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Abstract

We discuss Stochastic Quantization of d=3 dimensional non-Abel-
ian Chern-Simons theory. We demonstrate that the introduction of an
appropriate regulator in the Langevin equation yields a well-defined
equilibrium limit, thus leading to the correct propagator. We also
analyze the connection between d=3 Chern-Simons and d=4 Topolog-
ical Yang-Mills theories showing the equivalence between the corre-
sponding regularized partition functions. We study the construction
of topological invariants and the introduction of a non-trivial kernel
as an alternative regularization.
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1 Introduction

The construction of Quantum Field Theories which are independent of the
space-time metric, Topological Quantum Field Theories (TQFTs), has shown
to be a fruitful area of research, with applications both in mathematics and
in physics [1]-[8](See [4] for a complete list of references). In TQFTs there are
no local excitations and then the only observables are topological invariants.
In this way, Witten has shown how to obtain Donaldson invariants in 4-
dimensional manifolds [1], Jones polynomials of knot theory [2], etc. From the
point of view of physics, TQFTs have been investigated in connection with
2 and 3-dimensional gravity models, 2-dimensional conformal field theories,
etc.

Quantization of Topological Field Theories can be envisaged using dif-
ferent approaches. For example, the path-integral method leads to explicit
expressions for the partition function and other topological invariants [1]-[6].
Alternatively, one can quantize in the functional Schrödinger representation
[3], use canonical quantization for systems with constraints [2, 7] or Stochas-
tic Quantization (SQ) [8]. These two last approaches have revealed, as a
bonus, interesting connections between models in different number of space-
time dimensions [9]-[11].

Moreover, the SQ approach [12] to TQFTs has clarified the construction
of supersymmetric models by exploiting the connection between Langevin
equations and Nicolai maps which trivialize the respective models. This
connection, introduced by Parisi-Sourlas [13] and Cecotti-Girardello [14] in
low dimensions (d < 4) was extended to d ≥ 4 when quantization of TQFTs
was undertaken using the Batalin-Vilkovisky approach [5, 6].

Many aspects related to SQ of TQFTs remain to be fully understood. It
is the purpose of the present work to address to some of them. In particular,
we carefully discuss the problem of convergence towards equilibrium of the
stochastic process associated to non-Abelian Chern-Simons theory. To this
end, we introduce an appropriate regulator in the associated Langevin equa-
tion showing that the resulting perturbative stochastic diagrams lead to the
set of ordinary Feynman diagrams for non-Abelian Chern-Simons theory.
We also show that the connection between d=3 Chern-Simons model and
d=4 Topological Yang-Mills (TYM) theory, which was originally established
[9]-[11] without taking care of the convergence problem still holds when a
regulating scheme is taken into account.
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To more precisely understand the problems to be discussed, let us briefly
review in this Introduction the basic features arising in the quantization
of TQFTs. Firstly, since the action S[φ] for fields φ in TQFTs does not
involve at all the metric of the space-time manifold, several problems regard-
ing quantization are posed. Within the path-integral approach, the metric
could enter through BRST terms needed to fix its large (topological) sym-
metry. One should then be sure that the topological character of the theory
is not spoiled by quantization. In fact consider the “quantum action” SQ[φ]
appearing in the path-integral defining the partition function:

SQ[Φ, gµν ] = S[φ] + {Q,W [Φ, gµν ]}. (1.1)

Here {Q,W} stands for the BRST commutator of W, a functional of the
whole field content Φ (Φ includes the original fields φ, Lagrange multipliers,
ghosts, ghost for ghosts, ...) and also of the metric. It is easy to see that:

<
δSQ

δgµν
>=< {Q, δW

δgµν
} >= 0 (1.2)

due to the vanishing of BRST commutators vacuum expectation values [1].
However, in order to show that the partition function is indeed metric inde-
pendent, one has to specify an invariant measure (being the näıve measure
DΦ metric dependent). This can be done by taking as integration variables
not the original fields Φ but appropriate tensorial densities [15]-[17]:

Φ̂a ≡ g
ωa
2 Φa (1.3)

(here ωa is a weight associated to Φa and g = detgµν).
The partition function Z for the TQFT is then defined as [16]:

Z =
∫

DΦ̂ exp(−SQ[Φ̂, gµν ]) (1.4)

with Φ̂ and gµν taken as independent variables. One can now easily show from
eqs.(1.2) and (1.3) that the topological character of the model is preserved:

< Tµν >≡ − 2√
g

δ logZ

δgµν
= 0. (1.5)

The same care regarding integration variables has to be taken in defining
the partition function for TQFTs within the stochastic quantization approach
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[11]. There are however new problems in this last approach, associated with
TQFTs peculiarities. In particular, being the action S[φ] metric independent,
it remains unchanged when passing from Minkowski to Euclidean space. This
poses of course a problem since Stochastic Quantization was originally for-
mulated for real Euclidean actions. The problem of how to handle complex
actions has nevertheless been carefully analyzed [18, 19] and it has recently
received much attention [20, 21].

In a particularly attractive TQFT, and here we come to a main point
in this paper, there is another source of problems conspiring against conver-
gence towards equilibrium within the stochastic approach. Indeed, consider
3-dimensional Chern-Simons (CS) theory. Since the corresponding action
is linear in derivatives one should expect non-convergence of the associated
stochastic process towards equilibrium. In order to solve this problems, re-
fined treatments for the Langevin equation of a CS theory have been pro-
posed. They basically rest on the introduction of non-trivial kernels [21, 22]
(this compares to the treatment of fermionic models) both for Abelian and
non-Abelian cases or Maxwell terms [21], for the Abelian case, as regula-
tors. In both cases it has been proven that conventional propagators can
be obtained very simply reproducing the standard results for Chern-Simons
theories.

As stated above, for non-Abelian CS theory, convergence of the stochastic
process has been only discussed by introducing an appropriate kernel [21].
This approach poses several difficulties when studying the connection be-
tween d=3 CS theory and TYM theory. We shall then follow an alternative
regularization approach by extending the method employed in [21] (based
on the introduction of a regulating Maxwell term for the Abelian theory) to
the non-Abelian case. We shall analyze the convergence of the associated
stochastic process towards equilibrium and establish the connection between
d=3 CS theory and d=4 TYM theory.

