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Abstract

We extend a previously developed technique for computing

spin-spin critical correlators in the 2d Ising model, to the case of mul-

tiple correlations. This enables us to derive Kadanoff-Ceva’s formula

in a simple and elegant way. We also exploit a doubling procedure in

order to evaluate the critical exponent of the polarization operator in

the Baxter model. Thus we provide a rigorous proof of the relation

between different exponents, in the path-integral framework.
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Since Schultz, Mattis and Lieb [1] showed that Onsager’s solution of
the two-dimensional (2d) Ising model could be simply explained in terms of a
single Majorana fermion, there has been an increasing interest in the study of
2d statistical mechanics models by means of field-theoretical methods. In the
same vein, Luther and Peschel [2] proved that the scaling regime of the eight-
vertex (Baxter [3]) model can be described in the continuum limit in terms
of a Thirring [4] Lagrangian. In this way, the 2d Ising and Baxter models
became fruitful testing grounds for new ideas and computational methods.
In a previous work it has been shown how to evaluate 2-point correlators
in 2d systems [5], through a path-integral approach to bosonisation [6]. In
particular, the critical behavior of the Ising (on-line) spin-spin correlation
function was obtained, by using a slightly modified version of the identity
derived by Zuber and Itzykson [7]:

F2
2(x1, x2) =< σ(x1)σ(x2) >

2=< exp π
∫ x2

x1

dzJ0(z) > (1)

where Jµ is the Dirac fermion current which is obtained out of the original
Majorana fields after squaring the correlator. <> means vacuum expectation
value (v.e.v.) in a model of free massless fermion fields.

The purpose of this note is twofold. On the one hand we extend the
above mentioned method to compute the 2n-point correlator. Thus, we pro-
vide an alternative derivation of Kadanoff-Ceva’s formula [8] that could be
useful when considering certain non-trivial extensions of the Ising model such
as the off-critical [9] and the defected [10] cases. On the other hand we adapt
the doubling technique [11] which led to (1), in order to calculate the cor-
relation function of the polarization operator in the Baxter model [3]. This,
in turn, allows us to provide a path-integral confirmation of the relations
between different critical exponents (those corresponding to energy-density,
crossover and polarization), a result previously established by Drugowich de
Felicio and Koberle [12] in the operator framework.

For the sake of clarity we shall begin by briefly summarizing the main
points of the spin-spin correlator calculation. In ref.[5] the line integral in
(1) was written as

∫ x2

x1

dzJ0(z) =
∫

d2xΨ̄ /AΨ
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where Aµ is an auxiliary vector field with components:

A0(z0, z1) = δ(z0)θ(z1 − x1)θ(x2 − z1)

A1(z0, z1) = 0.

This simple manipulation enabled us to express the squared spin-spin corre-
lator in terms of fermionic determinants:

F2
2(x1, x2) =

det(i/∂ + π/A)

deti/∂
(2)

where the coordinate dependence in the right hand side (r.h.s.) of (2) is, of
course, contained in /A.
Finally, one performs a change of path-integral fermionic variables which
is chosen so as to decouple fermions from the background field Aµ. It is
interesting to note that, in this formulation, the desired 2-point function is
just the square root of the Fujikawa Jacobian JF [13] associated with the
transformation in the fermionic measure:

F2(x1, x2) = JF (x1, x2)
1

2 (3)

As shown in [14], this Jacobian must be computed with a gauge-invariant
regularization prescription in order to avoid a linear divergence (this gauge
invariance is a consequence of a symmetry in the original lattice system [15]).
This procedure then leads to the well-known power law decay of the spin-spin
on-line function, with exponent equal to 1

4
.

