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Abstract

Following the canonical quantization procedure for a tachyon field,

the usual Hamiltonian and the creation and annihilation operators are

obtained. The observation that the mass hyperboloid p2 −m2 = 0 is

one-sheeted, as opposed to the case of bradyons where p2 +m2 = 0 is

two-sheeted, leads to the construction of a base which is unbounded

for negative as well as for positive energies. There is a zero-energy

eigenfunction from which all other states can be constructed by re-

peated application of decreasing or increasing operators; within this

Fock space the vacuum expectation value of the chronological product

of field operators is shown to coincide with Cauchy’s principal-value

Green’s function.

PACS: 14.80; 14.80.Pb

∗This work was partially supported by Consejo Nacional de Investigaciones Cient́ıficas

and Comisión de Investigaciones Cient́ıficas de la Pcia. de Buenos Aires; Argentina.

1

http://arxiv.org/abs/1708.03192v2


1 Introduction

Tachyon field excitations were considered in the literature every now and
then. For the classical theory of tachyons and a corresponding basic bibliog-
raphy one can consult ref. [1]. Also we think it interesting to mention that the
classical radiation of an accelerated charge can be interpreted as a Cerenkov
radiation of the tachyonic component of the movement [2]. Tachyonic field
excitations appear for example in bosonic-string theories and the problems
related with unitarity were examined by Jacobson, Tsamis and Woodard [3]
and references therein. They appear also in higher-order Lagrangians, partic-
ularly in those related with supersymmetry in higher dimensions [4]. There
are several excellent studies about the quantum theory of tachyons. For a
description of the properties that tachyons would have we mention the work
by Feinberg[5] and that of Dhar and Sudarshan[6], where the sphere k ¡ m is
removed when the field is quantized. The work by Kamoi and Kamefuchi [7],
where a review is given of different quantization methods, is also important.
It was shown in ref. [3] that it is practically impossible to construct a unitary
S-matrix for the tachyon field. This result implies that tachyons cannot be
allowed to appear in free asymptotic states. For this reason the tachyonic
field should be considered more as an auxiliary concept than as a real entity.
In this paper we do not intend to propose any model for tachyonic interac-
tion. Our aim is to show that, if a tachyon field appears at the Lagrangian
level, then its quantization leads to a propagator which is half-advanced plus
half-retarded. Furthermore, for methodological reasons, as well as for the
sake of clearness we decided to divide the work into two parts, each with
peculiarities of its own. The first part (this note) deals with the region of
k-space where k > m. In a forthcoming second part we are going to consider
the sphere k < m. We would like to point out that when the field is forbidden
to appear in asymptotic states, the only trace it leaves in the S-matrix is the
propagator (unlike the case of bradyons where the field is attached to the
external legs). The Wheeler propagator, (half-advanced plus half-retarded)
is both compatible with the elimination of tachyons from external legs, and
also Lorentz invariant as is shown in ref. [7].
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2 Canonical procedures

For simplicity’s sake we take a real scalar field obeying the equation

(2 +m2)φ = j (1)

Our metric will be (diag =-, +, +, ..., +) in a d-dimensional space-time. So,
eq. (1) has the wrong sign of the mass term, with respect to the usual Klein-
Gordon equation. The Lagrangian is

L = −
1

2
∂µφ∂

µφ+
1

2
m2φ2 (2)

giving rise to the Hamiltonian (Π = φ̇)

H =
1

2
Π2 +

1

2
(∇φ)

2
−

1

2
m2φ2 (3)

Canonical quantization leads to
[

Π,φ
′

]

= −iδ(~r−~r
′

) (4)

[H, φ] = −iφ̇ (5)

[H, Π] = −iφ̈ (6)

Taking the Fourier transform of the scalar field, we can write (k2 ≥ m2)

φ =

∫
dk√
2w

(akexp[−ikx] + a∗

kexp[ikx]) (7)

with k0 =
√

~k2 −m2

Inserting (7) in eq. (3), we get for the total Hamiltonian

φ =

∫

dk
1

2
w (a∗

kak + aka
∗

k) (8)

H is similar to the Hamiltonian of a bradyonic particle. The commutation
rules (4), (5) imply

[ak, a
∗

k] = δ(~k− ~k
′

) (9)

The operators ak and a∗

k obey the usual commutation relations for the cre-
ation and destruction operators of particles.
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3 Spectrum and eigenfunctions

We will now turn our attention to the eigenvalue problem for H (eq. (8))
with the commutation relations (9) [8, 9].

