
ar
X

iv
:h

ep
-th

/9
60

70
24

v1
  3

 Ju
l 1

99
6

A Family of unitary higher order equations ∗

C.G.Bollini

Departamento de Fisica, Fac. de Ciencias Exactas,
Universidad Nacional de La Plata.

C.C. 67 (1900) La Plata. Argentina.
L.E.Oxman

Departamento de Fisica, Fac. de Ciencias Exactas,
Universidad Nacional de Buenos Aires.

Ciudad Universitaria, 1428,

Buenos Aires. Argentina.
M.C.Rocca

Departamento de Fisica, Fac. de Ciencias Exactas,
Universidad Nacional de La Plata.

C.C. 67 (1900) La Plata. Argentina.
and

Departamento de Matematicas, Fac. de Ciencias Exactas
Universidad Nacional del Centro de la Pcia de Bs. As.

Pinto 390, C.P.7000 , Tandil. Argentina.

September 22, 1995

∗This work was partially supported by Consejo Nacional de Investigaciones Cientificas

and Comision de Investigaciones Cientificas de la Pcia. de Buenos Aires; Argentina.

1

http://arxiv.org/abs/hep-th/9607024v1


Abstract

A scalar field obeying a Lorentz invariant higher order wave equa-

tion, is minimally coupled to the electromagnetic field. The propa-

gator and vertex factors for the Feynman diagrams, are determined.

As an example we write down the matrix element for the Compton

effect. This matrix element is algebraically reduced to the usual one

for a charged Klein-Gordon particle. It is proved that the n
th order

theory is equivalent to n independent second order theories. It is also

shown that the higher order theory is both renormalizable and unitary

for arbitrary n.

PACS: 10. 14. 14.80-j 14.80.Pb
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1 Introduction

In a previous work (ref.[1]), we considered the interaction of tachyons with
the electromagnetic field. As the former can not exist in free particle states
(ref.[2],[3]), we took a fourth order wave equation implying two modes of
propagation for a scalar field ϕ . One of the two modes corresponds to a
normal Klein-Gordon particle. The other is a tachyon mode (ref. [4]). When
ϕ is coupled to electromagnetism by using the gauge covariant derivative:

∂µ → Dµ = ∂µ − ieAµ (1)

we found that all matrix elements of the fourth order theory:

(

✷
′2 −m4

)

ϕ = 0 (2)

✷
′2 = DµDµ (3)

are equivalent to a second order theory in which the bradyon (a bradyon
is a particle whose momentum Pµ satisfies PµP

µ = −m2) and the tachyon
are independent fields obeying:

(

✷
′ −m2

)

ϕ1 = 0 (4)
(

✷
′
+m2

)

ϕ2 = 0 (5)

The bradyon mode is equivalent to a normal charged Klein-Gordon par-
ticle. The tachyon mode can only be found in closed loops connected to
photon lines.

The fourth order equation belongs to a family found in reference [5], when
studing supersymmetry in spaces of arbitrary dimensions. In this work the
fields obey higher order equations of motion. The order increasing with de
dimensionality of the space-time. Those equations have the form:

(

✷
n −m2n

)

ϕ = 0 (6)

The usual Klein-Gordon equation is a member of the family (n = 1). For
n = 2 we have the equation examined in reference [4] . On the other hand
we have a theory such as Quantum Gravity, where a perturbative calculation
leads to non-renormalizable divergences proportional to powers of the curva-
ture tensor. There are cases in which starting with terms cuadratic in the
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curvature, one obtains divergences that can be removed by renormalization.
These theories also give rise to fourth order equations.

Equation (6) implies n modes of propagation for the field ϕ (ref. [6]). It
can also be written as:

n
∏

s=1

(

✷− esm
2
)

ϕ = 0 (7)

where

es = e
2πi
n

(s−1) (s = 1, 2, ..., n) (8)

Of course, e1 = 1 for arbitrary n, so that in (7) we always have a Klein-
Gordon factor.

For n=2l (l integer), el+1 = −1 and we have a tachyon mode. For n=odd
number no tachyon appears. The only real mass is otained for s=1. All other
masses come in complex conjugate pairs.