The paper is organized as follows: in Section 2 we introduce a trF 2
ij reg-

ulating term in the Langevin equation and show, up to second order in per-
turbation theory, that stochastic diagrams reproduce the standard Feynman
rules for CS theory. Then, in Section 3 we reanalyze the connection between
d=3 CS and d=4 TYM theories and study topological features of the re-
sulting 4-dimensional effective theory. We also discuss in this Section the
alternative regularization scheme based on the introduction of a non-trivial
kernel. Finally, in Section 4 we present a discussion of our results.
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2 Regulating the stochastic process

As we stated in the Introduction, SQ of d=3 Chern-Simons theory faces
problems of convergence towards equilibrium when the näıve Langevin equa-
tion is used. These problems are rooted in two main features of Topological
Field Theories. Firstly, being the corresponding action metric-independent,
it remains unchanged when passing from Minkowski to Euclidean space, this
leading to a purely imaginary Euclidean action. Secondly, being the CS
theory linear in its derivatives, it does not ensure a finite equilibrium limit.

Wu and Zhu [21] have discussed how to handle both problems. On the one
hand, one can employ the so-called complex Langevin equation approach [18]:
no inconsistency then arises due to the presence of the i-factor in front of the
Euclidean CS action. Concerning the second point, these authors introduce
as a regulator a F 2

ij term when studying the Abelian theory. At least in this
last case, one ends up with a stochastic process tending to equilibrium and
leading to standard results for propagators once the regulator is switched off.

In this Section we shall discuss this problem of convergence for the non-

Abelian Chern-Simons theory within the SQ scheme. To this end we intro-
duce a trF 2

ij term and then analyze the convergence of the stochastic process
(in the next Section we shall discuss the alternative method of introducing a
kernel in the Langevin equation, as proposed in Refs.[21, 22]).

The Euclidean action for d=3 non-Abelian Chern-Simons theory with a
trF 2

ij regulating term reads (compare with the topologically massive Yang-
Mills theory [23]):

S = SCS + SΛ (2.1)

with:

SCS = − iκ

8π
tr

∫

M3

d3xǫijk(Ai∂jAk +
2

3
eAiAjAk) (2.2)

SΛ =
1

4Λ2
tr

∫

M3

d3xF 2
ij (2.3)

Here Ai (i = 1, 2, 3) takes values in the Lie algebra of the gauge groupG, with
generators ta (tr tatb = δab), κ = ke2 with k ∈ Z, andM3 is the 3-dimensional
compact manifold. In eq.(2.3), Λ is a regulator which will be set to infinity
at the end of the computations. This type of regulating Yang-Mills term has
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already been used [24] to study renormalization of the non-Abelian Chern-
Simons theory. It is important to stress that for finite Λ the model becomes
metric-dependent. Consequently it is important to determine whether the
resulting effective action depends or not on the metric at the quantum level
(i.e. whether the quantized theory mantains diffeomorphism invariance, a
symmetry of the original Chern-Simons theory). In fact, Chen et al. [24]
have argued that diffeomorphism anomaly is indeed absent and our results
confirm this fact.

We take as Langevin equation associated with action (2.1) the following
one:

∂tAi(x, t) = − δS

δAi
(x, t) + ηi(x, t) (2.4)

where t is the stochastic time (t ∈ I ≡ [0, T ]) and ηi is a gaussian noise
taking values in the Lie algebra of the group G. A drift term of the form
DiΩ ( with Di the covariant derivative and Ω an arbitrary function) can
be introduced as a way of (stochastic) gauge fixing [25]. Moreover, in the
analysis of the connection between d=3 Chern-Simons and d=4 TYM the-
ories, drift terms naturally appear when one derives Langevin equations by
imposing commutativity between BRST transformations and stochastic time
evolution [10]. Also, the drift term provides in this context a natural way
for introducing an A0 component for the gauge field in the route towards the
effective 4-dimensional theory. We shall come back to this point in the next
Section.

In the SQ approach [12], vacuum expectation values (v.e.v.) are computed
as the limit -for stochastic time going to infinity- of stochastic expectation
values:

lim
T→∞

< F [Aη] >η=< F [A] > (2.5)

Here Aη denotes the solution of Langevin equation giving A as a functional
of the noise; the r.h.s. of eq.(2.5) is the v.e.v. of the functional F [A] for
the quantum field theory defined from action (2.1). Concerning stochastic
expectation values < >η, they are computed from the noise correlation
functions:

< ηai >η = 0

< ηai (x1, t1)η
b
j(x2, t2) >η = 2δabδijδ

(3)(x1 − x2)δ(t1 − t2). (2.6)
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DIAGRAM NOTATION FORMULA

eV abc
ijk (k, k1, k2) − i

2
efabc[ κ

4π
ǫijk +

1
Λ2 ((k − k1)kδij+

+(k1 − k2)iδjk + (k2 − k)jδik)]

−1
6
e2

Λ2 [f
abef cde(δikδjl − δilδjk)+

e2W abcd
ijkl +facef bde(δijδkl − δilδjk)+

+fadef cbe(δikδjl − δijδkl)]

Table 1: Diagrams for stochastic vertices.

Using the explicit form (2.1)-(2.3) for S, Langevin equation in momentum
space becomes:

Ȧa
i = − 1

Λ2
k2Pij(k)A

a
j +

κ

4π
ǫijlklA

a
j + Y a

i (k, t), (2.7)

where Ȧa
i = ∂Aa

i /∂t and Pij(k) and Y
a
i (k, t) are defined as:

Pij(k) = δij −
kikj
k2

, (2.8)

Y a
i (k, t) = ηai (k, t)+ (2.9)

+
e

(2π)3/2

∫

d3p d3q δ(k − p− q)V abc
ijk (k,−p,−q)Ab

j(p, t)A
c
k(q, t) +

+
e2

(2π)3

∫

d3p d3q d3rδ(k − p− q − r)W abcd
ijkl A

b
j(p, t)A

c
k(q, t)A

d
l (r, t).

