroth-order
approximation is devised by requiring that the zeroth-order
distribution ρ(0)

ν maximizes the entropy (2.10) with the
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Figure 1. X-ray diffraction intensities (arbitrary units) versus the diffraction angle. The full curve corresponds to the ρ
(6)

ν1
theoretical predictions.

normalization constraint only. This entails ρ(0)
ν = 1/Nc

and the zeroth-order estimate for A is then

A0 = Tα

� NmX
N=1

lNX
ν=1

aν,α

Nc

�−1

(2.14)

so that we predict a zeroth-order value for the Tµ as given
by

T 0
µ = Tα

NmX
N=1

lNX
ν=1

aν,µ

� NmX
N=1

lNX
ν=1

aν,α

�−1

µ = 1, . . . , Nc. (2.15)

The quality of these conjectures is measured in terms of
‘predictive errors’ �µ that are defined in the fashion

�µ = |Tµ − T 0
µ |

|Tµ| µ = 1, . . . , Nc (2.16)

where the Tµ with µ = 1, . . . , Nc are given by (2.8). Let µ1
be the index such that �µ1 ≥ �µ with µ = 1, . . . , Nc. The
first-order distribution ρ(1)

ν is then obtained by maximizing
(2.10) subject to the constraint

NmX
N=1

lNX
ν=1

ρ(1)
ν Qν,µ1 = 0 (2.17)

which is equivalent to enforcing the fulfilment of the µ1th
equation in the system (2.7). This, plus the normalization

requirement (2.3), leads to

ρ(1)
ν = exp(−λ1Qν,µ1)PNm

N=1
PlN

N=1 exp(−λ1Qν,µ1)
(2.18)

where the Lagrange multiplier λ1 is obtained by solving
(2.17). With ρ(1)

ν we obtain a first-order estimation for the
parameters A and B (let us call them A(1) and B(1)), so that
we can build the ‘predictions’ T (1)

µ with µ = 1, . . . , Nc.
From these predictions we calculate the concomitant (new)
set {�µ}. After we have selected the largest one, �µ2 , say,
we obtain ρ(2)

ν by maximizing S subject to two constraints,
namely, the fulfilment of the equations in the set (2.12)
corresponding both to µ = µ1 and to µ = µ2.

The following steps continue in the same fashion by
selecting from the set (2.7) the ‘worst’ result and using it
as the constraint for the next iterative step. Following such
a procedure, the J th-order approximation is given by

ρ(J )
ν = exp(− PJ

i=1 λiQν,µi
)PNm

N=1
PlN

ν=1 exp(− PJ
i=1 λiQν,µi

)
(2.19)

where the Lagrange multipliers λi with i = 1, . . . , J are
obtained by solving the J equations

NmX
N=1

lNX
ν=1

ρ(J )
ν Qν,µi

= 0 i = 1, . . . , J. (2.20)

At each step, say, up to the J th-order approximation,
we can make definite predictions concerning the result of
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Figure 2. The same details as in figure 1, but that the full curve corresponds to the ρ
(10)

ν2 theoretical predictions.

diffraction measurements I
(J )
k . Indeed,

I
(J )
k = A(J)

NmX
N=1

lNX
ν=1

ρ(J )
ν Fν(θk) + B(J)

k = 1, . . . , M (2.21)

where

A(J) = Tα

� NmX
N=1

lNX
ν=1

ρ(J )
ν aν,α

�−1

(2.22)

B(J) =
� MX

k=1

Ik

σ 4
k

− A(J)
NmX

N=1

lNX
ν=1

ρ(J )
ν

MX
k=1

Fν(θk)

σ 4
k

�
×

� MX
k=1

1
σ 4

k

�−1

. (2.23)

The algorithm is to be stopped when these predictions are
such that

|I (J )
k − Ik| ≤ 1Ik k = 1, . . . , M (2.24)

where 1Ik are estimated as 1Ik = 2σk . Since the data are
known only within the uncertainty 1Ik , when that particular
stage is reached for which (2.24) is verified, we will have
used all the information at our disposal in order to check
the predictive power of the maximum-entropy solution. The
quadratic form (2.4) will then be 9(ρ

(J )

1 , . . . , ρ
(J )
Nc

, B) 6= 0,
which should account for the experimental errors.

