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Competition between standard and exotic double beta decays
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Abstract

We evaluate the contributions of higher order terms in weak Hamiltonian to the standard two-

neutrino double beta decay. It is shown that only the first-forbidden unique transitions can alter

the two-electron energy spectrum. Yet, their effect is too small to screen the detection of exotic

neutrinoless double beta decays, which are candidates for testing the physics beyond the standard

model.
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The double beta (ββ) experiments furnish a unique window onto whatever new physics may
replace the Standard Electroweak Model (SM). To be observable the new physics should: i) violate
the electron-lepton-number (Le) conservation, that is fulfilled in the SM, and/or ii) fit scalar particles
(currently called Majorons), light enough to be produced in the ββ decay.

The quantity that is used to discern experimentally between the ordinary SM two-neutrino decays
(ββ2ν) and the exotic neutrinoless ββ events, both without (ββ0ν) and with Majoron emissions (ββM),
is the electron energy spectrum dΓ/dǫ of the decay rate Γ, as a function of the sum ǫ = ǫ1 + ǫ2 of
the energies of the two emitted electrons. For a transition from the initial state |0I〉 in the (N,Z)
nucleus to the final state |0F 〉 in the (N − 2, Z + 2) nucleus (with energies EI and EF and spins and
parities Jπ = 0+) the differential decay rate reads

dΓ(0+
I
→0+

F
) =

4G4ḡ2

15π5

∣

∣

∣M(0+
I
→0+

F
)
∣

∣

∣

2

dΩ,

where G = (2.996± 0.002)×10−12 is the Fermi coupling constant (in natural units), and ḡ, M, and
dΩ are, respectively, the effective coupling constant, the nuclear matrix element, and the differential
phase space. With the spectrum shape is also measured the half-life T = ln 2/Γ.

For instance, when no new light particles are created, the Le-violating terms in the weak La-
grangian, that generate a Majorana mass for the electron, can be identified if they produce ββ0ν

decays. Then,

dΩ0ν =
1

64π2
δ(Q− ǫ1 − ǫ2)

2
∏

k=1

pkǫkF0(ǫk)dǫk,

and the energy spectrum is just a spark at the released energy Q = EI − EF . (pk = |pk| is the
magnitude of the electron three-momentum, and F0(ǫ) is the Fermi function that describes the
distortion of the electron wave function due to the electric charge of the nucleus [1, 2, 3].)

The phase space for ββ2ν and ββM decays can be written as

dΩi =
1

64π2
(Q− ǫ1 − ǫ2)

ni

2
∏

k=1

pkǫkF0(ǫk)dǫk, (1)

where the spectral index is: n2ν = 5 for ββ2ν , and nM = 1, 3 and 7 for ββM , depending on whether one
or two Majorons are emitted and on the leptonic charge (Le = 0,−1,−2) they carry [4, 5, 6, 7, 8, 9].
Thus, both the ββ2ν and ββM decays exhibit continuous spectra in the interval 2 ≤ ǫ ≤ Q, and
the ββ0ν and ββM processes, that are potentially capable to reveal the new physics, are clearly
distinguishable from the SM ββ2ν decay. A plot of spectral shapes in the 76Ge nucleus, for various
choices for ni, is shown in Fig. 1.

In searching for exotic decays, one should be absolutely sure of that there is no effect coming
from the standard ββ2ν decay that could lead to similar experimental consequences. In the above
discussion, the usual allowed approximation (A) has been assumed for the ββ2ν decay. This implies
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to consider only the virtual states with spin and parity Jπ = 0+, 1+. The relevance of the first-
forbidden non-unique (F) virtual states Jπ = 0−, 1− has been examined recently [10]. It was found
there that, although their contribution to the half-life is quite sizable (of the order of 30%), they
have the same phase space as the A transitions, i.e., that given by eq. (1) with n2ν = 5. Then one
should go a step further and try the first-forbidden unique (FU) transitions to the virtual Jπ = 2−

states. It is well known that the spectrum shape of a single β transition of this type, provides for
the emission of more high- and low-energy electrons, than are found in spectra that have the allowed
shape [11, 12]. One might expect that the inclusion of the virtual Jπ = 2− states would lead to
similar consequences. Thus, we aim to confront the FU transitions in the ββ2ν decay with the exotic
ββ0ν and ββM decays. This has not been hitherto done by workers in the field.