Except for the s=1 state which is a normal bradyonic mode whose prop-
agator is Feynman’s causal function, none of the states with s 6= 1 can prop-
agate as asymptotically free waves. The corresponding propagators are half
advanced and half retarded (ref.[7]). This type of Green function was used
in ref. [8] to describe the electromagnetic interaction of “perfect absorbers”
I.e. when no asymptotic wave escapes the system.

In the next paragraphs we will analyze the behaviour of ϕ, when the
electromagnetic field is introduced in eq.(6) by means of the gauge covariant
derivative eq.(1). I.e.:

✷ → ✷
′ ≡ ✷− 2ieA · ∂ − e2A2 , (∂µA

µ = 0) (9)

With this substitution , eq.(6) is transformed into:

(

✷
′n −m2n

)

ϕ = 0 (10)

and of course, eq.(7) changes to:

n
∏

s=1

(

✷
′ − esm

2
)

ϕ = 0 (11)
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2 Interaction terms and propagators

When we use the substitution given by eq.(9), the iterated D’Alambertian
✷

n gives rise to the interaction terms of order n:

✷
n → ✷

′n =
(

✷− 2ieA · ∂ − e2A2
)n

(12)

The development of (12) gives a polynomial in e of degree 2n:

✷
′n = ✷

n + eĨ
(n)
1 + e2Ĩ

(n)
2 + · · ·+ e2nĨ

(n)
2n (13)

We are going to find the first few terms of (13). I will then be easy to
guess the form of any term.

The first order term can only come from terms containing one factor A ·∂
and (n-1) powers of the D’Alambertian.

Ĩ
(n)
1 = −2i

(

✷
n−1A · ∂ +✷

n−2A · ∂✷+ ...+

+✷A · ∂✷n−2 + A · ∂✷n−1
)

(14)

When we take the Fourier transform of (14), the derivative operator
(−i∂µ) is transformed into the momentum vector pµ . The D’Alambertian
is transformed into p2 . The vector Aµ leaves its place to the polarization
vector of the photon ǫµ .

I
(n)
1 = (−1)n−12

(

p2(n−1)ǫ · p+ p2(n−2)ǫ · pq2 + · · ·+ ǫ · pq2(n−1)
)

I
(n)
1 = 2(−1)n−1

ǫ · pP n−1
(

p2, q2
)

; q = p+ k ǫ · p = ǫ · q (15)

P t
(

p2, q2
)

=
s=t
∑

s=0

p2(t−s)q2s (16)

¿From now on we will write all interaction terms in momentum space.
The second order term in e contains a part in A2 (cf. eq.(12)), which is
similar to (15) an another part in ✷

a A · ∂ ✷
b A · ∂ ✷

c, with a+b+c=n-2.

I
(n)
2 = 2(−1)n−1

ǫ1 · ǫ2P n−1
(

p2, q2
)

+ 4(−1)n−1
ǫ1 · p1ǫ2 · q·

·P n−2
(

p21, q
2, p22

)

+ 4(−1)n−1
ǫ2 · p1ǫ1 · pP n−2

(

p21, r
2, p22

)

.
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(p2 = p1 + k1 + k2, q = p1 + k1, r = p1 + k2) (17)

where

P t
(

p2, q2, r2
)

=
∑

a+b+c=t

p2aq2br2c (18)

For the third order we have to pick-up from (12), all terms containig
three factors A · ∂ or one factor A · ∂ and a factor A2. The corresponding
D’Alembertians (as in (14)) give rise to the P-coefficients whose main prop-
erties are going to be specified in the next paragraph.The other interaction
terms are found in a similar way.