In the last equation V abc
ijk and W abcd

ijkl are, respectively, the three-point and
four-point vertex factors (listed in Table 1 together with the corresponding
diagrams). Notice that the three-point vertex factor is just 1

2
of the corre-

sponding one in the conventional Feynman rule, while the four-point vertex
factor is 1

6
of the corresponding conventional one.

The Langevin equation can be solved perturbatively, and for this purpose
it is convenient to write it as an integral equation. Using Aa

i (k, 0) = 0 as
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A=

Figure 1: Perturbative expansion of Aa
i (k, t).

initial condition, one readily obtains

Aa
i (k, t) =

∫ ∞

0
dt′ Gab

ij (k, t− t′)Y b
j (k, t

′), (2.10)

where Gab
ij (k, t − t′) is the zeroth order (causal) Green function associated

with eq.(2.7):

δab(δij
∂

∂t
+
k2

Λ2
Pij(k)−

κ

4π
ǫijlkl)G

bc
jm(k, t− t′) = δacδimδ(t− t′), (2.11)

which yields

Gab
ij (k, t− t′) = θ(t− t′)δab

{

[Pij(k)cos(
κ

4π
k(t− t′))+

+
ǫijlkl
k

sin(
κ

4π
k(t− t′))]e−

1

Λ2
k(t−t′) +

kikj
k2

}

. (2.12)

It is convenient to write eq.(2.10) in a symbolic way as

A = G(η + eV AA+ e2WAAA). (2.13)

The perturbative expansion of the solution then reads:

A = Gη + eGV (Gη)(Gη) + e2W (Gη)(Gη)(Gη) + (2.14)

+e2GV (GV (Gη)(Gη))(Gη) + e2GV (Gη)(GV (Gη)(Gη)) + · · ·

which is graphically represented in Figure 1.
In order to compute an n-point correlation function < Aa1

i1 (k1, t) · · ·
Aan

in (kn, t) >η, one proceeds as follows: for each A
a
i (k, t) one draws a diagram-

matical expansion as that shown in Figure 1, then one takes the average over
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the noise by joining all crosses (representing the noise sources), pair-wise, in
all possible ways and finally one sums up the resulting ”stochastic diagrams”,
as implied by the noise correlation functions (see eq.(2.6)).

Notice that every diagram is built up from two kinds of propagators:
a) the un-crossed propagator given by the stochastic Green function (2.12):

Gab
ij (k, t− t′) = θ(t− t′)δab {[Pij(k)cos(mk(t− t′))+

+
ǫijlkl
k

sin(mk(t− t′))]e−
1

Λ2
k(t−t′) +

kikj
k2

}

. (2.15)

b) the crossed propagator which corresponds to the lowest order term in
< Aa

i (k, t)A
b
j(−k, t′) >η:

Dab
ij (k; t, t

′) = δab2tmin
kikj
k2

+

+δab
1

k2

Λ4 +m2

{

e−
k2

Λ2
|t−t′|

[

(
1

Λ2
Pij(k) +

m

k

ǫijlkl
k

)cos(mk|t− t′|)+

+(−m
k
Pij(k) +

1

Λ2

ǫijlkl
k

)sin(mk|t− t′|)
]

+

−e− k2

Λ2
(t+t′)

[

(
1

Λ2
Pij(k) +

m

k

ǫijlkl
k

)cos(mk(t+ t′))+

+ (−m
k
Pij(k) +

1

Λ2

ǫijlkl
k

)sin(mk(t + t′))

]}

(2.16)

In the last equation m stands for κ/4π, usually called the ”topological mass”
of the model [23], and tmin is the minimum between t and t′. From the
above expressions one recognizes a linearly divergent longitudinal part which
is common in the SQ of all gauge theories without gauge fixing. This term
can be handled by stochastic gauge fixing [25] (see below).

If not for the presence of two kinds of propagators, each stochastic dia-
gram has the form of an ordinary Feynman diagram. Though the rules for
these stochastic propagators are different from the Feynman rules, it has been
proven for several models that the sum of all stochastic diagrams with the
same topology yields exactly the usual result for the corresponding Feynman
diagram. In particular, Namiki et al. [26] have shown that, up to second
order, this is the case for pure Yang-Mills theory. In the same spirit we shall
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study the second order corrections to the propagator of the non-Abelian
Chern-Simons model (with the trF 2

ij regulator term) and we shall show that
its transverse part reproduces the correct field-theoretical propagator.

As stressed above, correlation functions < Aa
i (k1, t)A

b
j(k2, t

′) > contain
terms which diverge as t and t′ go to infinity. These divergent terms are
characteristic of gauge non-invariant quantities and will cancel out if one
constructs gauge-invariant objects like < trF 2

ij >. Consequently we shall
only keep in what follows those terms which remain finite as t or t′ go to
infinity. Using (2.14) and averaging over η we then get for the correlation
function, up to second order:

< Aa
i (k, t)A

b
j(k

′, t) >= δ(k + k′)Dab
ij (k, t) (2.17)

with:
Dab

ij (k, t) = (a) + 2(b) + 2(c) + 2(d) + 3(c) + (f), (2.18)

where (a), (b), ..., (f) stand for the contributions from diagrams shown in
Figure 2. As an example, diagram (b) represents the following contribution:

2(b) =
2e2

(2π)3

∫

d3k1 d
3k2δ(k − k1 − k2)V

cde
klm(k,−k1,−k2)V fgh

qnp (−k, k1, k2)×

×
∫ ∞

0
dt′

∫ ∞

0
dt′′Gac

ik(k, t− t′)Ddg
ln (k1; t

′, t′′)Deh
mp(k2; t

′, t′′)Gbf
jq (−k, t− t′′).

