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Simple formulae for the 0

+

! 0

+

double beta deay matrix elements, as a funtion

of the partile-partile strength g

pp

, have been designed within the quasipartile

random phase approximation. The 2� amplitude is a bilinear funtion of g

pp

, and

all 0� moments behave as ratios of a linear funtion and the square root of another

linear funtion of g

pp

. It is suggested that these results are of general validity and

that any modi�ations of the nulear hamiltonian or the on�guration spae annot

lead to a di�erent funtional dependene.
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The neutrinoless double beta deay (0���) is very interesting for several reasons. In

the �rst plae, this deay mode is viable only when the neutrino is a massive Majorana

partile. As suh, it onstitutes a ritial touhstone for various gauge models that go

beyond the standard SU(2)

L

� U(1) gauge model of eletoweak interations. Seondly, the

neutrinos with nonzero masses have many interesting onsequenes for the history of the

early universe, in the evolution of stellar objets, and the supernovae astrophysis. Thirdly,

besides the issue of m

�

6= 0, there are other open questions in neutrino physis the answers

to whih depend on 0��� deay, suh as: Why does nature favor only left-handed urrents?

Does the majoron exist? Yet, we shall not understand the 0��� deay unless we understand

the two neutrino double beta deay (2���). The last one is the rarest proess observed so

far in nature and o�ers a unique opportunity for testing the nulear physis tehniques for

half-lives

>

�

10

20

years. Thus, the omprehension of the �� transition mehanism annot

but help advane knowledge of physis in general.

In reent years the quasipartile random phase approximation (QRPA) has been the

most popular method to deal with the problem of 0

+

! 0

+

double beta deay [1{9℄. Within

this model the ��-deay amplitudes are extremely sensitive to the interation parameter

in the partile-partile (PP) hannel, usually denoted by g

pp

. Independently of the nuleus

that deays, of the residual interation that is used, and of the on�guration spae that is

employed, all the QRPA alulations done so far exhibit the following general features.

(i) Close to the "natural" value for g

pp

(g

pp

�

=

1) the 2��� moments have �rst a zero and

latter on a pole at whih the QRPA ollapses.

(ii) The zeros and poles of the 0��� moments for the virtual states with spin and parity

J

�

= 1

+

are strongly orrelated with the zeros and poles of the 2��� moments.

(iii) The 0��� moments of multipolarity J

�

6= 0

+

; 1

+

also possess zeros and poles but at

signi�antly larger values of g

pp

.

(iv) As a funtion of g

pp

, both the 2��� and 0��� moments always present similar

shapes.

Fig. 1 illustrates the behaviour of the 0

+

! 0

+

�� matrix elements for several nulei.
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In the upper panel the 2��� moments (M

2�

) are shown. The other two panels ontain the

0��� moments of multipolarity J

�

= 1

+

(M

0�

(J

�

= 1

+

)) and total 0��� moments (M

0�

),

indued by the neutrino mass mehanism. These results have been obtained with a Æ fore,

using standard parametrization presented elsewhere [10℄. Instead of the parameter g

pp

, I

use here the ratio between the triplet and singlet oupling strengths in the PP hannel, i.e.,

t = v

t

=v

s

. Calulations with �nite range interations yield similar results [3{6℄.

More that one [7{9℄ we have pointed out that the �� amplitudes go to zero within the

QRPA beause of the restoration of both the isospin and SU(4) symmetries. We have also

suggested a physial riterion for �xing the PP oupling strength based on the maximal

restoration of the SU(4) symmetry (t = t

sym

). Yet, the general harateristis mentioned

above suggest the existene of some additional regularities, and the present onern reets

upon a global understanding of the �� transition mehanism within the QRPA. Only in

this way one an get a full ontrol of the alulations, whih is one of the prerequisites for

a reliable estimate of the nulear matrix elements.

To begin with, I resort to the single mode model (SMM) desription [9℄ of the ��-deays

in the

48

Ca!