The propagator for eq.(10) can be defined by:

(

✷
n −m2n

)

G̃(n) = iδ (19)

By Fourier transforming eq.(19) we get:

G(n) =
(−1)ni

p2n − (−m2)n
(20)

We now use the identity:

1

xn − an
=

1

nan−1

n
∑

s=1

es

x− esa
(21)

where es is given by eq.(8).
With x = p2 and a = −m2, we get:

G(n) =
−i

nm2(n−1)

n
∑

s=1

es

p2 + esm2
(22)

The first term of (22) (s=1) represents the Klein-Gordon propagator. The
other terms correspond to the other modes of propagation. The common

factor (nm2(n−1))
−1

is the relative normalization of the wave function whose
propagator is defined by (19), with respect to that of the usual second order
equation. To obtain an n-independent normalization we have to divide each

external line by the factor (nm2(n−1))
1/2

.
The interaction resulting from (12) seems to be of the unrenormalizable

type for n > 1. Compare for example I
(n)
1 (eq.(15) for n > 1 with I

(1)
1 = 2 ǫ ·p.
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However, the propagator (20) has (n-1) extra powers of p2 in the denomina-
tor. So that, by power counting the theory turns out to be renormalizable.
Furthermore, we are going to show that it is equivalent, for arbitrary n, to
the usual Klein-Gordon theory for a charged scalar particle.

3 Vertex Factors

To determine the factors P t we will now describe their properties.
Each P t(x1, ..., xs) is a sum over all monomials of degree t, formed with

products of powers of its arguments.

P t (x1, ..., xs) =
∑

a1+...+as=t

xa1
1 xa2

2 ...xas
s (23)

al ≥ 0 (l = 1, 2, ..., s)

We define

P t = 0 for t < 0 and P 0 = 1 (24)

¿From (23) we have

P 1 (x1, ..., xs) =
s
∑

l=1

xl (25)

P t (x) = xt (26)

P t (x, y) =
t
∑

l=0

xt−lyl (27)

All P t are symmetrical homogeneous functions of their arguments:

P t (αx1, αx2, ..., αxs) = αtP t (x1, ..., xs) (28)

We can also write (23) in the form:

P t (x1, ..., xs) =
t
∑

a1=0

xa1
1

∑

a2+...+as=t−a1

xa2
2 ...xas

s

P t (x1, ..., xs) =
t
∑

a1=0

xa1
1 P t−a1 (x2, ..., xs) (29)
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So that:

x1P
t (x1, ..., xs) =

t
∑

a1=0

xa1+1
1 P t−a1 (x2, ..., xs) =

=
t+1
∑

b=1

xb
1P

t+1−b (x2, ..., xs) =
t+1
∑

b=0

xb
1P

t+1−b (x2, ..., xs)− P t+1 (x2, ..., xs)

x1P
t (x1, ..., xs) = P t+1 (x1, x2, ...xs)− P t+1 (x2, ..., xs) (30)

Also:

x2P
t (x1, ..., xs) = P t+1 (x1, x2, ..., xs)− P t+1 (x1, x3, ..., xs)

Then

(x1 − x2)P
t (x1, ..., xs) = P t+1 (x1, x3, ..., xs)− P t+1 (x2, x3, ..., xs) (31)

In particular

(x1 − x2)P
t (x1, x2) = P t+1 (x1)− P t+1 (x2) = xt+1

1 − xt+1
2 (32)

If we choose x1 = p2 and x2 = −m2 , we get from (32) :

(

p2 +m2
)

P n−1
(

p2,−m2
)

= p2n −
(

−m2
)n

(33)

And the denominator of the Green function (20), factorizes according to
(33):

G(n) =
(−1)ni

(p2 +m2)P n−1 (p21 −m2)
(34)

4 Compton effect

We are now ready to evaluate the cross section for any physical process, in a
given perturbative order, for any higher order equation of the family (10).

We will take as an example the second order Compton effect. The initial
and final momentum of the charged bradyon are p1 and p2. The incoming
photon has a polarization ǫ1 and a momentum k1. The final photon has a

8



polarization ǫ2 and momentum k2. We define p = p1 + k1 = p2 + k2 , q =
p1 − k2 = p2 − k1 ; ǫ1 · k1 = 0 ǫ2 · k2 = 0.