To start with, we write the ββ2ν decay rate

dΓ2ν = 2π
∫

∑|R2ν |2δ(ǫ1 + ǫ2 + ω1 + ω2 −Q)
2
∏

k=1

dpkdqk, (2)

where the symbol
∫

Σ represents both the summation on lepton spins, and the integration on neutrino
momenta and electron directions. The transition amplitude is:

R2ν =
1

2(2π)6
∑

N

[1− P (e1e2)][1− P (ν1ν2)]
〈0+

F
|HW (e2ν2)|N〉〈N|HW (e1ν1)|0+I 〉

EN −EI + ǫ1 + ω1

, (3)

where ei ≡ (ǫi,pi, sei), νi ≡ (ωi,qi, sνi), P (l1l2) exchanges the quantum numbers of leptons l1 and l2,
and N runs over all levels in the (N − 1, Z + 1) nucleus. The weak Hamiltonian reads

HW (eν) =
G√
2

∫

dxjµ(x)J
µ†(x) + h.c.,

where jµ(x) is the usual left-handed leptonic current [1, 2, 3], and for the hadronic current

Jµ(x) = (ρV (x)− ρA(x), jV (x)− jA(x)) ,

the following non-relativistic approximation will be used [13, 14]

ρV (x) = gV

∑

n

τ+n δ(x− rn),

ρA(x) =
gA

2MN

∑

n

τ+n [σn · pnδ(x− rn) + δ(x− rn)σn · pn],

jV (x) =
gV

2MN

∑

n

τ+n [pnδ(x− rn) + δ(x− rn)pn + fW∇×σnδ(x− rn)],

jA(x) = gA

∑

n

τ+n σnδ(x− rn),
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where MN is nucleon mass, and gV , gA and fW are, respectively, the vector, axial-vector and weak-
magnetism effective coupling constants. In the discussion of the ββ2ν decay we ignore both the
weak-magnetism term, and the action of the velocity dependent terms on the lepton current. These
terms cause the ”second-forbidden” contributions, which do not alter the electron spectrum shape
and will be discussed elsewhere [15]. Additionally, it will be assumed that the Coulomb energy of
the electron at the nuclear radius is larger than its total energy, which leads to the ξ-approximation
[10, 12]. Thus, for the purposes of the present study, and after some straightforward algebra, the
weak Hamiltonian is rewritten in the form

HW (eν) = −G

2

∑

πJ

W
π
J · LJ(eν),

where W
+

J and W
−
J are, respectively, the allowed and forbidden nuclear operators, and

LJ(eν) = sg(sν)

√

ǫ+ 1

2ǫ
F0(ǫ)χ

†(se)
(

1− σ · p
ǫ+ 1

)

ℓJ(1− σ · q̂)χ(−sν),

with χ(s) being the usual Pauli spinor. The leptonic operators ℓJ are listed in Table 1, together with
W

π
J .

Table 1: Operators ℓJ and W
π
J for different multipoles J ; p̄ = p[F1(ǫ)/F0(ǫ)]

1/2, v = p/MN and
ξ = αZ/2R.

J ℓJ W
+
J W

−
J

0 1 gV −gA(σ · v + ξiσ · r)
1 σ gAσ −gVv − ξ[gV ir− gA(σ×r)]

2 [σ ⊗ (q + p̄)]
2

- igA(σ ⊗ r)2/
√
5

In the next step we evaluate the transition amplitude and get

R2ν =
G2

4(2π)6
[1− P (ν1ν2)]

[

L0(e1ν1) · L0(e2ν2) (MA

2ν +MF

2ν)− L2(e1ν1) · L2(e2ν2)MFU

2ν

]

, (4)

where MA

2ν , MF

2ν and MFU

2ν are, respectively, the A, F and FU parts of the ββ2ν matrix element

M2ν(0
+

I
→0+

F
) =

∑

αJπ

(−1)J
〈0+

F
||Wπ

J ||Jπ
α〉〈Jπ

α ||Wπ
J ||0+I 〉

EJπ
α
−E

0
+

I
+Q/2

.

Introducing (4) into (2) we obtain

dΓ2ν =
4G4

15π5

[

|MA

2ν +MF

2ν |2 + f(ǫ1ǫ2)|MFU

2ν |2
]

dΩ2ν , (5)
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Table 2: Kinematical factors G2ν , and the nuclear matrix elements M2ν evaluated within the QRPA
formalism.

Nucleus GA

2ν [yr−1] GFU

2ν [yr−1] MA

2ν MF

2ν MFU

2ν
76Ge 5.39 10−20 2.10 10−19 0.050 −0.008 1.0 10−5

82Se 1.80 10−18 2.54 10−17 0.060 −0.009 9.8 10−6

100Mo 3.91 10−18 5.50 10−17 0.051 −0.014 1.1 10−5

128Te 3.53 10−22 8.77 10−23 0.059 −0.012 1.5 10−5

where

f(ǫ1ǫ2) =
25

288

2
∑

κ=0

aκ(Q− ǫ1 − ǫ2)
2κ,

and a0 = p̄21p̄
2
2, a1 = 16p̄21/35 and a2 = 1/21. The corresponding total decay rate is

Γ2ν(0
+

I
→0+

F
) = ln 2

(

G2ν |MA

2ν +MF

2ν |2 + G ′
2ν |MFU

2ν |2
)

,

where

G2ν =
4G4

15π5 ln 2

∫

dΩ2ν ,

is the usual 2ν kinematical factor [2] and G ′
2ν differs from G2ν by the additional factor f(ǫ1ǫ2) in the

integrand.
The spectrum shapes generated by the first and second terms in (5) are shown in Fig. 1. The

FU one turns out to be even softer than that with the spectral index nM = 7, which corresponds to
the emission of two scalar particles with Le = −1 [8]. At variance with the single β emission, the
spectrum for the FU double beta process deviates from the allowed shape in the low-energy region,
but not for ǫ ∼= Q. This is a direct consequence of the anti-symmetrization carried out in Eq. (3).