(2.19)

Here it should be noted that longitudinal components of external lines can
be discarded either because they vanish or because they cancel out when
computing gauge invariant or gauge covariant contributions. This is care-
fully shown in Ref.[26] for the pure Yang-Mills model and the demonstration
trivially applies to the present model. Concerning longitudinal components
appearing in internal lines, it has been conjectured by Parisi and Wu [12]
that they arrange themselves to give just those contributions which are con-
ventionally associated with Faddeev-Popov ghost effects. Although a general
proof for this conjecture is lacking, it has been explicitely confirmed in sev-
eral examples [27]. In particular, Namiki et al. [26] have proved that, up
to second order, in the case of pure Yang-Mills theory internal lines do ar-
range to reproduce the ghost contributions. Since the longitudinal part of the
propagators of this last theory coincide with those arising in the CS model
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Figure 2: Graphical representation of Dab
ij (k, t).

(eqs.(2.16) and (2.17)), we conclude that also in the present case ghost effects
are accounted by longitudinal parts of internal lines and hence we shall only
consider in diagrams (a), (b), ..., (f) transverse internal lines.

Computation of contributions from different diagrams is standard but
tedious. For the sake of brevity we shall not present each one separately.
Just as an example, the contribution from diagram (b) takes the form:

2(b) =
e2

(2π)3
∫

d3k1 d
3k2δ(k − k1 − k2)V

ade
klm(k,−k1,−k2)V bde

qnp (−k, k1, k2)

× Iiklnmpqj(k, k1, k2, m,Λ), (2.20)

where

Iiklnmpqj(k, k1, k2, m,Λ) =

11



= Pik(k)Pln(k1)Pmp(k2)Pjq(k)F
(1) + Pik(k)Pln(k1)Pmp(k2)

ǫjqvkv
k

F (2) +

+Pik(k)Pln(k1)
ǫmpuk2u
k2

Pjq(k)F
(3) + Pik(k)Pln(k1)

ǫmpuk2u
k2

ǫjqvkv
k

F (4) +

+Pik(k)
ǫlnsk1s
k1

Pmp(k2)Pjq(k)F
(5) + Pik(k)

ǫlnsk1s
k1

Pmp(k2)
ǫjqvkv
k

F (6) +

+Pik(k)
ǫlnsk1s
k1

ǫmpuk2u
k2

Pjq(k)F
(7) + Pik(k)

ǫlnsk1s
k1

ǫmpuk2u
k2

ǫjqvkv
k

F (8) +

+
ǫikrkr
k

Pln(k1)Pmp(k2)Pjq(k)F
(9) +

ǫikrkr
k

Pln(k1)Pmp(k2)
ǫjqvkv
k

F (10) +

+
ǫikrkr
k

Pln(k1)
ǫmpuk2u
k2

Pjq(k)F
(11) +

ǫikrkr
k

Pln(k1)
ǫmpuk2u
k2

ǫjqvkv
k

F (12) +

+
ǫikrkr
k

ǫlnsk1s
k1

Pmp(k2)Pjq(k)F
(13) +

ǫikrkr
k

ǫlnsk1s
k1

Pmp(k2)
ǫjqvkv
k

F (14) +

+
ǫikrkr
k

ǫlnsk1s
k1

ǫmpuk2u
k2

Pjq(k)F
(15) +

ǫikrkr
k

ǫlnsk1s
k1

ǫmpuk2u
k2

ǫjqvkv
k

F (16)

(2.21)

Here F (i) = F (i)(k, k1, k2, m,Λ) are ratios of polynomials in momenta which
arise after integrating the fictitious time in the vertices and taking the limit
t→ ∞. Contributions from the rest of the diagrams having the same topol-
ogy as (b) have analogous form. Computations were carried out using RE-
DUCE and the answer is:

2(b) + 2(c) + 2(d) =

2
e2

(2π)3

∫

d3k1 d
3k2δ(k − k1 − k2)V

ade
klm(k,−k1,−k2)V fgh

bde (−k, k1, k2)×

( 1
Λ2Pik(k) +

m
k2
ǫikrkr)

k2

Λ4 +m2

( 1
Λ2Pln(k1) +

m
k2
1

ǫlnsk1s)

k2
1

Λ4 +m2

( 1
Λ2Pmp(k2) +

m
k2
2

ǫmpuk2u)

k2
2

Λ4 +m2

( 1
Λ2Pjq(k) +

m
k2
ǫjqvkv)

k2

Λ4 +m2
(2.22)

An analogous calculation for diagrams (e) gives:
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3(e) = 3
e2

(2π)3

∫

d3k1 W
addb
klmn× (2.23)

( 1
Λ2Pik(k) +

m
k2
ǫikrkr)

k2

Λ4 +m2

( 1
Λ2Plm(k1) +

m
k2
1

ǫlmuku)

k2
1

Λ4 +m2

( 1
Λ2Pjn(k) +

m
k2
ǫjnsks)

k2

Λ4 +m2

Taking into account the relations between stochastic and conventional
Feynman vertices, it is now evident that eqs.(2.22) and (2.23) coincide, re-
spectively, with the gluon loop and the tadpole terms in the conventional
Landau gauge field theory (see for instance [28]). Finally, diagram (f) van-
ishes due to antisymmetry of the three-point vertex. Hence we arrive to:

(a)+2(b)+2(c)+2(d)=
(2.24)

3(e)+(f)=
(2.25)

Here wavy lines represent the standard (bare) propagator for topologically
massive gauge theory, i.e. d=3 Yang-Mills theory plus a CS term (compare
e.g. Ref.[28]):

=
( 1
Λ2Pij(k) +

m
k2
ǫijrkr)

k2

Λ4 +m2
(2.26)

Thus, the r.h.s. in (2.24) and (2.25) reproduce the standard second or-
der result in perturbation theory. Concerning the resulting three-point and
four-point vertices, they coincide with the standard vertices for topologically
massive gauge theory and they can be read off from those presented in Table
1 (provided we disregard the factors 1

2
and 1

6
respectively, appearing in the

stochastic scheme).
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We can therefore conclude that, up to second order in perturbation, the
Stochastic Quantization scheme for non-Abelian CS model endowed with a
regulator term of the form (2.3) leads to the correct gauge field propagator
for topologically massive Yang-Mills theory. That is, the introduction of
the 1

Λ2 trF
2
ij term has lead to a stochastic process which converges towards

equilibrium. As we have already stated, diagrams with ghosts lines should be
obtained by including the longitudinal parts of Gab

ij and Dab
ij in the internal

lines of each diagram.
If one now takes the limit of Λ2 → ∞ to switch off the regulator so as

to recover the pure CS gauge theory, one can easily verify that (2.24)-(2.26)
agree with the standard (bare) expresions (compare e.g. Ref.[29]).

