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Simple formulae for the 0

+

! 0

+

double beta de
ay matrix elements, as a fun
tion

of the parti
le-parti
le strength g

pp

, have been designed within the quasiparti
le

random phase approximation. The 2� amplitude is a bilinear fun
tion of g

pp

, and

all 0� moments behave as ratios of a linear fun
tion and the square root of another

linear fun
tion of g

pp

. It is suggested that these results are of general validity and

that any modi�
ations of the nu
lear hamiltonian or the 
on�guration spa
e 
annot

lead to a di�erent fun
tional dependen
e.
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The neutrinoless double beta de
ay (0���) is very interesting for several reasons. In

the �rst pla
e, this de
ay mode is viable only when the neutrino is a massive Majorana

parti
le. As su
h, it 
onstitutes a 
riti
al tou
hstone for various gauge models that go

beyond the standard SU(2)

L

� U(1) gauge model of ele
toweak intera
tions. Se
ondly, the

neutrinos with nonzero masses have many interesting 
onsequen
es for the history of the

early universe, in the evolution of stellar obje
ts, and the supernovae astrophysi
s. Thirdly,

besides the issue of m

�

6= 0, there are other open questions in neutrino physi
s the answers

to whi
h depend on 0��� de
ay, su
h as: Why does nature favor only left-handed 
urrents?

Does the majoron exist? Yet, we shall not understand the 0��� de
ay unless we understand

the two neutrino double beta de
ay (2���). The last one is the rarest pro
ess observed so

far in nature and o�ers a unique opportunity for testing the nu
lear physi
s te
hniques for

half-lives

>

�

10

20

years. Thus, the 
omprehension of the �� transition me
hanism 
annot

but help advan
e knowledge of physi
s in general.

In re
ent years the quasiparti
le random phase approximation (QRPA) has been the

most popular method to deal with the problem of 0

+

! 0

+

double beta de
ay [1{9℄. Within

this model the ��-de
ay amplitudes are extremely sensitive to the intera
tion parameter

in the parti
le-parti
le (PP) 
hannel, usually denoted by g

pp

. Independently of the nu
leus

that de
ays, of the residual intera
tion that is used, and of the 
on�guration spa
e that is

employed, all the QRPA 
al
ulations done so far exhibit the following general features.

(i) Close to the "natural" value for g

pp

(g

pp

�

=

1) the 2��� moments have �rst a zero and

latter on a pole at whi
h the QRPA 
ollapses.

(ii) The zeros and poles of the 0��� moments for the virtual states with spin and parity

J

�

= 1

+

are strongly 
orrelated with the zeros and poles of the 2��� moments.

(iii) The 0��� moments of multipolarity J

�

6= 0

+

; 1

+

also possess zeros and poles but at

signi�
antly larger values of g

pp

.

(iv) As a fun
tion of g

pp

, both the 2��� and 0��� moments always present similar

shapes.

Fig. 1 illustrates the behaviour of the 0

+

! 0

+

�� matrix elements for several nu
lei.
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In the upper panel the 2��� moments (M

2�

) are shown. The other two panels 
ontain the

0��� moments of multipolarity J

�

= 1

+

(M

0�

(J

�

= 1

+

)) and total 0��� moments (M

0�

),

indu
ed by the neutrino mass me
hanism. These results have been obtained with a Æ for
e,

using standard parametrization presented elsewhere [10℄. Instead of the parameter g

pp

, I

use here the ratio between the triplet and singlet 
oupling strengths in the PP 
hannel, i.e.,

t = v

t

=v

s

. Cal
ulations with �nite range intera
tions yield similar results [3{6℄.

More that on
e [7{9℄ we have pointed out that the �� amplitudes go to zero within the

QRPA be
ause of the restoration of both the isospin and SU(4) symmetries. We have also

suggested a physi
al 
riterion for �xing the PP 
oupling strength based on the maximal

restoration of the SU(4) symmetry (t = t

sym

). Yet, the general 
hara
teristi
s mentioned

above suggest the existen
e of some additional regularities, and the present 
on
ern re
e
ts

upon a global understanding of the �� transition me
hanism within the QRPA. Only in

this way one 
an get a full 
ontrol of the 
al
ulations, whi
h is one of the prerequisites for

a reliable estimate of the nu
lear matrix elements.