48

T i and

100

Mo!

100

Ru systems. This is the simplest version of the QRPA,

in whih there is only one intermediate state for eah J

�

.

In the SMM the 0� and 2� moments for the 0

+

! 0

+

transitions read [9℄

M

2�

=M

0

2�

 

!

0

!

1

+

!

2

 

1 +

G(1

+

)

!

0

!

; (1)

M

0�

(J

+

) =M

0

0�

(J

+

)

!

0

!

J

+

 

1 +

G(J

+

)

!

0

!

; (2)

where M

0

2�

and M

0

0�

(J

+

) are the orresponding unperturbed matrix elements. Here

G(J

+

) � G(pn; pn; J

+

) are the PP matrix elements, !

0

is the unperturbed energy, and

!

J

+

are the perturbed energies. I will assume that the isospin symmetry is stritly on-

served, in whih ase M

0�

(0

+

) � 0. This statement is also valid for full alulations and

therefore no further referene will be made to the intermediate states J

�

= 0

+

. When the

pairing fators are estimated in the usual manner, one gets
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! = !

0

q

1 + F (34 + 9F=!

0

)=25!

0

+ 16G(1 + F=!

0

)=25!

0

; (3)

and

! = !

0

q

1 + 4F (45 + F=!

0

)=225!

0

+G(270 + 172F=!

0

+ 49G=!

0

)=225!

0

; (4)

for the single pair on�gurations [0f

7=2

(n)0f

7=2

(p)℄

J

+

in

48

Ca and [0g

7=2

(n)0g

9=2

(p)℄

J

+

in

100

Mo, respetively. Therefore, while the numerators in Eq. (2) depend only on the PP

matrix elements, their denominators depend on the partile-hole (PH) matrix elements

F (J

+

) � F (pn; pn; J

+

), as well. The numbers in the last two equations arise from the

pairing fators. As illustrated in Fig. 2, the SMM is a fair �rst-order approximation for the

2��� deays in

48

Ca and

100

Mo nulei.

The role played by the ground state orrelations (GSC) in building up Eqs. (1) and (2)

an be summarized as follows:

(a) The numerator, i.e., the fator (1 + G=!

0

), omes from the interferene between the

forward and bakward going ontributions. These ontribute oherently in the PP hannel

and totally out of phase in the PH hannel.

(b) The G

2

and F

2

terms in the denominator are very strongly quenhed by the GSC, while

the GF term is enhaned by the same e�et. In partiular, for

48

Ca the term quadrati in

G does not ontribute at all.

It an be stated therefore that, within the SMM and beause of the GSC, the 2� matrix

element is mainly a bilinear funtion of G(1

+

). Besides, it passes through zero at G(1

+

) =

�!

0

and has a pole when !

1

+

= 0. Similarly, allM

0�

(J

+

) moments turn out to be quotients

of a linear funtion of G(J

+

) and the square root of another linear funtion of G(J

+

). Both

the zero and the pole of M

0�

(1

+

) matrix element oinide with those of the 2� moment.

One also should bear in mind that the magnitudes of the interation matrix elements G(J)

and F (J) derease fairly rapidly when J inreases. Thus the quenhing e�et, indued by

the PP interation, mainly onerns the allowed 0� moment. For higher order multipoles it

ould be reasonable to expand the denominator in Eq. (2) in powers of G(J

+

)=!

0

and to
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keep only the linear term. This term strongly anels with a similar term in the numerator

and the net result is a weak linear dependene of the M

0�

(J

+

6= 1

+

) moments on the PP

strength. Obviously, for the last approximation to be valid, the parameter t (or g

pp

) has to

be small enough to keep !