We have then succeded in obtaining a convergent stochastic process for
the non-Abelian CS theory. We can then re-analize the connection between
the (regulated) stochastic partition function for CS theory and the BRST
partition function for TYM theory. This will be presented in the next Section.

3 The connection between CS and TYM the-

ories

The connection between d=3 non-Abelian CS and d=4 TYM theories
has been established by Yu [9] and Baulieu [10] using SQ. Alternatively,
Horowitz [7] has discussed the same connection using canonical quantization
for systems with constraints.

Concerning the SQ derivation, it consists in proving the equivalence be-
tween the stochastic partition function for CS theory in the limit T → ∞
and the BRST partition function for TYM theory (stochastic time t provides
the extra coordinate necessary to pass from M3 to a d=4 manifold M4).

The analysis in [9, 10] did not take into account the necessity of working
with an invariant measure for the path-integral which defines the partition
functions. As mentioned in the Introduction this poses a problem since the
näıve measure is in fact metric dependent, and hence the topological charac-
ter of the quantum theory cannot be simply established. In [11] this problem
was studied using the so-called Fujikawa variables. This variables allow to
define an invariant measure at the price of working not with the original
fields but with appropriate tensorial densities (see eq.(1.3) and (1.4)). The
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outcome is that the connection between CS and TYM partition functions is
still valid when the correct integration variables are considered.

Another important point that was not taken into account in the deriva-
tions given by [9]-[11] based in SQ was that related to the non-convergence
of the underlying stochastic process. We have proven in the previous Sec-
tion that the introduction of a regulator in the Langevin equation yields the
correct equilibrium limit for the stochastic process and gives the standard
propagators for the non-Abelian CS theory. Once this is achieved, one has
to re-examine the question of whether the connection between CS and TYM
theories is still valid when the theory is regulated. We address to this point in
the first part of this Section and show that the answer is affirmative. Then
we also analyze the same problem when a non-trivial kernel (instead of a
regulator) is introduced in the Langevin equation, using a slightly different
approach.

In order to proceed to the proof of the connection à la Yu-Baulieu, we have
to modify Langevin equation (2.4) for the CS model adding a longitudinal
drift term. In fact when one derives Langevin equations by imposing com-
mutativity between BRST transformations and stochastic time evolution, a
drift term naturally appears [10]. This term can be in fact identified with
the one which is usually introduced in order to handle the non-convergence
of gauge dependent v.e.v.’s within the SQ approach. In the present context,
it provides a natural way for introducing an A0 component for the CS gauge
field in the route towards the 4-dimensional theory. Indeed, if instead of
eq.(2.4) we write a Langevin equation with drift term:

∂tAi = − δS

δAi

−DiΩ+ ηi, (3.1)

being Ω an arbitrary function, we can take:

Ω(x, t) = − κ

4π
A0(x, t). (3.2)

Here A0 will be considered, as announced, the zeroth component of the gauge
field Aµ ≡ (Ai, A0), now defined over a four manifold M4 =M3× I. We then
impose a Langevin equation for A0:

∂A0(x, t)

∂t
= − κ

4π
∂iAi + η(x, t) (3.3)
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with η a scalar gaussian noise taking values in the Lie algebra of the group
G.

In order to write equations (3.1) and (3.3) in a more appropriate way, we
introduce ∂0 =

4π
κ
∂t. We also redefine eAµ → Aµ and set e2 = κ

4π
. Langevin

equations take then the form:

F+
0i −

4π

κΛ2
DjFji =

√

4π

κ
ηi (3.4)

and

∂µAµ =

√

4π

κ
η. (3.5)

Here
Fµν = ∂µAν − ∂νAµ + ie[Aµ, Aν ] (3.6)

and

F+
µν ≡ Fµν +

1

2
ǫµναβFαβ. (3.7)

We are now ready to establish the connection between d=4 TYM and d=3
CS theory (regulated with the trF 2

ij term) when the regulator is
switched off. We start from the stochastic generating functional for the
theory associated with equations (3.4) and (3.5):

ZCS
Stoch[Λ] =

∫

DηiDηexp[−
2π

κ
tr

∫

M4

d4x(η2i + η2)], (3.8)

where d4x = d3xdx0 We have used in eq.(3.8) a stochastic gaussian measure
defined in terms of the original gaussian noises ηi and η and not in terms of
the associated Fujikawa variables [15]

η̂i = g1/12ηi η̂ = g1/4η. (3.9)

As we stated above, these last ones are the correct variables defining an in-
variant measure. However, as it was proven in [11], the derivation of the
connection between CS and TYM theories follows exactly the same steps
using ordinary or Fujikawa variables and hence, for the sake of simplicity, we
shall work with the original variables although our proof can be straightfor-
wardly presented in terms of Fujikawa variables.
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We now write ZCS
Stoch[Λ] as a path integral over gauge fields Aµ by using

DηDηi = JDAµ (3.10)

with the Jacobian given by
J = detMiν (3.11)

and

Miν =







δη
δAν

δηi
δAν





 (3.12)

Ghost fields (b, χi) and ψν (with ghost numbers (-1,-1) and 1 respectively)
can be introduced in order to exponentiate Miν :

J =
∫

DbDχiDψµexp[tr
∫

M4

d4x(b, χi)Miνψν ] (3.13)

Of course, the change of variables holds for J 6= 0 (which corresponds, in the
limit Λ → ∞, to dimM = 0, being M the instanton moduli space associated
with F+

µν = 0 equation ). The case J = 0 (dimM 6= 0) can be easily treated
by extending the procedure which we describe below (see Ref.[9] for details).