The matrix element corresponding to eq.(10), with the propagator (20)
and the interaction vertices (15) and (17), is:

M (n) =

[

2i(−1)n−1
ǫ1 · p1P n−1

(

p21, p
2
)] (−1)ni

p2n − (−m2)n
[

2i(−1)n−1
ǫ2 · p2P n−1

(

p2, p22

)]

+

+
[

2i(−1)n−1
ǫ2 · p1P n−1

(

p21, q
2
)] (−1)ni

q2n − (−m2)n
[

2i(−1)nǫ1 · p2P n−1
(

q2, p22

)]

+

i(−1)n{4ǫ1 · p1ǫ2 · p2P n−2
(

p21, p
2, p22

)

+ 4ǫ2 · p1ǫ1 · p2·

·P n−2
(

p21, q
2, p22

)

+ 2ǫ1 · ǫ2P n−1
(

p21, p
2
2

)

}

M (n) = 4i(−1)n
{

ǫ1 · p1ǫ2 · p2
[

P n−1 (p21, p
2)P n−1 (p2, p22)

p2n − (−m2)n
− P n−2

(

p21, p
2, p22

)

]

+

ǫ2 · p1ǫ1 · p2
[

P n−1 (p21, q
2)P n−1 (q2, p22)

q2n − (−m2)n
− P n−2

(

p21, q
2, p22

)

]}

+

+ 2i(−1)nǫ1 · ǫ2P n−1
(

p21, p
2
2

)

(35)

In the last equation we use (33) and p21 = −m2 , p22 = −m2 :

M (n) = 4i(−1)n
{

ǫ1 · p1ǫ2 · p2
[

P n−1 (−m2, p2)

p2 +m2
− (p2 +m2)P n−2 (−m2, p2,−m2)

p2 +m2

]

+

ǫ2 · p1ǫ1 · p2
[

P n−1 (−m2, q2)

q2 +m2
− (q2 +m2)P n−2 (−m2, p2,−m2)

p2 +m2

]}

+

2i(−1)nǫ1 · ǫ2P n−1
(

−m2,−m2
)

(36)

But, according to (31):

(

x+m2
)

P n−2
(

−m2, x,−m2
)

= P n−1
(

x,−m2
)

− P n−1
(

−m2,−m2
)

(37)

And, according to (27):
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P n−1 (x, x) = nxn−1 (38)

So, we finally get, for the normalized matrix element M̄ (n)

M̄ (n) =
(

nm2(n−1)
)−1

M (n) =

= −4i

(

ǫ1 · p1ǫ2 · p2
1

p2 +m2
+ ǫ2 · p1ǫ1 · p2

1

q2 +m2

)

− 2iǫ1 · ǫ2 (39)

We can see from (39) the interesting fact that, no matter how high the
order of the equation (10) is, we always end up with the matrix element
corresponding to the second order Klein-Gordon equation coupled to the
electromagnetic field.

The same fact is true when we consider, for example a “multiphoton”
scattering, in which a collision of a photon with a charged bradyon produces
any number of scattered photons. We do not intend to give here a direct
proof, which involves some laborious algebraic manipulation of the matrix
elements. In ref.[9] we show an explicit evaluation for the double photon
scattering. Anyway, we are going to present a general proof in §5.

We can also answer the following question: what is the amplitude for the
Compton effect to produce a change from the bradyon mode to any other
mode of the field ϕ (solution of (10))?

To answer this question, we take again the matrix element M (n) , eq.(35).
But instead of taking p22 = −m2 , we use p22 = −esm

2 ; where es is given by
eq.(8).

It is easy to follow the procedure that leads to eqs.(36) to (39). Now the
matrix element is proportional to (cf. eq.(27)) :

P n−1
(

−m2,−esm
2
)

=
n−1
∑

l=0

(

−m2
)n−1−l(−m2es

)l
=

=
(

−m2
)n−1

n−1
∑

l=0

els =
(

−m2
)n−1 1− ens

1− es

For any s, ens = 1 (cf. eq.(8)). So that when es 6= 1 ,

P n−1
(

−m2,−esm
2
)

= 0 , s 6= 1 (40)

Eq. (40) tells us that the probability amplitude for a change from a
bradyon mode to any other (different) mode is exactly zero.
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5 General proof

We will use functional methods to establish the equivalence of the general
order equation (10) and the second order one.