Numerical results for the kinematical factors and the nuclear matrix elements, for several exper-
imentally interested nuclei, are displayed in Table 2. The last were evaluated within the pn-QRPA
model, following the procedure adopted in our previous works [10, 16]. As noted first by Williams
and Haxton [17], there is destructive interference between the matrix elements MA

2ν and MF

2ν , and
the neat effect of the latter is to decrease Γ2ν in ∼ 30%. The contribution of the matrix elements
MFU

2ν is relatively small, and in the most favorable case (100Mo)

GFU

2ν |MFU

2ν |2
GA
2ν |MA

2ν +MF
2ν |2

∼ 10−6.

Note that there is no interference term between the A and FU matrix elements. This is because, in
doing the spin summations and angular integration in Eq. (2), the contribution of the lepton matrix
elements L2(e1ν1) · L2(e2ν2)L∗0(e1νi) · L∗0(e2νj) turns out to be identically null for i, j = 1, 2 or 2, 1.
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Among the new Majoron models the most hopeful one to be observed experimentally [18] is the
charged Majoron (CM) model, designed by Burgess and Cline [6] and by Carone [7] (with Le = −2
and nCM = 3). At variance with the ordinary Majoron (OM) model, in the CM model the ββ decay
proceeds via the relativistic corrections in Jµ(x), and the nuclear matrix element is of the form
MCM = M+

CM
−M−

CM
, with M±

CM
being the contributions of two heavy Dirac neutrinos with masses

M±. In ref. [9] it has been pointed out that: (i) the most favorable situation for CM emission occurs
for is that M+ → ∞, and (ii) there is a strong destructive interference between M+

CM
and M−

CM

when M+
∼= M−. In the second case the decay rates ΓCM are of similar order of magnitude as those

furnished by the FU transitions. This is illustrated in Table 3, where are shown the QRPA results for
ΓCM and ΓFU , with the following parametrization for the CM model: ḡCM = θ2/2, M± = M

√
1± θ,

M = 100 MeV and θ = 0.1 [9]. (Note that in the CM model it is not possible to make a clear
disunion between MCM and ḡCM .) In the same table are also listed the experimental limits for the
anomalous events, and the decrease of the 2ν decay rates by the effect of MF

2ν .

Table 3: Experimental limits for the anomalous events and the calculated decay rates (in units of
yr−1).

Nucleus Γexp ΓCM −ΓF ΓFU

76Ge < 4.2 10−23 5.3 10−30 2.7 10−23 1.5 10−29

82Se < 4.3 10−22 7.3 10−29 1.2 10−21 1.7 10−27

100Mo < 2.1 10−21 1.7 10−28 3.3 10−21 5.0 10−27

128Te < 9.0 10−26 1.8 10−31 4.9 10−25 1.4 10−32

Regarding the contributions of the first-forbidden transitions to the ββ2ν , several conclusions can
be drawn:

• The non-unique virtual states Jπ = 0−, 1− contribute significantly for the half-life, and should
be considered in any rigorous evaluation of the decay rates. Still, as they do not modify the
2ν energy spectrum, they are not distinguishable experimentally from the allowed transitions
to the Jπ = 0+, 1+ states.

• The unique virtual states Jπ = 2− are capable to produce distortion of the two-electron spec-
trum, but their effect is very small. Thus, it is very unlikely that the modification of the 2ν
energy spectrum by the FU transitions could be observed in planned or ongoing experiments.

• The effect of MFU

2ν is so minute in comparison with that of MF

2ν because: 1) the operator
i(σ ⊗ r)2 is not enhanced by the Coulomb field as are its r-dependent partners iσ · r, ir and
(σ×r) (see Table 1), and 2) there is no interference term between MFU

2ν and MA

2ν , as happens
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with MF

2ν and MA

2ν . The first of these two motives was known from the simple β decay, but
the second one is rather an unexpected result of the present study. Otherwise, the contribution
of the first-forbidden unique transitions would be quite more significant.

In summary, the higher order effects in the standard physics modify the ββ2ν spectrum shape
but only very tinily and at low energy, where most backgrounds tend to dominate. Ergo, they do
not interfere with the detection of exotic ββ0ν and ββM decays. The emission rate for the recently
discovered Majoron models [6, 7, 8] is very strongly conditioned by the model parameters. More, it
could be so small as that arising from the first-forbidden unique transitions, and thus out of reach of
current experiments. So, models for emission of scalar particles in the ββ-decay, more robust than
the ones tailored so far, would be extremely welcome.
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Figure Captions

Fig. 1. Electron energy spectrum for the nucleus 76Ge, as a function of the sum of energies of the
two emitted electrons, for: the standard 2ν allowed (A) and first-forbidden unique (FU) transitions,
and the exotic neutrinoless decays, with Majoron emission (n = 1, 3, 7) and without (0ν). All five
curves have been arbitrarily assigned the same maximal values for purposes of comparison.
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