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Abstract

We compute the exact effective string vacuum backgrounds of the level
k = 81/19 SU(2, 1)/U(1) coset model. A compact SU(2) isometry present
in this seven dimensional solution allows to interpreting it after compacti-
fication as a four dimensional non-abelian SU(2) charged instanton with a
singular submanifold and an SO(3) × U(1) isometry. The semiclassical
backgrounds, solutions of the type II strings, present similar characteristics.
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1. Introductory remarks

The search of interesting vacua representing the effective arena in which a string
moves has been during the last decade one of the most explored subjects in string
theory [1]. The main reason behind this is to try to elucidate some natural mecha-
nism of compactification from 26 (or 10 in the supersymmetric case) dimensions to
the usual 4, or in any case to have consistently defined a four dimensional theory,
with the hope of obtaining string models compatible with well-known low energy
physics [2]. In this context the Kaluza-Klein (KK) mechanism naturelly arises.
String solutions of this type comes in the form of exactly solvable two-dimensional
sigma models known as gauged Wess-Zumino-Witten models (GWZWM’s). In Ref-
erence [3] we studied this mechanism in an abelian case. In this letter we present a
non trivial example of it based on the SU(2, 1)/U(1) coset model that gives rise to
non abelian SU(2) gauge fields.

Let us start remembering some relevant facts about non abelian KK dimensional
reduction [4]. Let us assume that our fields live on a d + N dimensional manifold
of the form M × Σ where the “space-time” M has dimension d and the compact
Σ is N dimensional, and let us restrict ourselves to product-like coordinate patches
{(zM) = (xµ, ym), µ = 1, . . . , d , m = 1, . . . , N}.

Let Gi be a group of diffeomorfisms of Σ (and then, of M × Σ) of dimension di

xµ → x′µ(x) = xµ

ym → y′m(y) = ym + ǫa um
a (y) +O(ǫ2) (1)

generated by the vector fields

ua = um
a (y) ∂m , a = 1, . . . , di

[ua, ub] = f c
ab uc (2)

where f c
ab are the structure constants of Gi, (Xa)

c
b = f c

ab being the adjoint repre-
sentation. We assume they are complete on T 1

0 (Σ|y), the tangent space of Σ at y
(and then di ≥ N). Under this hypothesis, a Gi-invariant scalar field D is just a
field independent of the coordinates (ym). Let Gg be the group of diffeomorfisms of
Σ of dimension dg generated by the vector fields that are invariant under Gi, i.e.

1

va = um
a (y) ∂m , a = 1, . . . , dg

[va, vb] = f
c

ab vc
Lua

(vb) = [ua, vb] = 0 (3)

1 That they generate the Lie algebra of a group is easily showed. Lua
stands for the Lie

derivative [5]. In usual notation the last equation in (3) reads

vm
a
(y′) = ∂ny

′m(y) vn
a
(y)

with y′ given by (1).
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where f
c

ab are the structure constants of Gg.
Let us consider now an arbitrary tensor field t ∈ τ 02 (Σ)

t = tMN(z) dzM ⊗ dzN

= tµν dxµ ⊗ dxν + tmn dym ⊗ dyn + tµm dxµ ⊗ dym + tmµ dym ⊗ dxµ (4)

If we now ask for t to be Gi-invariant, then the set of equations

Lua
(tMN) = 0 (5)

should be fullfilled; the solution of (5) leads to the following general form for t

t = tµν(x) dx
µ ⊗ dxν + tmn(x, y) dy

m ⊗ dyn + Aa ⊗ αa + αa ⊗ Ba (6)

where according to (5)

tmn(x, y) = ∂my
′p(y) ∂ny

′q(y) tpq(x
′, y′) (7)

The {αa} is a basis of Gi-invariant one-forms

αa = αa,m(x, y) dy
m = αa,m(x

′, y′) dy′m (8)

and Aa = Aa
µ(x) dx

µ , Ba = Ba
µ(x) dx

µ are one-forms on M .
Going to cases of interest, if we consider a non degenerate Gi-invariant metric

on M × Σ, t ≡ G symmetric, we can choose

αa,m(x, y) = Gmn(x, y) v
n
a (y) (9)

that clearly satisfy (8) and then (6) can be put on the form

G = G(d)
µν (x) dx

µ ⊗ dxν +Gmn(x, y)
(

dym + vma (y) A
a
)

⊗
(

dyn + vna (y) A
a
)