In order to end up with the complete set of ghosts characterizing BRST
invariance of TYM theory we introduce, following [32], c-ghosts (associated
with ordinary gauge symmetry in TYM) through the equation:

DµDµc−Dµψµ = β (3.14)

with β a gaussian noise. Inserting the identity

1 =
∫

DρDβexp[−tr
∫

ρβd3xdt] (3.15)

in ZCS
Stoch and changing from β to c variables via eq.(3.14) we finally have

ZCS
Stoch =

∫

DAµDbDχαβDψµDcDρDλDφe
−Seff . (3.16)

Here λ and φ are (Grassman even) ghosts (with ghost number −2 and 2
respectively), introduced in order to exponentiate the determinant associated
with the change from β to c variables. Concerning χαβ, we have traded the
three components of ghost field χi for those of a self-dual antisymmetric

17



ghost (again with ghost number −1). This is done to make contact with the
usual notation adopted in the literature [1, 9, 10], and, moreover, to take into
account the correct tensorial character of this field [11] The effective action
Seff reads:

Seff =
∫

M4

tr {1
2
(F+

0i −
4π

κΛ2
DjFji)

2 +
1

2
(∂µAµ)

2 + ρ(DµDµc−Dµψµ) +

+
4π

κΛ2
χ0i(δijDkDk −DiDj)ψj − χµνD[µψν] − b∂µψµ +

+ λDµDµφ+ λ([ψµ, ψµ +Dµc] +Dµ[ψµ, c])}d4x. (3.17)

In order to write Seff in a more tractable way, let us introduce Lagrange mul-
tipliers ηαβ (self-dual and antisymmetric) and η, and the following (BRST)
transformations:

{Q,Aµ} = ψµ {Q,ψµ} = 0
{Q, b} = η {Q, η} = 0
{Q, χαβ} = ηαβ {Q, ηαβ} = 0
{Q, c} = φ {Q, φ} = 0
{Q, λ} = ρ {Q, ρ} = 0

(3.18)

Then, Seff can be written in the form:

Seff = {Q, VΛ} (3.19)

with

VΛ =
∫

M4
d4x tr{1

4
χαβ(F

+
αβ −

1

2
ηαβ)− χ0i

4π

κΛ2
DjFji +

+ b(∂µAµ −
1

2
η)− λ(Dµψµ +DµDµc)} (3.20)

In this way, we can easily see that the Λ-independent part of Seff co-
incides with the action constructed by Witten for defining TYM theory [1].
Accordingly, the BRST transformations (3.18) correspond to those intro-
duced by Labastida and Pernici [5] in order to obtain TYM as the result of
gauge fixing a gaussian trivial action. To see this correspondence explicitly,
one has to proceed to the following change of variables [30] :

ψµ → ψµ +Dµc

φ → φ+
1

2
[c, c]. (3.21)
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Then, transformations (3.18) coincide with the BRST transformations de-
fined in Ref.[5] in order to handle the large topological symmetry character-
istic of TYM theory.

We can now write the following equality which turns to be one of the
main results in our work:

ZCS
Stoch[Λ] = ZTYM

BRST [Λ] (3.22)

where
ZTYM

BRST [Λ] =
∫

DΦ e{Q,VΛ} (3.23)

and DΦ represents the integral measure over the whole field content. Hence,
the stochastic partition function for the d=3 CS model regulated with a
Yang-Mills term coincides with the BRST partition function for a d=4 TYM
model with the addition of a Λ-dependent functional (eq.(3.20)).

The fact that the Λ-dependent terms in Seff appear through Q-exact
terms allows us to proceed one step further. Indeed, since

δZTYM
BRST [Λ]

δΛ
= −

∫

DΦ{Q, ∂VΛ
∂Λ

}e{Q,VΛ}, (3.24)

then
1

Z

δZTYM
BRST ]Λ]

δΛ
= − < {Q, ∂VΛ

∂Λ
} >= 0 (3.25)

due to the vanishing of v.e.v.’s of BRST commutators [1]. Then, at the
partition function level we infer that, being ZTYM

BRST [Λ] Λ-independent, it can
be evaluated in the limit Λ going to infinity. Hence, we can write instead of
(3.22)

ZCS
Stoch = ZTYM

BRST , (3.26)

where in the r.h.s one has now the partition function for TYM theory with
the action constructed by Witten. This does not mean that from the stochas-
tic point of view the regulator is not necessary. As explained in the previous
Section, in order to compute CS propagators, etc., one has to mantain the
regulator till the end of the computations. Eq.(3.26) implies that one can use
a regulator Λ to render all quantities appearing in the derivation of (3.22)
well-defined; at the end of the computations, being the resulting partition
function Λ-independent, one can make Λ → ∞ thus confirming the connec-
tion between CS and TYM models. In this respect, one can think of identity
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(3.26) as follows: from the CS point of view one has to mantain the regulator
in order to have a convergent stochastic process, yielding the correct stochas-
tic averages. One then makes Λ → ∞ at the end of the computations. From
the TYM point of view, due to (3.25) one can make Λ → ∞ at any step of
the computations, not only for ZTYM

BRST but for any v.e.v. to be computed.
Indeed, the basic formula (3.19) also ensures that

< Tµν >= − 2√
g

δ logZTYM
BRST [Λ]

δgµν
= 0. (3.27)

That is, ZTYM
BRST defines a topological model for any value of Λ. As we dis-

cussed above, in order to prove (3.27) one should use Fujikawa variables but,
when written in these terms, one can still prove that Seff is a Q-exact form.
We skip details since they parallel those presented in Ref.[11].

Analogously, one has, for arbitrary Λ

∂ZTYM
BRST [Λ]

∂e2
= 0. (3.28)

The independence of the partition function for TQFT’s on the coupling con-
stant has as an important consequence that one can compute it in the weak-
coupling (semi-classical) limit. On the one hand, for TYM theory (i.e. once
the limit Λ → ∞ is taken) one can therefore write ZTYM

BRST as a sum over con-
tributions from the neighbourhoods of the isolated instantons since classical
minima of the TYM action correspond to solutions of

F+
µν = 0. (3.29)

In expanding around isolated instantons it is then enough to keep only
quadratic terms and the resulting gaussian integrals give:

Pfaff DF√
det ∆B

, (3.30)

where Pfaff DF denotes the Pfaffian of the operator associated to Fermi
fields and ∆B that associated to Bose fields in the quadratic part of the
action. Up to a sign, this ratio is 1 and then

ZTYM
BRST =

∑

instantons

(±1), (3.31)
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that is, it coincides with the first Donaldson invariant.
On the other hand, for ZTYM

BRST [Λ] at finite Λ, classical minima for action
Seff are not any more solutions of (3.29), although in the weak-coupling
limit gaussian integrals give a ratio like (3.30) which is still ±1. However,
the partition function will yield the first Donaldson invariant provided one
takes the Λ → ∞ limit.