To begin with, I resort to the single mode model (SMM) des
ription [9℄ of the ��-de
ays

in the

48

Ca!

48

T i and

100

Mo!

100

Ru systems. This is the simplest version of the QRPA,

in whi
h there is only one intermediate state for ea
h J

�

.

In the SMM the 0� and 2� moments for the 0

+

! 0

+

transitions read [9℄

M

2�

=M

0

2�

 

!

0

!

1

+

!

2

 

1 +

G(1

+

)

!

0

!

; (1)

M

0�

(J

+

) =M

0

0�

(J

+

)

!

0

!

J

+

 

1 +

G(J

+

)

!

0

!

; (2)

where M

0

2�

and M

0

0�

(J

+

) are the 
orresponding unperturbed matrix elements. Here

G(J

+

) � G(pn; pn; J

+

) are the PP matrix elements, !

0

is the unperturbed energy, and

!

J

+

are the perturbed energies. I will assume that the isospin symmetry is stri
tly 
on-

served, in whi
h 
ase M

0�

(0

+

) � 0. This statement is also valid for full 
al
ulations and

therefore no further referen
e will be made to the intermediate states J

�

= 0

+

. When the

pairing fa
tors are estimated in the usual manner, one gets
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! = !

0

q

1 + F (34 + 9F=!

0

)=25!

0

+ 16G(1 + F=!

0

)=25!

0

; (3)

and

! = !

0

q

1 + 4F (45 + F=!

0

)=225!

0

+G(270 + 172F=!

0

+ 49G=!

0

)=225!

0

; (4)

for the single pair 
on�gurations [0f

7=2

(n)0f

7=2

(p)℄

J

+

in

48

Ca and [0g

7=2

(n)0g

9=2

(p)℄

J

+

in

100

Mo, respe
tively. Therefore, while the numerators in Eq. (2) depend only on the PP

matrix elements, their denominators depend on the parti
le-hole (PH) matrix elements

F (J

+

) � F (pn; pn; J

+

), as well. The numbers in the last two equations arise from the

pairing fa
tors. As illustrated in Fig. 2, the SMM is a fair �rst-order approximation for the

2��� de
ays in

48

Ca and

100

Mo nu
lei.

The role played by the ground state 
orrelations (GSC) in building up Eqs. (1) and (2)


an be summarized as follows:

(a) The numerator, i.e., the fa
tor (1 + G=!

0

), 
omes from the interferen
e between the

forward and ba
kward going 
ontributions. These 
ontribute 
oherently in the PP 
hannel

and totally out of phase in the PH 
hannel.

(b) The G

2

and F

2

terms in the denominator are very strongly quen
hed by the GSC, while

the GF term is enhan
ed by the same e�e
t. In parti
ular, for

48

Ca the term quadrati
 in

G does not 
ontribute at all.

It 
an be stated therefore that, within the SMM and be
ause of the GSC, the 2� matrix

element is mainly a bilinear fun
tion of G(1

+

). Besides, it passes through zero at G(1

+

) =

�!

0

and has a pole when !

1

+

= 0. Similarly, allM

0�

(J

+

) moments turn out to be quotients

of a linear fun
tion of G(J

+

) and the square root of another linear fun
tion of G(J

+

). Both

the zero and the pole of M

0�

(1

+

) matrix element 
oin
ide with those of the 2� moment.

One also should bear in mind that the magnitudes of the intera
tion matrix elements G(J)

and F (J) de
rease fairly rapidly when J in
reases. Thus the quen
hing e�e
t, indu
ed by

the PP intera
tion, mainly 
on
erns the allowed 0� moment. For higher order multipoles it


ould be reasonable to expand the denominator in Eq. (2) in powers of G(J

+

)=!

0

and to
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keep only the linear term. This term strongly 
an
els with a similar term in the numerator

and the net result is a weak linear dependen
e of the M

0�

(J

+

6= 1

+

) moments on the PP

strength. Obviously, for the last approximation to be valid, the parameter t (or g

pp

) has to

be small enough to keep !