Let us now show how to extend the above depicted technique to the
computation of the 2n-point spin correlation function at criticality. To this
end, we follow ref.[16] where it was shown that, after squaring the correlator,
each pair of consecutive spin variables can be identified with an exponential
similar to the one appearing in (1) (See also ref.[17] for a very interesting
study on the doubling procedure and the operator content of fermion fields
in the Ising model). We can then express the squared 2n-point correlator as

F2n
2(x1, ..., x2n) =<

2n
∏

i=1

σ(xi) >
2=<

∏

i=1,odd

exp π
∫ xi+1

xi

dzJ0(z) > (4)
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where, as before, <> in the r.h.s. means v.e.v. to be evaluated in a model
of massless Dirac fermions. It is apparent that each line integral in (4) can
be cast in the form

∫ xi+1

xi

dzJ0(z) =
∫

d2zJµ(z)Aµ(z; xi, xi+1)

where we have introduced the n classical singular potentials

A0(z; xi, xi+1) = δ(z0)θ(z1 − xi)θ(xi+1 − z1)

A1(z; xi, xi+1) = 0.

In order to rewrite (4) in a more compact way we construct a new vector
field Cµ as a simple superposition of Aµ’s:

C0(z) =
2n−1
∑

i=1,odd

A0(z; xi, xi+1) (5)

C1(z) = 0. (6)

Thus, the 2n-point function can be expressed in terms of fermionic determi-
nants:

F2n
2 =

det(i/∂ + π/C)

deti/∂
, (7)

exactly as it happens in the n = 1 case (See (2)), but with Aµ replaced by
Cµ.
The next step is to write Cµ in terms of scalar functions Φc and ηc as

Cµ = ǫµν∂νΦc + ∂µηc. (8)

Now we perform a decoupling change of path-integral fermionic variables
with chiral and gauge parameters Φc and ηc, respectively:

Ψ = e−π(γ5Φc+iηc) χ (9)

Ψ̄ = χ̄ e−π(γ5Φc−iηc) (10)
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A detailed computation of the Fujikawa Jacobian JF associated to this change
has been given many times in the literature (See, for instance, ref.[6]); here
we just write down the final result:

JF = exp
π

2

∫

d2xΦc✷Φc (11)

We then get
F2n

2(x1, ..., x2n) = JF (x1, x2, ..., x2n) (12)

Therefore we see that, in our formulation, the squared multipoint correlator
can be identified with a fermionic Jacobian, exactly as in the 2-point case.
At this stage one has to solve the system of differential equations for Φc and
ηc, obtained by replacing (8) in (5) and (6). Finally, by inserting the result
in (11) and (12), one obtains

F2n(x1, ..., x2n) =

(

∏

even |xij|
∏

odd |xij |

)
1

4

(13)

where i > j and even (odd) refers to a constraint on i+j; i, j = 1, 2, ...2n. We
have also set an ultraviolet cutoff, which divides the coordinate differences,
equal to 1. This formula exactly coincides with the famous Kadanoff-Ceva’s
result [8].

Let us now study the Baxter model [3], which can be considered as two
Ising systems interacting through their spin variables (this model is related,
through a duality transformation, to the Ashkin-Teller model [18]). As shown
by Luther and Peschel [2], the scaling limit of this model is described by the
Thirring [4] interaction:

Lint = −λJµJµ (14)

where, as before, Jµ is the Dirac fermionic current and the coupling constant
λ is proportional to the four-spin coupling of the original lattice model. The
Baxter model is known to have two natural order parameters, the magneti-
zation and the polarization < P >=< σisi >, where σi and si are the spin
operators of each Ising system. In the continuous formulation the 2-point
correlator for the polarization operator is given by

< P (x)P (y) >λ=< σxsxσysy >λ
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where <>λ means v.e.v. with respect to the fermionic model defined by (14).
For λ = 0 the above expression becomes the squared Ising correlator. This
suggests the following identification:

< P (0)P (R) >λ=< exp π
∫ R

0
dzJ0(z) >λ

The r.h.s. of the precedent equation can be computed by employing a slightly
modified version of the method described above. Indeed, it is easy to show
that the introduction of an auxiliary vector field Aµ through a Hubbard-
Stratonovich identity, allows to write