(10)

where

G(d)
µν (x) = Gµν(x)− gab(x) A

a
µ(x) A

b
ν(x)

gab(x) = Gmn(x, y) v
m
a (y) v

n
b
(y) (11)

Due to Gi invariance the scalar product gab must be y-independent; if dg = N (the
case we will be interested in) we can introduce the dual forms to the {va}

ωa = dym ωa
m(y)

δba = vma (y) ω
b
m(y) (12)

Then (11) enforces Gmn(x, y) to have the form

Gmn(x, y) = gab(x) ω
a
m(y) ω

b
n(y) (13)
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and G can be written as

G = G(d)
µν (x) dx

µ ⊗ dxν + gab(x)
(

ωa + Aa
)

⊗
(

ωb + Ab
)

(14)

Before continuing we would like to make some remarks about two facts we find not
properly clear in the literature [4]. The first one is that the Killing fields are the {ua},
not the {va} that appear in (10); the gauge fields are connections on a Gg vector
bundle, not on a Gi one. The second fact is that in standard KK considerations

Gmn(x, y) ≡ e2φ(x) gmn(y) (15)

for some Gi invariant gmn, that is equivalent to have

gab(x) = ηab e
2φ(x) (16)

for some constant ηab, but in general there is no need for this to be so and we will

remain with N(N+1)
2

scalars fields (moduli) on M . We will see later (see equation
(51)) an example in which (16) is not verified.

Finally we find in a similar way that a Gi-invariant antisymmetric tensor B can
be written as

B =
1

2
Bµν(x) dx

µ ∧ dxν +
1

2
bmn(x, y) dy

m ∧ dyn + ba ∧ αa (17)

with bmn(x, y) obeying (7) and ba = baµ(x) dx
µ a one form on M .

2. The model

It is well-known that GWZWM’s are two dimensional conformal field theories
that explicitely realize the Goddard-Kent-Olive G/H coset construction [6] and give
rise to a sigma model with specific backgrounds (G,B,D) corresponding to the met-
ric, antisymmetric tensor and dilaton modes of the string. The field equations for
them are only perturbatively known; by working out the d+N dimensional objects
(curvature, stress tensor, etc) related to the fields in (10,17) we can obtain the dimen-
sionally reduced effective action in terms of the d dimensional fields (G,A,B, b,D).
This action contains the bosonic part of d = 10, N = 1 SUGRA coupled to SUSY
Yang-Mills theory, the last coupling being correctly reproduced by the dimensional
reduction, and then reproducing the bosonic sector of the low energy heterotic and
type I strings.

We do not describe all this here because we will not need it and mainly because we
will follow a purely algebraic route that yields to the exact fields (the two dimensional
functional method gives only the one-loop result).

Models of this type based on the SU(2, 1)/SU(2) × U(1) and SU(2, 1)/SU(2)
cosets were considered in [8] and [3] respectively. Here we will consider the gauging
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of a U(1) non maximal subgroup that leads to a 8 − 1 = 7 dimensional space-
time, a SU(2, 1)/U(1) coset that in some sense is the natural generalization of
the SU(1, 1)/U(1) Witten’s black hole [9]. However as it was pointed out in [10],
isometries should appear associated with the maximal group commuting with H ,
in our case SU(2), that will allow to interpret the solution as a compactification to
d = 4 dimensions in the spirit of the KK dimensional reduction reviewed before.

From the conformal field theory point of view the model has a central charge

c(k) =
8 k

k − 3
− 1 = 7

k + 3
7

k − 3
(18)

Asking as usual the cancellation against the ghost contribution cghost = −26 gives a
conformal value kc =

81
19
. At difference of other coset models, there exists only one

string theory corresponding to the perturbative phase of the model. In any case, a
positive central charge requires k > 3; we will assume for reasons to be clarified in
Section 4 that k > 4, i.e.