Let us suppose that the acceptability test (2.24) is
satisfied at the Lth iteration. At that point, ρ(L)

ν can

be employed to determine the relative quantities of the
materials in the sample, namely

hNii =
NmX

N=1

lNX
ν=1

ρ(L)
ν Ni

ν (2.25)

where Ni
ν with i = 1, . . . , l is the number of layers of type

i in the configuration ν.

3. The two-component mixed-layering problem

Interlayered, mixed-layer or interstratified phyllosilicates
are those in which two or more different types of layer
are stacked together along the axis normal to (001).
Phyllosilicate layers are strongly bonded internally, but
rather weakly to each other. The basal surfaces of different
kinds of layers are geometrically very similar, consisting
of sheets of oxygen or hydroxyl ions disposed in a pseudo-
hexagonal array [11]. The combination of weak interlayer
bonding and structural commensuration parallel to the
layers allows the observed interstratification.

Although interstratifications of more than two compo-
nents have been reported [2, 12, 13], we will deal here only
with two-component systems (layer 1 and layer 2). Layer
1 is characterized by (i) an interplanar spacing d1 and (ii)
a structure factor whose modulus and phase depend both
on the diffraction angle θ and are denoted by H1(θ) and
φ1(θ), respectively. Accordingly, the corresponding figures
for layer 2 are denoted by d2, H2(θ) and φ2(θ), respectively.
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Figure 3. The same details as in figure 1, but that the full curve corresponds to the ρ
(11)

ν3 theoretical predictions.

The diffraction intensity resulting from a 001-oriented
stack of N layers arranged in a vertical sequence
perpendicular to the 001 plane is given by (2.1). The
detailed aspect of (2.1) is determined by the occupational
sequence. In this instance one has

H(j) =


H1(θ) if site j corresponds

to a layer of type 1
H2(θ) if site j corresponds

to a layer of type 2

(3.1)

φ(j) =


φ1(θ) if site j corresponds

to a 1-layer
φ2(θ) if site j corresponds

to a 2-layer

(3.2)

R(j + 1) − R(j)

=



d1 sin(θ) if both sites (j and j + 1)
correspond to a 1-layer

d2 sin(θ) if both sites correspond to
a 2-layer

(d1 + d2)

2
sin(θ) if both types of layers

are involved.
(3.3)

As stated in section 2, we have N layers for each stack
and thus we are dealing with 2N possible sequences per
stack, N ranging from unity up to a maximum value Nm.

Remember that ν stands for the set of indices needed to
specify a given configuration, that Fν(θ) is the value of
(2.1) for configuration ν and that the probability of finding
the sequence ν in our sample is denoted by ρν . We are
now in a position to write down the expression for our all-
important quantity: the measured diffraction intensity at the
angle θ , that will be of the form

I (θ) = A

NmX
N=1

2NX
ν=1

ρνFν(θ) + B. (3.4)

We have introduced at this point all the elements needed
in order to tackle an involved, realistic problem in the
forthcoming section, in which specific examples of two-
component systems are to be addressed.

4. The application to natural illite–montmorillonite
samples

Montmorillonite is a smectite clay that easily exchanges
cations with other substances [11, 14]. We shall analyse
here results concerning sodic montmorillonite samples, in
which Na cations between the layers compensate for lattice
(charge) defects.