1

+

real. Briey, the SMM an aount for all four points raised

above, and leads to the following approximations for the dependene of the �� amplitudes

on the PP strength

M

2�

�

=

M

2�

(t = 0)

1� t=t

0

1� t=t

1

; (5)

and

M

0�

�

=

M

0�

(J

�

= 1

+

; t = 0)

1� t=t

0

q

1� t=t

1

+M

0�

(J

�

6= 1

+

; t = 0)(1� t=t

2

); (6)

where t

1

� t

0

and t

2

� t

1

, and the ondition t � t

1

is ful�lled. It is self evident that these

formulae do not depend on the type of residual interation, and that analogous expressions

are obtained for the �� matrix elements when the parameter g

pp

is used (with g

pp

's for t's).

The ommon behavior of the �� moments for all nulei, together with the similarity

between the SMM and the full alulations for

48

Ca and

100

Mo (shown in Figs. 1 and 2,

respetively), suggests to go a step further and try to express the exat alulations within

the framework of Eqs. (5) and (6). At a �rst glane this seems a diÆult task, beause: (i)

the SMM does not inlude the e�et of the spin-orbit splitting, whih plays a very important

role in the ��-deay through the dynamial breaking of the SU(4) symmetry, and (ii) the

full alulations involve a rather large on�guration spae (of the order of 50 basis vetors).

However, the reliability of formulae (5) and (6) is surprising. The results are presented in

Table I. In the upper, middle, and lower panels I show the values of the parameters t

0

, t

1

,

and t

2

that �t the �� moments displayed in the same order in Fig. 1. I also list the values of

the momentsM

2�

,M

0�

(J

�

= 1

+

), andM

0�

(J

+

6= 1

+

) for t = 0, together with the quantity

N =

q

P

t=0

[M

exat

(t)�M

fit

(t)℄

2

that is an index of the goodness of the �t. The largest

error ours for

100

Mo. Still, even here it is not possible to distinguish visually the exat
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urves from the �tted ones. (This makes needless the exhibition of the adjusted urves.) In

fat, for this nuleus the proposed formulae reprodue better the exat �� moments than

those obtained from the SMM. It is also gratifying that all three �ts yield quite similar

values for t

0

and t

1

. The di�erenes are at most of the order of 10%.

A omment regarding the full QRPA alulations might be appropriate. The matrix

elementM

2�

an always be expressed by the ratio of two polynomials in G(1

+

) and F (1

+

)

(see Eq. (8) of Ref. [8℄). For a n dimensional on�guration spae these polynomials are of

degrees 2n-1 and 2n, respetively. The above results seem to indiate that anellations of

the type (a) and (b) are likely to be operative to all orders, and that the linear terms in

G(1

+

) are again the dominant ones. General expressions for the 0� moments, as a funtion

of the PP and PH matrix elements, are not known, but a similar anellation may be taking

plae in these as well.

In summary, I have designed the Eqs. (5) and (6) and veri�ed that they niely reprodue

the full alulations of the �� matrix elements evaluated with a zero range fore. I also feel

that they are of general validity, and that any modi�ation to the nulear hamiltonian or to

the on�guration spae an only hange the oeÆients in these formulae, but will not lead

to a di�erent funtional dependene. Thus, we possess now a global understanding of the

�� transition mehanism (and a full ontrol of the alulations) within the QRPA, whih

was the aim of this letter.

It should be stressed that for pratial appliation one always has to perform the omplete

alulation in order to do the �t. The real advantages of the analyti formulas (5) and (6)

are:

1) they exhibit, in a very simple way, the main physis of the ��-deay in the QRPA model,

and summarize the ommon features of the alulations done until now, and

2) they establish the potential and limits of the QRPA method, and give a hint of diretion

that should follow the future theoretial studies.

The pole at t = t

1

is the response of the QRPA to the nonphysial situation, in whih

the energy of the lowest virtual J

�

= 1

+

state beomes

�

=

(E

i

+ E

f

)=2, where E

i

and E

f
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are, respetively, the energies of the initial and �nal states. There is no reason in priniple

why this should not happen in a nulear model alulation (for a suÆiently large value

of t). But, within the QRPA approah the pole develops lose to the "natural" value of

t, whih makes the �� moments to vary rather abruptly in the physially relevant interval

t

0

>

�

t

>

�

t

1

. Certainly, this is a weak point of the QRPA [11℄ and it is not lear yet how it

ould be irumvented.