The Lagrangian corresponding to the field ϕ interacting minimally with
the electromagnetic field is:

L = −1

4
FµνF

µν + ϕ̄
(

✷
′n −m2n

)

ϕ (41)

where ✷
′
is defined by eq.(19).

Our generating functional is:

Z
(

J , J̄ ,K
)

=
∫

[DA] [Dϕ] [Dϕ̄] ei
∫

dx(L+Jϕ+J̄ ϕ̄+KA) (42)

where J , J̄ and K are external sources. To assure the Lorentz gauge for
Aµ , a term ξ(∂µA

µ)2 should be added to the Lagrangian (41).
The exponent in (42) is a quadratic function of the scalar field ϕ . We

can then use the general gaussian formula [10]:

∫

[Dϕ] [Dϕ̄] ei
∫

dx(ϕ̄Qϕ+Jϕ+J̄ ϕ̄) =

N
′ | Q |−2

e−i
∫

dxJQ−1J̄ (43)

where | Q | is the functional determinant of the operator Q. For our case
we introduce the notations:

P = ✷
′n −m2n (44)

Ps = ✷
′ − esm

2 , es = e
2πi
n

(s−1) (s = 1, ..., n) (45)

The factorization of eq.(10), eq.(11), means in our notation, that:

P =
n
∏

s=1

Ps (46)

Note also that:

[Pa,Pb] = 0 , (a, b = 1, ..., n) (47)

The functional determinant of P, also factorizes according to (46):
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| P |=
n
∏

s=1

| Ps | (48)

¿From (46) and (47) we get:

P−1 =
n
∏

s=1

P−1

For the inverse of the P-operators to be properly defined, we must take
into account the boundary conditions imposed on the Green functions. P−1

s

(s 6= 1) correspond to the half advanced and half retarded Wheeler’s function.
However, for our purpose here, we do not need to be more specific. It suffices
to give our formulae a symbolic character.

¿From the identity (21) we deduce:

1

✷
′n −m2n

=
1

nm2(n−1)

n
∑

s=1

es

✷
′ − esm2

Or, using the notations (44), (45):

P−1 =
1

nm2(n−1)

n
∑

s=1

esP−1
s (49)

With (48) and (49) we obtain:

(43) = N
′

n
∏

s=1

| Ps |−2
e
−i
∫

dx

nm2(n−1)

n
∑

t=1

J etP
−1
t J̄

(43) = N
′

n
∏

s=1

| Ps |−2
e
−i
∫

dx

nm2(n−1)
J esP

−1
s J̄

(50)

We now introduce n scalar fields ϕs (s = 1, ..., n) and we use again the
functional gaussian formula (43).

∫

[Dϕs] [Dϕ̄s] e
i
∫

dx{ϕ̄s ēsPsϕs+
1

√
nm(n−1) (Jϕs+J̄ ϕ̄s)}

=

= Ns| Ps |−2
e
−i
∫

dx

nm2(n−1)
J esP

−1
s J̄

(51)

After a renormalization of the scalar field:
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ϕs →
√
nm(n−1)ϕs

we can introduce (51) in (50) to write:
∫

[Dϕ] [Dϕ̄] ei
∫

dx(ϕ̄Pϕ+JϕJ̄ ϕ̄) =

N

∫

∏

s

[Dϕs] [Dϕ̄s] ·

e
i
∫

dx
∑

s

(nm2(n−1)ϕ̄sēsPsϕs+Jϕs+J̄ ϕ̄s)
(52)

To obtain again the generating functional (42), we multiply both members
of (52) with:

ei
∫

dx(− 1
4
FµνFµν+K·A)

and perform a functional integration over Aµ .

Z
(

J , J̄ ,K
)

= N

∫

[DA]
∏

s

[Dϕs] [Dϕ̄s]

e
i
∫

dx

(

L̃+
∑

t

(Jϕt+J̄ ϕ̄t)+KA

)

(53)

Or,

Z
(

J , J̄ ,K
)

= Z̃
(

J , J̄ ,K
)

(54)

In (53) we have introduced the definition:

L̃ = −1

4
FµνF

µν +
n
∑

s=1

nm2(n−1)ϕ̄sēsPsϕs (55)

The equivalence of the generating functionals Z and Z̃, expressed by
eqs.(53) and (54), implies the equivalence of the lagrangians (41) and (55).