Illite clays may originate from montmorillonite and are
not able to exchange cations. They rarely appear in pure,
single-phase states. Some degree of interstratification is
often present, hence it is of great geological and industrial
interest to learn details about this interstratification. As
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Figure 4. The same details as in figure 1, but that the full curve corresponds to the ρ
(11)

ν4 theoretical predictions.

an example we may mention that interstratification details
are of importance in the determination of diagenetic zones.
They are intimately related both to the origin and to the
migration of hydrocarbons in a sedimentary basin.

From a petrological standpoint illite–smectites are
the most interesting mixed-layer clays. They are quite
ubiquitous, well known from a chemical standpoint and
exhibit a mineralogical variation that responds to pressure–
temperature variations during diagenesis [15–17].

In order to understand the transformation from smectite
to illite that takes place during diagenesis and consequently
to establish its role during the transformation of organic
matter into liquid and gaseous hydrocarbons, it is of
great interest to be in a position to determine the relative
proportions of smectite and illite in ICs, as well as the
concomitant distribution of stacking sequences.

We shall apply the considerations of the previous sec-
tions to this situation and assign label 1 to montmorillonite
and label 2 to illite (d1 = 15.8 Å and d2 = 10 Å). We take
the montmorillonite structure factors from [18], whereas
those for illite were computed from the structure reported
in [19].

Figures 1–4 display x-ray diffraction peaks obtained
from illite–montmorillonite polycrystalline samples (these
data have already been corrected for the Lorentz-
polarization factor). The error bars in these figures
are drawn assuming a 2σ error in the measurement of
intensities, where σ = (I )

1
2 (I is the measured intensity).

The samples were prepared so as to be preferentially

oriented according to the 00l direction. This is achieved by
sedimentation from a water suspension onto a glass surface.

As a first example, we believe it to be instructive
to analyse an illite sample which is known to be in a
single phase (that is, a sample with a negligible degree of
interstratification). In previous works [20, 21], it was shown
that the particle size distribution of sodic montmorillonite
samples was such that most stacks had fewer than six layers.
For this reason (and according to the results arising from
this first example) we shall consider Nm = 10 (which
entails dealing with 2046 configurations) and we shall
assume that configurations with more than ten layers are
of the single-phase kind only (so that in the concomitant
states the maximum number of layers can be safely set to
be equal to 50).

Figure 1 displays x-ray diffraction measurements from
the sample under consideration. We are dealing with 47
data points. In order to attain concordance for all of
them with 1Ik (see equation (2.24)), as represented by
the error bars, it was found necessary to construct a sixth-
order approximation through which the theoretical values
are calculated according to the relations

I
(6)
k = A(6)

10X
N=1

2NX
ν=1

ρ(6)
ν Fν(θk)

+A(6)
50X

K=11
ρ

(6)
K FK(θk) + B(6) (4.1)

where the index K stands for the illite single-phase
configurations corresponding to Nm > 10, that have been
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Table 1. The most populated 50 configurations corresponding to the samples here analysed. The stacking distributions ρ
(6)

ν1 ,
ρ

(10)

ν2 , ρ
(11)

ν3 and ρ
(11)

ν4 are those of figures 1, 2, 3 and 4,respectively.

ν1 ρ(6)
ν1

ν2 ρ(10)
ν2

ν3 ρ(11)
ν3

ν4 ρ(11)
ν4

2222 0.253 16 2 0.0 9368 2222222 0.033 06 1111 0.116 55
222222 0.248 91 1 0.081 78 2222212 0.033 01 11 0.077 24

22222 0.235 74 221 0.078 31 2122222 0.033 01 1 0.063 99
222 0.098 31 122 0.078 31 2221222 0.032 36 2 0.053 12

2221222 0.065 67 222 0.076 66 222222 0.031 02 111 0.038 59
2222222 0.043 90 222222 0.064 32 222221 0.029 00 211 0.027 10

22222222 0.041 99 2222 0.047 90 122222 0.029 00 112 0.027 10
2 0.008 92 22122 0.040 10 2222 0.024 89 212 0.022 71