For each degree of freedom ~k(~k2 > m2) we simply write

h =
1

2
w (a∗a+ aa∗) (10)

It follows that
[h, a∗] = wa∗ ; [h, a] = −wa

so that, for any eigenstate of h, with eigenvalue E,

h|E >= E|E >

we have
ha∗|E >= (E+w)a∗ (11)

ha|E >= (E−w)a (12)

The operator a∗ (respectively a) increases (respectively decreases) the en-
ergy by the amount w. These results follow from the form of h and the
commutation rules (10).

For a bradyonic particle

p2 +m2 = 0 (13)

and the set of all pµ, satisfying this equation is a two-sheeted hyperboloid.
Each of the two sheets is Lorentz invariant and can be characterized by
the sign of p0. The requirement that the energy of a bradyonic particle
shall be positive is then Lorentz invariant and consequently a base for the
representation of (10) should exist with the property that one of its vectors
(the vacuum |0 >) must obey a|0 >= 0. From this vector, the entire base
can be constructed by successive applications of a creation operator a∗. In
this way we built up the Fock space for bradyons.

The situation for tachyons is different. The set of all p, obeying

p2 −m2 = 0 (14)

is now a one-sheeted hyperboloid, and no one of its proper parts is Lorentz
invariant.
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As a matter of fact, there is a symmetry with respect to the sign of
the energy and the base should exhibit this property. The spectrum should
consist of a series of equally spaced energy levels (separated by w) centred
about the origin.

For a zero-energy eigenstate of h we have

h|0 >= 0 ∴ (a∗a+ aa∗) |0 >= 0 (2aa∗ − 1)|0 >= 0

aa∗|0 >=
1

2
|0 > (15)

a∗a|0 >= −
1

2
|0 > (16)

We can now construct the whole of the Fock space for the tachyon by succes-
sive applications of the increasing operator a∗ and the decreasing operator
a:

a∗m|0 >= αm|m > am|0 >= βm|−m >

aa∗|m >=

(

m+
1

2

)

|m > (17)

a∗a|m >=

(

m−
1

2

)

|m > (18)

h|m >= mw|m > (19)

h| −m >= −mw| −m > (20)

The label m indicates the number of energy units w contained in the state
|m > and it is a positive, negative or null integer. The energy spectrum
has no upper or lower bound. Obviously this means that the base will not
have a positive-definite scalar product, as aa∗ + a∗a is a positive operator
in a Hilbert space. Our requirements then lead us to the adoption of a base
having indefinite metric. Such a type of metric in quantum field theory has
been studied in a systematic way in ref. [10]. Fortunately we will not have
to worry about the related formalism. As will be seen, free tachyons will
neither be able nor allowed to occupy those states.

Observe that, as ~k2 → m2 (~k2 > m2), w → 0 and the energy levels
become more and more dense.

Going back to the operators ak defined by (7), we find the following
vacuum expectation values:

< 0|akak|0 >= 0 =< 0|a∗

ka
∗

k|0 > (21)
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< 0|aka
∗

k
′ |0 >=

1

2
δ(~k − ~k

′

) = − < 0|a∗

k
′ak|0 > (22)

It is interesting to compare (22) with the vacuum expectation values of prod-
ucts of bradyonic creation and destruction operators.

In a space with positive metric, Hamiltonian (10) (or that of eq. (4.5) of
ref. [5]) must have a lower bound and this implies the existence of a state
that is annihilated by ak (see ref. [5J-V). In our case the operators a∗

k and ak

are merely increasing and decreasing operators. They have a more symmetric
role, as in (15) and (16) or (21) and (22).

4 Vacuum expectation values of products of

field operators

We first evaluate the vacuum expectation value for phi given by (7). Taking
into account (21) and (22),

< 0|φ(x)φ(y)|0 >=

∫
dk√
2w

∫
dk

′

√
2w

′

(akexp[ikx] + a∗

kexp[−ikx])·

·(ak
′exp[ik

′

y] + a∗

k
′exp[−ik

′

y]) =
∫

dk√
2w

∫
dk

′

√
2w

′

{
< 0|aka

∗

k
′ |0 > exp[ikx− ik

′

y]+

< 0|[a∗

kak
′ |0 > exp[−ikx+ ik

′

y]
}
=

1

2

∫
dk

2w
(exp[ik(x−y)]−exp[−ik(x−y)])

(23)
Note that for bradyons we would only obtain the first exponential without
the 1/2 factor. From (23) we can evaluate the vacuum expectation value of
the chronological product

< 0|Tφ(x)φ(y)|0 >=< 0|φ)(x)φ(y)|0 > Θ(x0−y0)+ < 0|φ)(y)φ(x)|0 > Θ(y0−x0)

(24)
and, as (23) changes sign under the interchange of x and y,

< 0|Tφ(x)φ(y)|0 >=
1

2

∫
dk

2w
(exp[ik(x−y)] − exp[−ik(x−y)])Sg(x0−y0).