It is important to notice that the Λ-independence of ZTYM
BRST extends to

any (topological invariant) observable. Indeed, the sufficient conditions for
an observable Θ to give a topologically invariant v.e.v. are [1]:
1) δΘ/δgµν = {Q,R}
2) {Q,Θ} = 0 (modulo those of the form Θ = {Q,B}).
Then, being Θ Λ-independent, one has

∂ < Θ >

∂Λ
= −

∫

DΦ e−Seff{Q, ∂V
∂Λ

}Θ

= − < {Q, ∂V
∂Λ

Θ} >= 0. (3.32)

At this point it is interesting to make contact with the results of Chen
et al. [24] on topological features in perturbative CS theory. Using both
dimensional and trF 2

ij regularizations, these authors showed the vanishing
of the β function for CS theory up to three loops and also suggested the
absence of diffeomorphism anomaly (which could be present due to the metric
dependence of the trF 2

ij regulator). Indeed, by studying the propagator for
the regulated CS model they showed that its metric dependent transverse
part (responsible for the would-be diffeomorphism anomaly) vanishes because
of the unusual properties of the wave-function renormalization. Our results,
summarized by eqs.(3.22) and (3.25) confirm this suggestion.

Concerning the evaluation of topological invariants using the connection
between CS and TYM theories, let us note that the modifications of the SQ
procedure needed whenever dimM 6= 0 make the analysis more involved [9].
However, the conclusions of Ref.[9] about the connection between topological
invariants of TYM theory and those arising in d = 3 CS theory should
continue to hold when the regulation of the stochastic process is appropriately
taken into account.

We shall conclude this Section discussing an alternative to the use of a
1
Λ2 trF

2
ij regulator, namely, the introduction of a non-trivial kernel Kij in the

Langevin equation in order to have a stochastic process which converges to
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equilibrium. In fact, this alternative approach was followed in Refs.[21, 22]
in the study of the Abelian and non-Abelian Chern-Simons models. In this
last case, if one chooses Kij in the form:

Kij = −ǫijk∂k, (3.33)

then the generalized Langevin equation:

Ȧa
i = Kij

δS

δAa
j

+ ηai , (3.34)

yields the correct equilibrium limit to all orders in perturbation theory so
that conventional propagators are nicely obtained [21].

Now, if starting from eq.(3.34) one tries to repeat the steps leading to
the identification of the stochastic partition function associated with the CS
model and the BRST partition function for the TYM theory (eq.(3.22)),
there are difficulties originated in the appearence of non-local terms, related
to the presence of kernel Kij .

There is however an alternative derivation of the CS-TYM connection
presented in Ref.[7]. As we shall see, it is easy to prove, using this approach,
the desired connection in the presence of a kernel. To this end, let us rewrite
Langevin equation (3.34) and the corresponding Chern-Simons action in the
form:

Ȧ = K
δSCS

δA
+ η, (3.35)

SCS = −κπ
∫

M3

d3xK0(x), (3.36)

where for simplicity we have avoided indices and introduced the notation
K0 for the CS Lagrangian for later convenience (compare eq.(2.2)). The
stochastic partition function associated with the generalized Langevin equa-
tion (3.34) reads:

ZStoch[SCS] =
∫

Dηexp[−
∫

d3xd3ydt η(x, t)K−1(x, y)η(y, t)] (3.37)

with K−1(x, y) the inverse of kernel K (in fact, one has to slightly modify
Kij in order to make it inversible by adding a longitudinal part, Kij → Kij =
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−ǫijk∂k + α∂i∂j , and treating α as a gauge fixing parameter). Now, using
eq.(3.34) we can rewrite (3.37) in the form:

ZStoch[SCS] =
∫

DA det(
∂

∂t
−K

δ2SCS

δA2
)× (3.38)

× exp[−tr
∫

d3xd3ydt(ȦK−1Ȧ− 2Ȧ
δSCS

δA

+ K(
δSCS

δA
)2)].

Consider now the (3 + 1)-dimensional action:

S(3+1) = tr
∫

M4

d3xdt
δSCS

δA
Ȧ (3.39)

where gauge fields depend now on an additional (fictitious) time t, t ∈ I ≡
[0, T ] (at the end of the computations one should let T → ∞). It is easy to
verify that action (3.39) is invariant under the following (large) transforma-
tion:

δA = δǫ(x, t) (3.40)

provided

δǫ(x, 0) = δǫ(x, T ) = 0 (3.41)

Let us use the standard BRST procedure in order to fix this large invariance.
The corresponding partition function reads:

ZBRST [S
(3+1)] =

∫

DADbDχDψexp[−S(3+1) − tr
∫

M4

d3xdt{Q, χ(F − b

2
)}]

(3.42)
with b a Lagrange multiplier enforcing the gauge condition (which at the end
will turn to be F = 0) and χ and ψ the ghost fields (which in our previ-
ous derivation were introduced through eqs.(3.13)). BRST transformations
{Q, } are defined as:

{Q,A} = ψ {Q, b} = 0
{Q, χ} = K−1b {Q,ψ} = 0

(3.43)
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With this, we have:

ZBRST [S
(3+1)] = tr

∫

DADbDχDψ × (3.44)

× exp[−S(3+1) −
∫

M4

d3xdt(K−1b(F − b

2
) + χ

δF

δA
ψ)]

or, integrating out b:

ZBRST [S
(3+1)] =

∫

DADχDψexp[−S(3+1) − tr
∫

M4

d3xdt(χ
δF

δA
ψ+

1

2
K−1F 2)]

(3.45)
Then, if we choose as gauge function

F = Ȧ−K
δSCS

δA
(3.46)

we get:

ZBRST [S
(3+1)] =

∫

DAdet(
∂

∂t
−K

δ2SCS

δA2
) ×

×exp[−tr
∫

M4

d3xdt(ȦK−1Ȧ− 2Ȧ
δSCS

δA
+ K(

δSCS

δA
)2) (3.47)

and comparing with eq.(3.38) we have:

ZBRST [S
(3+1)] = ZStoch[SCS] (3.48)

It remains to show that S(3+1) is indeed the classical action associated
with TYM theory. To this end note that:

S(3+1) = Q[T ]−Q[0] (3.49)

where:

Q(t) ≡ −κπ
∫

M3

d3xK0 (3.50)

Now, if we define a gauge field Aµ in (3+1)-dimensions (in the A0 = 0 gauge)
as Aµ = (Ai, 0), one can easily prove [31] that:
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lim
T→∞

Q[T ] = −κπ
∫

M4

d4x∂µKµ (3.51)

where Kµ is the Chern-Simons characteristic class:

Kµ = − 1

16π
trǫµναβ(FναAβ −

2

3
AνAαAβ) (3.52)

(One has to choose initial conditions Ai(x, 0) = 0 so that Q[0] = 0). One
then has, after taking the T → ∞ limit:

S(3+1) = −κπ
∫

M4

d4x∂µKµ (3.53)

or

S(3+1) =
κ

16π
tr

∫

M4

d4x ∗FµνFµν (3.54)

That is, action S(3+1) coincides with the Chern-Pontryagin invariant which
was taken by Baulieu and Singer [33] as starting classical action to obtain,
after BRST quantization, Witten’s TYM theory. Then, eq.(3.48) states the
equivalence between the stochastic partition function for CS theory with ker-
nel K and the partition function for TYM theory (constructed after quanti-
zation of classical action (3.54)).

A comment is here in order: we have not introduced in our derivation
neither ordinary ghosts associated with ordinary gauge invariance nor ghost
for ghost, necessary to fix the second generation gauge-invariance character-
istic of TYM theory. We have ignored them just to present more clearly our
arguments, but these ghosts can be easily included following the same steps
leading from eq.(3.8) to eq.(3.17) and our proof remains still valid. In any
case, we have shown that the equivalence between TYM and CS partition
functions can be also proven when a non-trivial kernel is introduced in the
Langevin equation in order to handle the convergence to equilibrium prob-
lem which arises for CS theory. The interesting fact is that in this approach
convergence can be proven to all orders in perturbation theory [21].

4 Conclusions

In the last few years the interest in Topological Field Theories has prompted
cross-fertilizing investigations both in Mathematics and in Physics. One
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important result of these studies is that they allow to establish multiple
connections between field-theoretical models in different number of space-
time dimensions.

One example of this is the connection discovered by Witten [2] between
d=3 Chern-Simons gauge theory and d=2 rational conformal field theories:
the states in the Hilbert space of the CS theory defined on a compact surface
is the space of conformal blocks of rational conformal field theories. Another
example is the relation between d=3 CS theory and d=4 Topological Yang-
Mills theory [9, 10]: topological invariants in TYM theory correspond to
observables in CS theory.

These connections have been established using different approaches: path-
integral quantization, canonical quantization, stochastic quantization. This
last approach is the one we have employed in the present work to re-analyze
the relation between d=3 CS and d=4 TYM theories (although other relations
like for example that connecting d=1 spin model and d=2 topological sigma
model [35] can be studied using an identical approach).

The original studies [9]-[11] of the CS-TYM connection using SQ were
somehow formal in the sense that the non-convergence of the underlying
stochastic process was disregarded. Later on, the problem of convergence in
SQ of CS theory was solved [21, 22] by introducing appropriate kernels or
regulators so that a correct equilibrium limit can be attained. After these
results, it remained to determine whether the connection between CS and
TYM theories was still valid in the presence of regulators. One of the aims of
the present work was to address to this question and the answer is affirmative.
As we have shown in Section 3, the addition of a regulator 1

Λ2 trF
2
ij to the

CS action does not affect the proof of equivalence between the stochastic
partition function for CS theory and the BRST partition function for TYM
theory.

Indeed, due to the fact that the effective 4-dimensional action Seff is
a Q-exact form even in the presence of a regulator Λ (see eq.(3.19)), the
resulting partition function ZTYM

BRST [Λ] is independent of Λ. Hence, it can be
evaluated in the limit Λ → ∞ where it coincides with the TYM partition
function defined by Witten [1]. In any case, for arbitrary Λ, ZTYM

BRST [Λ] defines
a topological theory, since the corresponding v.e.v. for the energy-momentum
tensor vanishes (see eq.(3.27)) and all topologically invariant observables are
Λ-independent (see eq.(3.29)).

In the course of this work we have also found of interest to study, in
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the same vein as Namiki et al. [26] did for the SQ of Yang-Mills theory,
how convergence for non-Abelian CS model is attained when the regulator is
introduced and the precise way in which standard propagators are obtained
using SQ. We have proven that the addition of a regulator 1

Λ2 trF
2
ij to the

CS action renders the stochastic process associated with the CS Langevin
equation convergent. The proof we have presented is valid up to second order
in perturbation theory and states that the transverse part of the stochastic
diagrams reproduces the standard gluonic CS propagator (see eq.(2.24)). It is
interesting to note that the way in wich stochastic diagrams for CS regulated
theory sum up to the standard propagator is basically identical to the way
it works in the case of pure YM theory.

We have also discussed the alternative regularization scheme which con-
sists in the introduction of a non-trivial kernel. Indeed, an appropriate choice
of the kernel [21, 22] (see eq.(3.33)) yields the correct equilibrium limit to

all orders in perturbation theory. As we have shown, also in this approach
it becomes clear that the equivalence between the stochastic partition func-
tion for CS theory and the BRST partition function for TYM theory can be
proved in the presence of a regulator (in this case a kernel).
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TABLE CAPTIONS.

Table 1: Diagrams for stochastic vertices.

FIGURE CAPTIONS.

Figure 1: Perturbative expansion of Aa
i (k, t).

Figure 2: Graphical representation of Dab
ij (k, t).
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