22 0.001 02 12222 0.036 27 212222 0.022 85 11221 0.015 99
222222222 0.000 42 22221 0.036 27 222212 0.022 85 12211 0.015 99

1222 0.000 23 22222 0.028 93 22222222 0.018 83 112211 0.013 60
2221 0.000 23 222221 0.022 64 1222212 0.018 55 22111 0.012 57

1 0.000 12 122222 0.022 64 2122221 0.018 55 11122 0.012 57
1221222 0.000 08 22222222 0.020 74 222122 0.016 97 1112111 0.011 57
2221221 0.000 08 12221 0.020 35 221222 0.016 97 1212211 0.011 23

222122 0.000 05 22 0.017 51 22212 0.015 95 1122121 0.011 23
221222 0.000 05 2222222 0.016 14 21222 0.015 95 11222 0.010 06

22221 0.000 03 222122 0.015 78 22222 0.015 29 22211 0.010 06
12222 0.000 03 221222 0.015 78 1222221 0.011 67 22 0.009 46

122222 0.000 02 2212222 0.013 78 222222222 0.011 64 111111 0.009 19
222221 0.000 02 2222122 0.013 78 2111222 0.010 32 122111 0.008 93

1222222 0.000 01 122221 0.007 63 2221112 0.010 32 111221 0.008 93
2222221 0.000 01 1222122 0.007 19 22 0.008 69 122122 0.007 43

12221 0.000 00 2212221 0.007 19 2221 0.008 01 221221 0.007 43
1221 0.000 00 2222221 0.005 47 1222 0.008 01 1112212 0.007 30

221221 0.000 00 1222222 0.005 47 212 0.007 83 2122111 0.007 30
122122 0.000 00 12122 0.004 54 211222 0.007 46 122122 0.006 85

221 0.000 00 22121 0.004 54 222112 0.007 46 221221 0.006 85
122 0.000 00 212222 0.003 37 212221 0.006 72 12212 0.006 78

2212222 0.000 00 222212 0.003 37 122212 0.006 72 21221 0.006 78
2222122 0.000 00 1221 0.003 05 2212 0.005 98 221 0.006 48

12212 0.000 00 121 0.002 87 2122 0.005 98 122 0.006 48
21221 0.000 00 2212121 0.002 59 12221 0.005 63 12111 0.006 34
22122 0.000 00 1212122 0.002 59 2112 0.005 53 11121 0.006 34

122221 0.000 00 11 0.002 04 2112222 0.005 46 1122 0.006 24
122212 0.000 00 1212221 0.001 94 2222112 0.005 46 2211 0.006 24
212221 0.000 00 1222121 0.001 94 2212121 0.005 34 12 0.005 15

22212 0.000 00 2212122 0.001 86 1212122 0.005 34 21 0.005 15
21222 0.000 00 122122 0.001 85 21112 0.005 31 11211 0.005 06

1222221 0.000 00 221221 0.001 85 12212 0.005 26 21111 0.004 99
12222221 0.000 00 1221211 0.001 83 21221 0.005 26 11112 0.004 99

1222212 0.000 00 1121221 0.001 83 12 0.005 23 1121221 0.004 92
2122221 0.000 00 2221222 0.001 75 21 0.005 23 1221211 0.004 92

21 0.000 00 21222 0.001 70 222 0.005 19 11111 0.004 82
12 0.000 00 22212 0.001 70 121 0.005 17 1112 0.004 42

2122 0.000 00 1212222 0.001 53 12222 0.005 16 2111 0.004 42
2212 0.000 00 2222121 0.001 53 22221 0.005 16 12121 0.004 19

212222 0.000 00 12 0.001 45 12121 0.005 08 1221 0.004 08
222212 0.000 00 21 0.001 45 212112 0.005 08 211111 0.004 07

11 0.000 00 2122 0.001 42 211212 0.005 08 111112 0.004 07

added in this particular case. As illustrated by the full curve
in figure 1, these agree with the data within the experimental
error. Thus, ρ(6)