(25)
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For bradyons we would obtain

< 0|Tφbr(x)φbr(y)|0 >=

1

2

∫
dk

2w
(exp[ik(x−y)]Θ(x0−y0)−exp[−ik(x−y)])Θ(y0−x0) = −i∆F(x−y)

And it is easy to see that (25) can be rewritten as

< 0|Tφ(x)φ(y)|0 >= −
i

2
[∆T

F(x − y) + ∆T
F(x− y)] (26)

where ∆T
F (x − y) is the truncated Feynman function defined in [6]. (The

sphere k2 −m2 is suppressed.) We can also write (25) in the form

< 0|Tφ(x)φ(y)|0 >= −
i

2
[∆T

R(x− y) + ∆T
A(x− y)] (27)

where ∆T
R and ∆T

A are the (truncated) advanced and retarded Green’s func-
tions, respectively. Expressions (25), (26) and (27) show that their left-hand
side coincides with Cauchy’s principal value at the poles k0 = w and k0 = −w

The Green’s function just constructed can also be defined in terms of its
Fourier transform. When k2 > m2 the expression (k2 −m2)−1 has two real
poles at k0 = ±w and the k9 integration for ∆T

R (respectively ∆T
A) goes along

the real axis leaving the poles to the right (respectively left).
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5 Discussion

Canonical quantization of the bradyon field, as well as that for the tachyon
field (for k2 > m2 ), leads to the usual creation and annihilation opera-
tors a∗

k and ak which determine the energy operator hk ∼ {ak, a
∗

k} and obey

the commutation rules [ak, a
∗

k] = δ(~k − ~k
′

. There are several bases to rep-
resent these relations and the choice of the appropriate one must satisfy
some physical requirements. For the case of bradyons, the mass-shell rela-
tion k2+m2 = 0 = −k2

0+
~k2+m2 defines a two-sheeted hyperboloid, and each

of the (Lorentz-invariant) sheets is characterized by the sign of the energy.
To seat in the positive (respectively negative) sheet, the base must have a
minimum (respectively a maximum) energy vector |0 >, which is nullified
by ak (respectively a∗

k). The whole base can be constructed by means of
repeated applications of the increasing (respectively decreasing) operator a∗

k

(respectively ak). This base only contains positive (respectively negative)
eigenvectors of the energy operator and constitutes an appropriate Lorentz-
invariant Fock space for bradyons.

For tachyons the situation is different. The mass hyperboloid k2−m2 = 0

is now one-sheeted and none of its proper parts is Lorentz invariant. The
base just described is thus not suitable for this case. A base symmetric with
respect to the sign of the energy is required. Such a base can be constructed
with the zero-energy eigenvector |0 >, which is annihilated by ak, a

∗

k, and
acting on it by means of both the increasing and decreasing operators. In
this way we build up a base characterized by an integer |m > (for each degree
of freedom) which can be positive, negative, or null, measuring the number
of energy units carried by the state. This is the Lorentz-invariant Fock space
(with indefinite metric) appropriate for the representation of tachyons. Once
this base is selected, it is a simple matter to evaluate the zero-energy expec-
tation value of the chronological product of field operators. The symmetry
of the situation suggests, and the calculation confirms, that the propagator
is now the sum of the retarded plus the advanced Green’s functions. The
tachyon propagator is then a Cauchy’s principal-value function. This result
also allows us to understand why tachyons cannot be found as free particles
as Cauchy’s propagator automatically avoids the mass shell δ-function and
so no interaction can put a tachyon line on the mass shell. The corresponding
Fock space cannot be populated and tachyons do not appear in asymptotic
states.
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Appendix

Although in this paper we only wanted to evaluate the propagator, we think
it convenient to add some comments about the implementation of Lorentz
transformations.

The infinitesimal generators of the Poincard group can be written without
difficulties. They obey the usual algebra. For example the generators of
Lorentz boost are given by

M
(0)
0i = −

i

4

∫

dkw(∂ia
∗

kak + ak∂ia
∗

k − a∗

k∂iak − ∂iaka
∗

kΘ(~k2 −m2)

For a given spacelike momentum, all Lorentz transformations that do not
change the sign of the energy can be obtained by exponentiation. However,
the implementation of a Lorentz transformation that changes the sign of the
energy needs special care. It can be expressed as a product of a transfor-
mation that reduces the time component to zero (without changing its sign)
times another one that boosts the energy to its final value. In between, to
pass from 0+ to 0−(or viceversa), it is necessary to insert an operator that
takes the transposed conjugate. For example, the representative of a Lorentz
transformation that changes the sign of the energy must (as is well known)
change a creation operator into a destruction operator a∗

k ←→ ak
′ . It also

changes a product a∗

k1
ak2 into a∗

k
′

2

ak
′

1

.
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