1

+

real. Brie
y, the SMM 
an a

ount for all four points raised

above, and leads to the following approximations for the dependen
e of the �� amplitudes

on the PP strength

M

2�

�

=

M

2�

(t = 0)

1� t=t

0

1� t=t

1

; (5)

and

M

0�

�

=

M

0�

(J

�

= 1

+

; t = 0)

1� t=t

0

q

1� t=t

1

+M

0�

(J

�

6= 1

+

; t = 0)(1� t=t

2

); (6)

where t

1

� t

0

and t

2

� t

1

, and the 
ondition t � t

1

is ful�lled. It is self evident that these

formulae do not depend on the type of residual intera
tion, and that analogous expressions

are obtained for the �� matrix elements when the parameter g

pp

is used (with g

pp

's for t's).

The 
ommon behavior of the �� moments for all nu
lei, together with the similarity

between the SMM and the full 
al
ulations for

48

Ca and

100

Mo (shown in Figs. 1 and 2,

respe
tively), suggests to go a step further and try to express the exa
t 
al
ulations within

the framework of Eqs. (5) and (6). At a �rst glan
e this seems a diÆ
ult task, be
ause: (i)

the SMM does not in
lude the e�e
t of the spin-orbit splitting, whi
h plays a very important

role in the ��-de
ay through the dynami
al breaking of the SU(4) symmetry, and (ii) the

full 
al
ulations involve a rather large 
on�guration spa
e (of the order of 50 basis ve
tors).

However, the reliability of formulae (5) and (6) is surprising. The results are presented in

Table I. In the upper, middle, and lower panels I show the values of the parameters t

0

, t

1

,

and t

2

that �t the �� moments displayed in the same order in Fig. 1. I also list the values of

the momentsM

2�

,M

0�

(J

�

= 1

+

), andM

0�

(J

+

6= 1

+

) for t = 0, together with the quantity

N =

q

P

t=0

[M

exa
t

(t)�M

fit

(t)℄

2

that is an index of the goodness of the �t. The largest

error o

urs for

100

Mo. Still, even here it is not possible to distinguish visually the exa
t
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urves from the �tted ones. (This makes needless the exhibition of the adjusted 
urves.) In

fa
t, for this nu
leus the proposed formulae reprodu
e better the exa
t �� moments than

those obtained from the SMM. It is also gratifying that all three �ts yield quite similar

values for t

0

and t

1

. The di�eren
es are at most of the order of 10%.

A 
omment regarding the full QRPA 
al
ulations might be appropriate. The matrix

elementM

2�


an always be expressed by the ratio of two polynomials in G(1

+

) and F (1

+

)

(see Eq. (8) of Ref. [8℄). For a n dimensional 
on�guration spa
e these polynomials are of

degrees 2n-1 and 2n, respe
tively. The above results seem to indi
ate that 
an
ellations of

the type (a) and (b) are likely to be operative to all orders, and that the linear terms in

G(1

+

) are again the dominant ones. General expressions for the 0� moments, as a fun
tion

of the PP and PH matrix elements, are not known, but a similar 
an
ellation may be taking

pla
e in these as well.

In summary, I have designed the Eqs. (5) and (6) and veri�ed that they ni
ely reprodu
e

the full 
al
ulations of the �� matrix elements evaluated with a zero range for
e. I also feel

that they are of general validity, and that any modi�
ation to the nu
lear hamiltonian or to

the 
on�guration spa
e 
an only 
hange the 
oeÆ
ients in these formulae, but will not lead

to a di�erent fun
tional dependen
e. Thus, we possess now a global understanding of the

�� transition me
hanism (and a full 
ontrol of the 
al
ulations) within the QRPA, whi
h

was the aim of this letter.

It should be stressed that for pra
ti
al appli
ation one always has to perform the 
omplete


al
ulation in order to do the �t. The real advantages of the analyti
 formulas (5) and (6)

are:

1) they exhibit, in a very simple way, the main physi
s of the ��-de
ay in the QRPA model,

and summarize the 
ommon features of the 
al
ulations done until now, and

2) they establish the potential and limits of the QRPA method, and give a hint of dire
tion

that should follow the future theoreti
al studies.