λ ≡ 4

k
< 1 (19)

Let us move now to the computations of the fields recalling some facts described
at length in References [3,8]. An arbitrary element g ∈ SU(2, 1) may be locally
parametrized as follows

g = T (s~n) ei
√

3

2
ϕλ8 H(Y, 1)

T (s~n) =

(

(1 + s2 ~n~n†)
1

2 s~n
s~n† c

)

, ~n =
(

n1

n2

)

H(Y, 1) =
(

Y ~0
~0t 1

)

, Y ∈ SU(2) (20)

The two dimensional complex vector ~n is unimodular what allows to define an as-
sociated SU(2) matrix in the following way

N ≡
(

n1∗ n2∗

−n2 n1

)

= ei
α
2
σ3 ei

β
2
σ2 ei

γ
2
σ3 (21)

where we have introduce Euler angles (α, β, γ) and Pauli matrices {σi}.
On the other hand, it is easy show that

g = e−iδλ8 T (s ei
√
3 δ~n) ei

√

3

2
ϕλ8 H(Y, 1) eiδλ8 (22)

for any δ, i.e. it does not depends on δ. In terms of the matrix N ,

ei
√
3δ ~n ⇔ e−i

√
3 δσ3 N (23)

Therefore if we are to consider a theory gauge invariant under vector transfor-
mations

g → h g h−1 (24)
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with h generated by λ8, equations (20-23) tell us that the Euler angle α in (21)
should be gauged away. Then we will remain with the seven gauge invariant variables
0 ≤ β ≤ π

2
, 0 ≤ γ < 2π parametrizing a two sphere S2, together with 0 ≤ ϕ <

2π, s ≡ sinh r ≥ 0 (c = cosh r) and some S3 variables parametrizing Y that we will
not need to explicit.

3. Currents and the exact solution

Here we present the exact solution for the metric and dilaton fields guessed from
the änsatz in References [11]. To this end we introduce some notation and collect
some useful relations. We refer the indices of the currents to the generators given
by {(~λ)i = λi, i = 1, 2, 3; λ±

1 = 1
2
(λ4 ± iλ5); λ±

2 = 1
2
(λ6 ± iλ7); λ8}, where {λa}

are the Gell-Mann matrices. If X = x01 + i ~x · ~σ is an arbitrary SU(2) element
( x0

2 = 1− ~x2 ) the adjoint representation is given by the 3× 3 matrix

R(X)ij ≡
1

2
tr(σiXσjX

†) = (2x0
2 − 1) δij + 2 xi xj + 2 x0 ǫijk xk (25)

and the left and right SU(2) (thought as linear operators in equations (27,28,30,33))
vector fields together with their dual forms are 2

ξ̂Li = x0 ∂i − ǫijk xj ∂k = −ξ̂Ri |−~x

ωi
L = x0 dxi +

xi

x0
xj dxj − ǫijk xj dxk = −ωi

R|−~x

δji = ξ̂Li (ω
j
L) = ξ̂Ri (ω

j
R) (26)

They generate the left and right transformations

ξ̂Li (X) = i σi X
ξ̂Ri (X) = i X σi (27)

and satisfy the commutation relations

[ξ̂Li , ξ̂
L
j ] = 2 ǫijk ξ̂

L
k

[ξ̂Ri , ξ̂
R
j ] = −2 ǫijk ξ̂

R
k

[ξ̂Li , ξ̂
R
j ] = 0 (28)

Now let us move to the computations. We define the left currents as linear
operators on the group manifold G by

L̂ag = −λa g , g ∈ G (29)

In the parametrization (20) the computations yield ((ěi)j = δij )

2 We assume henceforth, when no explicitely specified, to refer them to Y - variables.
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~̂L = i
(

~̂
ξL|Y − ~̂

ξR|N
)

L̂+
α = −1

2
N1α (∂r − i

s

c
∂ϕ) + ~A+

α · ~̂ξL|Y + ~B+
α · ~̂ξL|N = (L̂−

α )
∗

L̂8 = i
2√
3

(

∂ϕ − 3

2
ξ̂L3 |N

)

(30)

where

~A+
α =

i

2sc
R(N)t

(

N1α
s2

2
ě3 +N2α c (c− 1) (ě1 − i ě2)

)

~B+
α =

−i

2sc

(

N1α (2c2 − 1) ě3 +N2α c2 (ě1 − i ě2)
)

(31)

Similarly we define the right currents by

R̂ag = g λa , g ∈ G (32)

and compute them to get (u ≡ ei
3

2
ϕ )

~̂R = −i
~̂
ξR|Y

R̂+
α =

u

2
(NY )1α (∂r + i

s

c
∂ϕ) + ~A+

α · ~̂ξL|Y + ~B+
α · ~̂ξL|N = (R̂−

α )
∗

R̂8 = −i
2√
3
∂ϕ (33)

where

~A+
α =

i u

2sc
R(N)t

(

(NY )1α
s2

2
ě3 + (NY )2α c (c− 1) (ě1 − iě2)

)

~B+
α =

i u

2sc
((NY )1α ě3 + (NY )2α c (ě1 − iě2)) (34)

By construction both set of currents satisfy the corresponding λa-algebra. Now we
introduce the Casimir operators (gab = trλaλb)

∆L
G = gabL̂aL̂b (35)

and the Virasoro-Sugawara laplacian associated with the coset G/H = SU(2, 1)/U(1)

L̂L
0 =

1

k − 3
∆L

G − 1

k
∆L

H (36)

with analog construction in the right sector.
Finally we consider gauge invariant functions, i.e.