ν can be confidently employed to determine
the relative quantities of montmorillonite and illite in the
sample, given, respectively, by

hN1i =
10X

N=1

2NX
ν=1

ρ(6)
ν N1

ν (4.2)

hN2i =
10X

N=1

2NX
ν=1

ρ(6)
ν N2

ν +
50X

K=11
ρ

(6)
K N2

K (4.3)

and one finds 99% for illite and 1% for montmorillonite (as
had been expected a priori). In the first and second columns
of table 1, the ‘most populated’ configurations are shown.
It can be seen that the single-phase states are the only
relevant ones in this sample and that, among them, those
corresponding to small numbers of layers predominate.
According to this result, for the following analysis we find
it reasonable to maintain the same number Nm of layers as
that employed in this case.

A second sample was analysed for which convergence
(53 data points) was attained by recourse to an tenth-
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order approximation. The full curve in figure 2 depicts
the pertinent results. In this case, the relative quantities of
illite and montmorillonite in the sample were found to be
80 and 20%, respectively. In the third and fourth columns
of table 1 the most populated sequences corresponding to
this sample are displayed.

Figure 3 plots the 63 data points that we deal with
in order to analyse a third sample. The continuous
curve shows the concordance we obtain by recourse
to an 11th-order approximation, which determined 30%
montmorillonite and 70% illite to be in the sample. Note
that, although these relative percentages are not very
different from those of the second sample, the pertinent
diffraction peaks have quite distinct line shapes (figures 2
and 3). This is due to the fact that (as shown in the
fifth and sixth columns of table 1), whereas in the second
sample illite-rich configurations are favoured, there is no
such preference in the third sample. Since in this case the
few configurations shown in table 1 do not provide one with
a good description of the different stacking sequences in the
sample, some further comments are in order: of the 80%
total illite percentage present in sample 3, 22% of it exists
in a separate phase (that is, not in mixed layers), being
responsible for the small peak that appears at 4.4◦ (figure 3).
The percentage of montmorillonite as a separate phase is
negligible even though the main maximum in figure 3
appears at 3.1◦ (namely in the vicinity of the x-ray peak for
a separate montmorillonite phase at 2.85◦). This is due to
the fact that the montmorillonite structure factor at this last
angle is larger (by a factor of four) than the corresponding
illite structure factor at its characteristic angle of 4.4◦.

The strong influence of montmorillonite single-phase
states on the diffraction peak’s shape is illustrated by the
fourth sample analysed in this work. Figure 4 displays the
61 data points to be dealt with here. The continuous curve
of figure 4 shows the convergence to the measurements
we obtained through an 11th-order approximation which
determined 60% of montmorillonite and 40% of illite
to be present in the sample. As displayed in the
seventh and eighth columns of table 1, this sample does
contain montmorillonite single-phase states and their strong
contribution to the diffraction peak can be recognized in
figure 4.

5. Conclusions

A model for the angular variation of the diffracted x-
ray intensity from small stacks of mixed layers has been
evolved. A formalism has been presented that allows one
to obtain a detailed analysis of the sample by stack size and
specific stacking configuration. The theoretical framework
deals with all possible stacking sequences on an impartial
basis. The probability to be assigned to each sequence is
determined a posteriori, by analysing the x-ray diffraction
peak produced by the sample. To this end, a maximum-
entropy-based method was applied in order to obtain the
probability distribution that, whilst being consistent with

the available data, is maximally noncommittal with respect
to the missing information.

The proposed approach has been shown to reproduce
with high accuracy previously known results (the first
example). Therefore, we feel confident that our analysis can
be reliably applied to different situations, some of which
have been discussed in this paper.
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Rebollo-Neira L 1987 Powder Diffraction 2 220
[22] Klug H P and Alexander L E 1974 X-ray Diffraction

Procedures, for Polycrystalline and Amorphous
Materials 2nd edn (New York: Wiley)

2469