The pole at t = t

1

is the response of the QRPA to the nonphysi
al situation, in whi
h

the energy of the lowest virtual J

�

= 1

+

state be
omes

�

=

(E

i

+ E

f

)=2, where E

i

and E

f

6



are, respe
tively, the energies of the initial and �nal states. There is no reason in prin
iple

why this should not happen in a nu
lear model 
al
ulation (for a suÆ
iently large value

of t). But, within the QRPA approa
h the pole develops 
lose to the "natural" value of

t, whi
h makes the �� moments to vary rather abruptly in the physi
ally relevant interval

t

0

>

�

t

>

�

t

1

. Certainly, this is a weak point of the QRPA [11℄ and it is not 
lear yet how it


ould be 
ir
umvented.

A qualitative agreement, between the shell model and QRPA results for the 2��� matrix

elements in

48

Ca, has been reported [2,5℄. When applied to medium and heavy nu
lei, the

shell model is always a

ompanied by a very severe trun
ation of the 
on�guration spa
e, in

order to be
ome tra
table. Contrarily, the QRPA is a readily a

essible and fully 
ontrolled

approa
h, and as su
h it 
alls for further developments. E�orts in this dire
tion have re
ently

been done by extending the model to des
ribe the 2� de
ays to an ex
ited �nal state [12℄,

and by in
luding the 
ore polarization 
orre
tions to the e�e
tive intera
tion [13℄.
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FIGURES

FIG. 1. Cal
ulated double beta de
ay matrix elements M

2�

(in units of [MeV ℄

�1

),

M

0�

(J

�

= 1

+

) and M

0�

, as a fun
tion of the parti
le-parti
le S = 1, T = 0 
oupling 
on-

stant t. The

48

Ca nu
leus has been evaluated within 2�h! and 3�h! major os
illator shells. For

the remaining systems I have adopted the os
illator shells 3�h! and 4�h! plus the 0h

9=2

and 0h

7=2

intruder orbitals from the 5�h! shell. The "physi
al values" of the parameter t (t

sym

) are shown in

the last row of Table I.

FIG. 2. The exa
t (solid lines) and SMM (dashed lines) matrix elements M

2�

(in units of

[MeV ℄

�1

), as a fun
tion of the 
oupling 
onstant t=t

0

(de�ned in the text).
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TABLES

TABLE I. The 
oeÆ
ients t

0

, t

1

, and t

2

and the matrix elements M

2�

, M

0�

(J

�

= 1

+

), and

M

0�

(J

�

6= 1

+

) for t = 0, in the parametrization of the 2� and 0� �� moments. The quantity N

is the norm of the residuals, i.e., the square root of the sum of squares of the residuals. The exa
t

and �tted matrix elements are equal at t = 0, and the strength t is varied, by steps of �t = 0:1, up

to the 
ollapse of the QRPA. The matrix elementsM

2�

are given in units of [MeV ℄

�1

. The values

of the PP 
oupling strength, whi
h lead to maximal restoration of the SU(4) symmetry (t = t

sym

),

are shown in the last row.

48

Ca

76

Ge

82

Se

90

Mo

128

Te

130

Te

�M

2�

0.173 0.308 0.321 0.451 0.381 0.331

t

0

1.394 1.161 1.206 1.469 1.265 1.261

t

1

1.754 1.680 1.691 1.649 2.131 2.268

N 3:26� 10

�2

1:08� 10

�3

7:44� 10

�5

1:04 � 10

�2

2:31� 10

�3

7:06� 10

�3

�M

0�

(J

�

= 1

+

) 1.506 4.242 4.179 5.015 4.599 4.182

t

0

1.244 1.230 1.211 1.346 1.407 1.408

t

1

1.765 1.693 1.720 1.741 2.228 2.364

N 1:12� 10

�2

4:87� 10

�3

3:21� 10

�2

2:21 � 10

�1

2:37� 10

�2

6:34� 10

�2

�M

0�

(J

�

6= 1

+

) 1.501 6.924 7.495 9.762 7.997 7.486

t

0

1.227 1.155 1.141 1.372 1.377 1.407

t

1

1.768 1.741 1.764 1.711 2.236 2.345

t

2

12.82 13.23 12.14 6.527 13.39 11.08

N 1:92� 10

�2

2:46� 10

�2

2:20� 10

�2

1:11 � 10

�1

1:68� 10

�2

3:50� 10

�2

t

sym

�

=

1:50

�

=

1:25

�

=

1:30

�

=

1:50

�

=

1:40

�

=

1:40
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