(L̂8 + R̂8)f(g) = −i 2 ∂αf(g) = 0 , g ∈ SU(2, 1) (37)
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which are the α - independent ones as it should be as remarked above, and on
this subspace we define the metric and dilaton fields to be those that obey the
“hamiltonian” equation 3

Ĥf(g) ≡ 1

k − 3
χ−1∂µ( χ Gµν ∂ν)f(g)

Ĥ ≡ L̂L
0 + L̂R

0 =
1

k − 3

(

~̂
L
2

+ 2{L̂+
α , L̂

−
α}+

3

4
λ L8

2

)

χ ≡ eD | det G| 12 (38)

By carrying out the computations we read from these equations the exact back-
grounds; it is useful to introduce the standard spherical versors on S2

ř = sin β cos γ ě1 + sin β sin γ ě2 + cos β ě3
β̌ = cos β cos γ ě1 + cos β sin γ ě2 − sin β ě3
γ̌ = − sin γ ě1 + cos γ ě2 (39)

as well as the 3× 3 matrix Q and the function a,

Q = 1−


1−
(

1 +
λ

4
a

)− 1

2



 ř řt

a(r)−1 = 1− λ
c2

s2
(40)

Then a convenient “seibenbein” is given by

~e = Q−1 ~̂
ξL

e4 =
1√
a

s

c

(

∂ϕ +
a

2
ř · ~̂ξL

)

e5 = ∂r

e6 =
2

s

(

∂β +
c− 1

2
γ̌ · ~̂ξL

)

e7 =
2

s sin β

(

∂γ −
c− 1

2
sin β β̌ · ~̂ξL

)

(41)

whose dual basis is

~ω = Q
(

~ωL + ~A
)

ω4 =
√
a
c

s
dϕ

ω5 = dr
ω6 =

s

2
dβ

ω7 =
s

2
sin β dγ (42)

3 The computations in the left and right sectors lead to the same result.
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where the one-forms ~A are given below in equation (50). Then the seven dimensional
metric results

G = ηab ωa ⊗ ωb (43)

where ηab is minkowskian with signature (− − − + + + +) (the actual signature
depends on r and the value of k, however see next section).

The dilaton field on the other hand is given by

D(r) = D0 + ln | s2
√

1 +
λ

4
a−1 | (44)

We spend some words here about the antisymmetric tensor. The method does
not permit to obtain its exact value (see however [14]), but it is possible to get the
one loop result from the standard integrating out of the gauge fields mentioned at
the beginning of Section 2. We have carried out that calculation (verifying of course
the λ = 0 limit of (43,44)) and for completeness we quote the result

H(1l) ≡ dB(1l) = d( ~A(1l) ∧ ~ωL)−
1

2
sin β dβ ∧ dγ ∧ dϕ+ 2 ω1

L ∧ ω2
L ∧ ω3

L (45)

By comparing it with (17) we identify

~b = ~A , (46)

equality that we conjecture to hold exactly.

4. The four dimensional interpretation

From the parametrization (20) it follows that the right global transformation

g → g H(X, 1) ⇔ Y → Y X , X ∈ SU(2) (47)

should be an invariance of the model, in particular an isometry. And in fact this
is manifest in that the Y dependence of the backgrounds comes through the right
invariant one forms ωi

L

ωi
L =

1

2 i
tr(σi dY Y −1) =

1

2 i
tr
(

σi d(Y X) (YX)−1
)

(48)

Then in the language of Section 1, we identify Gi ≡ SU(2)right and according to

(27, 28, 33) the generators of this transformation are the ua ∼ ξ̂Ri vector fields.
And therefore from (28) the identification of Gg ≡ SU(2)left and the va ∼ ξ̂Li right
invariant vector fields ( together with ωa ∼ ωi