< P (0)P (R) >λ=
Z

Z ′
(15)

with

Z =
∫

DAµ e−
∫

d2xA2

2 det
(

i/∂ + (2λ)1/2/B
)

(16)

and

Z ′ =
∫

DAµ e−
∫

d2xA2

2 det
(

i/∂ + (2λ)1/2/A
)

, (17)

where

Bµ = ǫµν∂νΦB + ∂µηB

Aµ = ǫµν∂νΦ + ∂µη

ΦB = Φ+
π√
2λ

Φc

ηB = η +
π√
2λ

ηc.

Let us stress that, in contrast to the previous calculation of the Ising corre-
lator, in the present case one has to consider quantum fields Φ and η whose
dynamics plays a crucial role in the following computation. Concerning the
classical functions Φc and ηc, they can be determined exactly as in the Ising
case, i.e. using formulae (5), (6) and (8) for n = 1.
We shall now turn to treat the fermionic determinants appearing in (16) and
(17) by means of decoupling changes of fermionic variables, similar to the
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one defined by equations (9) and (10), but with parameters ΦB and ηB in
the form:

Ψ = e−
√
2λ(γ5ΦB+iηB) χ

Ψ̄ = χ̄ e−
√
2λ(γ5ΦB−iηB)

The corresponding Jacobian is given by

JF = exp
λ

π

∫

d2x(Φ +
π√
2λ

Φc)✷(Φ +
π√
2λ

Φc)

Of course, this result must be used in (16), whereas the same expression, but
with Φc = 0 is to be employed in (17). In so doing one readily discovers that,
due to the fact that JF does not depend on the field η, this field becomes
decoupled from Φ in both Z and Z ′. As the corresponding functional integrals
over η coincide, they cancelled out when performing the quotient in equation
(15) and one then gets

< P (0)P (R) >λ=< P (0)P (R) >0 < e
√
2λ
∫

d2xΦ∂µ∂µΦc >

where the first factor in the r.h.s. corresponds to the doubled Ising correlator,
whereas the second one is a v.e.v. to be evaluated for a model of free scalars
Φ with Lagrangian density given by

L = (
1

2
+

λ

π
)∂µΦ∂µΦ

As it is well-known this computation can be done by a standard shift in the
bosonic variable Φ. The final result is

< P (0)P (R) >λ= (
a

R
)2∆P (18)

where a is an ultraviolet cutoff and ∆P is the critical exponent associated to
the polarization operator, for which we get:

∆P =
1

4

1

1 + 2λ
π

(19)

Recalling the results for the energy-density (ǫ) and the crossover (Cr) oper-
ators [5] [12], one obtains

4∆P = ∆ǫ = (∆Cr)
−1 (20)
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which is the relation predicted by several authors [19] [20] and first derived
by Drugowich de Felicio and Koberle [12] in the operator framework.

In summary, we have extended a functional approach [5], previously used
to compute 2-point functions in 2d critical systems, to the case in which mul-
tipoint correlators are considered. In particular, we provided an alternative
derivation of Kadanoff and Ceva’s result [8] for the 2n-spin on-line function.
Our contribution can be viewed as a complement to previous works based on
operational bosonisation, where 4-point functions were explicitly calculated
[7] [21]. We feel that our formulation could be more practical when consider-
ing, for instance non-critical correlations [9]. Indeed, in this case one expects
to have a temperature-dependent (”massive”) determinant, that can be eas-
ily handled by following the perturbative strategy of ref.[22]. The study of
multipoint correlators in the defected Ising model [10] can be also envisaged
in our scheme.
We have also computed the 2-point function describing the critical fluctua-
tions of the Baxter polarization operator. Thus we obtained its corresponding
critical index. This completed the path-integral proof of the relationship be-
tween energy-density, crossover and polarization exponents, which had been
initiated in ref.[5].
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