The lagrangian (41) describes the gauge invariant electromagnetic inter-
action of a scalar field obeying a n-th order equation (cf. eq.(10)). On the
other hand, eq.(55) refers to the electromagnetic interaction of n independent
scalar fields obeying second order equations:
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Psϕs ≡
(

✷
′ − esm

2
)

ϕs = 0 , (s = 1, ..., n) (56)

For s=1, eq.(56) is a normal Klein-Gordon equation for a charged scalar
particle. For s 6= 1, ϕs is a “virtual field”. It can only exist associated with
closed loops attached to photon lines.

The equivalence shown by eq.(54) also tells us about the unitarity of the
higher order theory. In fact, if we take any closed loop corresponding to one
of the eqs.(56), with s 6= 1 , and note that the propagators are half advanced
and half retarded, we see that the imaginary part of the loop can only come
from the imaginary part of the mass parameter. Then, the absortive part
of this diagram cancels with another similar one for which the internal lines
are related to the complex conjugate mass parameter (See also ref.[11]). In
other words, any absortive part coming from a loop corresponding to esm

2

(s 6= 1) is exactly canceled by another contribution coming from a similar
loop corresponding to ēsm

2 .

6 Discussion

Starting with a n-th order equation of motion for a scalar field ϕ, we introduce
the electromagnetic interaction by means of the gauge invariant minimal
coupling procedure. The field ϕ has n modes of propagation. Its evolution
can be followed perturbatively with the Feynman’s diagrams techniques. The
Green function has n poles corresponding to n modes of propagation. The
probability amplitude and the cross-section for any physical process can be
determined without ambiguities.

We have shown that it is possible to reduce algebraically, each matrix
element corresponding to the n-th order equation, to simple matrix elements
in which the electromagnetic interaction and the propagation are described
by second order equations.

The general proof of §5 shows that ϕ, with its n modes of propagation,
behaves like n independent scalar fields ϕs , each obeying a simple second
order equation.

The equivalence also shows the interesting fact that, no matter how high
the order n is, the theory is unitary and renormalizable. Thus, we have the
equivalence of two different points of view. One of them is the usual theory
for a normal charged Klein-Gordon particle. The other is the theory for a field
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that obeys a higher order equation, minimally coupled to electromagnetism.
The algebraic reduction of the matrix elements for the latter theory to those
of the former one, presented in §4, appears to be rather mysterious. The
simplification seems to be the result of a fortuitous coincidence. However,
the functional proof ( §5 ), sheds light on the nature of the equivalence.

It is clear that the proof is based on two fundamental properties of the
equation of motion:

a) Factorabizability (cf. eqs. (10) and (11)). I.e.:

Pϕ = 0

P =
n
∏

s=1

Ps , [Pa,Pb] = 0

b) Separability (cf. eq. (22)). I.e., the general propagator can be
expressed as a linear combination of individual propagators.

P−1 =
n
∑

s=1

αsP−1
s

Any operator which is both, factorizable and separable, gives rise to an
equivalence theorem.

As a matter of facts, any arbitrary higher order equation can be factorized
(we take cn = 1 ):

P ≡
n
∑

t=0

ct✷
t =

n
∏

s=1

(

✷−m2
s

)

n
∏

s=1

Ps

where the “masses” m2
s are the n roots of P =0. Also the propagator P−1

can be expressed as:

P−1 =
1

n
∏

s=1
(✷−m2

s)
=

n
∑

s=1

ds

✷−m2
s

where ds (s=1,...,n) are appropriate constants.
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The distinctive feature of eq.(10) is the fact that the masses have the
particular form m2

s = esm
2 , where m2 > 0 and es are phase factors given by

eq.(8).
The form of eq.(6) is dictated by its physical origin, based on supersym-

metry in higher dimensions [5].
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