A qualitative agreement, between the shell model and QRPA results for the 2��� matrix

elements in

48

Ca, has been reported [2,5℄. When applied to medium and heavy nulei, the

shell model is always aompanied by a very severe trunation of the on�guration spae, in

order to beome tratable. Contrarily, the QRPA is a readily aessible and fully ontrolled

approah, and as suh it alls for further developments. E�orts in this diretion have reently

been done by extending the model to desribe the 2� deays to an exited �nal state [12℄,

and by inluding the ore polarization orretions to the e�etive interation [13℄.
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FIGURES

FIG. 1. Calulated double beta deay matrix elements M

2�

(in units of [MeV ℄

�1

),

M

0�

(J

�

= 1

+

) and M

0�

, as a funtion of the partile-partile S = 1, T = 0 oupling on-

stant t. The

48

Ca nuleus has been evaluated within 2�h! and 3�h! major osillator shells. For

the remaining systems I have adopted the osillator shells 3�h! and 4�h! plus the 0h

9=2

and 0h

7=2

intruder orbitals from the 5�h! shell. The "physial values" of the parameter t (t

sym

) are shown in

the last row of Table I.

FIG. 2. The exat (solid lines) and SMM (dashed lines) matrix elements M

2�

(in units of

[MeV ℄

�1

), as a funtion of the oupling onstant t=t

0

(de�ned in the text).
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TABLES

TABLE I. The oeÆients t

0

, t

1

, and t

2

and the matrix elements M

2�

, M

0�

(J

�

= 1

+

), and

M

0�

(J

�

6= 1

+

) for t = 0, in the parametrization of the 2� and 0� �� moments. The quantity N

is the norm of the residuals, i.e., the square root of the sum of squares of the residuals. The exat

and �tted matrix elements are equal at t = 0, and the strength t is varied, by steps of �t = 0:1, up

to the ollapse of the QRPA. The matrix elementsM

2�

are given in units of [MeV ℄

�1

. The values

of the PP oupling strength, whih lead to maximal restoration of the SU(4) symmetry (t = t

sym

),

are shown in the last row.

48

Ca

76

Ge

82

Se

90

Mo

128

Te

130

Te

�M

2�

0.173 0.308 0.321 0.451 0.381 0.331

t

0

1.394 1.161 1.206 1.469 1.265 1.261

t

1

1.754 1.680 1.691 1.649 2.131 2.268

N 3:26� 10

�2

1:08� 10

�3

7:44� 10

�5

1:04 � 10

�2

2:31� 10

�3

7:06� 10

�3

�M

0�

(J

�

= 1

+

) 1.506 4.242 4.179 5.015 4.599 4.182

t

0

1.244 1.230 1.211 1.346 1.407 1.408

t

1

1.765 1.693 1.720 1.741 2.228 2.364

N 1:12� 10

�2

4:87� 10

�3

3:21� 10

�2

2:21 � 10

�1

2:37� 10

�2

6:34� 10

�2

�M

0�

(J

�

6= 1

+

) 1.501 6.924 7.495 9.762 7.997 7.486

t

0

1.227 1.155 1.141 1.372 1.377 1.407

t

1

1.768 1.741 1.764 1.711 2.236 2.345

t

2

12.82 13.23 12.14 6.527 13.39 11.08

N 1:92� 10

�2

2:46� 10

�2

2:20� 10

�2

1:11 � 10

�1

1:68� 10

�2

3:50� 10

�2

t

sym

�

=

1:50

�

=

1:25

�

=

1:30

�

=

1:50

�

=

1:40

�

=

1:40
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