L) is straightforward.
Taking into account these facts we can identify the four dimensional manifold

M ∼ ℜ× S1 × S2 and the metric and (one loop) antisymmetric tensor as

9



G(4) = a
c2

s2
d2ϕ+ d2r +

s2

4
(d2β + sin2 β d2γ)

B(4) =
1

2
cos β dγ ∧ dϕ (49)

The dilaton is always given by (44) and the SU(2) gauge fields are

~A = ~b = −a

2
ř dϕ− c− 1

2
γ̌ dβ +

c− 1

2
sin β β̌ dγ (50)

On the other hand the fields gmn(x, y) and bmn(x, y) on Σ ≡ S3 are read straight
from (14, 17), in particular

g(x) = −Q(x)2 = −1 +
(

1 +
4

λ
a−1

)−1

ř řt (51)

The four dimensional backgrounds present a manifest and not at all obvious
SO(3)×U(1) isometry. Furthermore is not asymptotically flat but asymptotic to a
constant curvature geometry, an usual feature in bosonic string models due to the
presence of the cosmological constant term [12, 3, 8]. This can be seen for example
from the four dimensional Ricci scalar

1

6
R(4) = 1− a2

s4

(

s2

a2
− λ

)

(52)

On the other the one loop solution presents a true singularity at r = 0 that remains
at higher orders. However at the value of the radius r = r0 > 0 defined by

s0 = sinh r0 =

(

λ

1− λ

) 1

2

(53)

the curvature also exploits and another true singularity of purely quantum origin
appears; this means that if the quantum theory has a sense (fact not addressed
here) we certainly cannot analytically continue the solution beyond r0 and then the
singularity becomes “shifted”. Then the signature of the solution is also preserved..
In “Schwarzchild” like radial coordinate

0 < R(r) = c0 ln





s

s0
+

√

s2

s02
− 1



 < ∞ (54)

it looks like an instanton in compactified euclidean time ϕ with a singularity at the
origin R = 0
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G(4) = F (R)−2 d2ϕ+ F (R)2 d2R +
s0

2

4
cosh2 R

c0
(d2β + sin2 β d2γ)

F (R)2 = λ (1− λ)
sinh2 R

c0

1 + λ sinh2 R
c0

(55)

Furthermore, we can adscribe to it non abelian “hair”. If we introduce as usual the
SU(2) connection and its strenght by

A = i ~σ · ~A
F = dA+ A ∧A = i ~σ · ~F (56)

then the non abelian magnetic charges are defined by

Q ≡ − 1

4 π

∫

S2

F (57)

where the two sphere is taken to be in the asymptotic region. The computation
shows up a non zero charge associated to the “radial” generator ~σ · ř

Q = i
1

2 gs2
~σ · ř (58)

where gs is the string coupling constant at infinity.

5. Conclusions

We have obtained a highly non trivial instanton of the (unknown) exact classical
effective action of the bosonic string theory. As showed in [11] the one loop results are
(up to a trivial rescaling) solutions of the type II superstring, and from the remarks in
section 4 they are qualitatively similar to the exact ones. It has an essential singular
submanifold and couples to SU(2) Yang-Mills fields with non trivial charge. On the
other hand an obvious as well as unexpected isometry SO(3)×U(1) is present in the
four dimensional fields, equations (49). However this is not an isometry of the whole
(seven dimensional) solution, as it is seen e.g. from the form of the gauge fields,
equation (50). 4 This fact is even more manifest in the equivalent backgrounds
related to (43-45) by T -duality [13]. For example the one loop 5 four dimensional
metric reads

G̃(4) =
16 s2 c2

(1 + 3 c2)2
(dϕ− 1

2
cos β dγ)2 + d2r +

s2

4
(d2β + sin2 β d2γ) (59)

4 Maybe it is worth to remark that the SU(2) isometry of the model that allows the compactified
interpretation has to do with the Y variables on the compact space S3, but nothing to do with the
four dimensional fields that in general should not present isometries.

5 We cannot compute the exact dual backgrounds because we do not know the exact antisym-
metric tensor.
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Another feature of the one loop dual solution we believe interesting is that the
dilaton field

D̃ = D̃0 + ln(1 +
3

4
s2) (60)

goes to a constant (instead of being linear) in the asymptotic region r ≫ 1, as most
asymptotically flat solutions does, but we do not know if this behaviour survives at
higher orders.
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