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Abstract

We discuss Abelian and non-Abelian three dimensional bosoniza-

tion within the path-integral framework. We present a systematic

approach leading to the construction of the bosonic action which, to-

gether with the bosonization recipe for fermion currents, describes the

original fermion system in terms of vector bosons.
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Three dimensional bosonization, i.e. the mapping of a three dimensional
fermionic theory onto an equivalent bosonic quantum field theory, has at-
tracted considerable attention, particularly after its connection with Chern-
Simons (CS) theories was unraveled [1]-[16]. In this context, the path-integral
framework has provided a systematic approach to derive bosonization recipes
both in the Abelian and non-Abelian cases [7],[9]-[12],[16]. This approach re-
lies on the evaluation of the three-dimensional fermion determinant which, in
contrast with the two-dimensional one, cannot be computed in a closed form.
Because of this problem, one cannot give an exact expression for the bosonic
Lagrangian which corresponds to the original free fermionic one. In contrast,
one does obtain an exact bosonization recipe for the fermion current [16] :

ψ̄iγµt
a
ijψ

j → ±
i

8π
εµνα∂νA

a
α (1)

Here ψi (i, j = 1, · · · , N) are massive fermions (with mass m), ta are the
generators of some group G (a = 1, · · · , dimG). Finally Aµ is a vector field
taking values in the Lie algebra of G (µ = 0, 1, 2).

It is the purpose of the present work to develop a systematic approach
which allows to evaluate the bosonic action accompanying recipe (1) once an
approximation scheme for calculating the fermion determinant is adopted.
In this respect, we show how to construct the bosonic action order by order
in a 1/m expansion so that our results extend those in ref.[16] where only
the m → ∞ limit was considered. For the Abelian case we also analyze
an alternative (quadratic) approximation which allows to make contact with
bosonization of massless fermions.

To begin with, let us compare the path-integral bosonization approaches
in 2 and 3 dimensions. In the former case one can show that the fermion de-
terminant gives, in the non-Abelian case, the Wess-Zumino-Witten (WZW)
action. Now, thanks to the existence of the Polyakov-Wiegmann identities
for WZW functionals [17], the problems posed by path-integrals of non-qua-
dratic terms can be overcome and the bosonization recipe can be derived in
a very simple way.

In three dimensions the situation is more involved. Firstly, one has not
a closed expression for the fermion path integral. Even if one approximates
the fermion determinant by its leading order in a 1/m expansion (the non-
Abelian CS term), one needs at some stage of the d = 3 bosonization pro-
cedure to decouple a vector field Aµ (the bosonic counterpart of the original
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fermionic fields), identified by the source term, from an auxiliary field bµ but
no Polyakov-Wiegmann identity is available in d = 3 to do this work. Fortu-
nately, the existence of a “large” BRST invariance of the resulting effective
action allows the disentangling of path-integrals on Aµ and bµ. This BRST
invariance was exploited in [16] in an analysis of the leading order in the 1/m
expansion for the fermion determinant. We show here that in fact it can be
realized independently of any approximation and hence it ensures that one
can always find the bosonization recipe for the fermion action. The BRST
symmetry exploited to get the bosonic action is highly related to that used
in [18]-[19], and is analogous to the one that arises in topological field theo-
ries [20], its origin being related to the way an originally “trivial” auxiliary
bosonic field enters into play.

We start by describing the main steps in the bosonization technique de-
veloped in [16]. Consider the d = 3 Euclidean Lagrangian for N free massive
Dirac fermions

L = ψ̄(i/∂ +m)ψ (2)

The corresponding generating functional reads

Zfer[s] =
∫

Dψ̄Dψ exp[−
∫

d3xψ̄(i/∂ + /s +m)ψ] (3)

where sµ is the source for fermion currents. We introduce at this point an
auxiliary vector field bµ through the use of the d = 3 identity [16]

F [s] =
∫

Dbµ det(2εµναDν [b])δ(
∗fµ[b]−

∗fµ[s])F [b] (4)

where
∗fµ = εµναfνα = εµνα(∂νbα − ∂αbν + [bν , bα]) (5)

and
Dµ[b] = ∂µ + [bµ, ] (6)

Using (4) the generating functional (3) can be written as

Zfer[s] =
∫

Dbµ det(2εµναDν [b])δ(
∗fµ[b]−

∗fµ[s]) det(i/∂ +m+ /b) (7)

In order to go on with the bosonization one needs an explicit expression
for the fermion determinant in (7). We shall consider separately the non-
Abelian and the Abelian cases. In the former, we shall extend the results
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presented in ref.[16] by discussing the evaluation of the effective action within
an expansion [21] of the fermion determinant in inverse powers of the fermion
mass. In the latter, apart from briefly discussing the results of this 1/m
expansion, we shall also consider an approximation consisting in keeping
quadratic terms in a bµ expansion of the fermion determinant [22],[11]. Our
analysis will show that even if one does not have an exact expression for
the d = 3 fermion determinant there is a systematic way of calculating the
bosonic action resulting from the integration of the auxiliary field bµ.

(i) The non-Abelian case

Using identity (4) one can write, instead of (7),

Zfer[s] = X [s]−1
∫

DbµX [b] det(2εµναDν [b])δ(
∗fµ[b]−

∗fµ[s]) det(i/∂+m+/b) (8)

where X [b] is an arbitrary functional which can be introduced in order to
control the issue of symmetries at each stage of the derivation. It is convenient
to choose X in the form

X [b] = exp(∓
i

16π
tr
∫

d3xbµ
∗fµ[b]) (9)

Now, if we introduce a Lagrange multiplier Aµ (taking values in the Lie
algebra of G) to represent the delta function in (8), Zfer[s] takes the form

Zfer[s] = X [s]−1
∫

DAµ exp
(

∓
i

16π
tr
∫

d3xAµ
∗fµ[s]

)

× exp(−Sbos[A]) (10)

with the bosonic action Sbos[A] given by

exp(−Sbos[A]) =
∫

Dbµ det(i/∂ +m+ /b)×

det(2εµναDν [b]) exp
(

±
i

16π
tr
∫

d3x(Aµ − bµ)
∗fµ[b]

)

(11)

Differentiation of Zfer[s] with respect to sµ trivially leads to the bosonization
recipe (1) which, we insist, is an exact result in the sense that no approxi-
mation was done to obtain this result.

The choice (9) makes Aµ transform as a gauge connection. Indeed, under
the change

Aµ → g−1Aµg + g−1∂µg (12)
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bµ → g−1 bµ g + g−1∂µg (13)

one has
Sbos[A

g] = Sbos[A] (14)

which implies the necessary identity

Zfer[s
g] = Zfer[s] (15)

This identity guarantees that current correlation functions calculated by dif-
ferentiation of the generating functional (10) will have the correct transforma-
tion properties. In this respect, the bosonization recipe (1) should be taken
as illustrative of the bosonization since the rigorous equivalence between the
fermionic and the bosonic theory is at the level of the generating functional
Z[s] of Green functions. It is from Z[s] written in the form (10) that one has
to compute current correlation functions in the bosonic language.

We now consider the expression for the bosonic action defined in eq.(11)
once ghost fields c̄µ and cµ are introduced to represent the Faddeev-Popov
like determinant,

exp(−Sbos[A]) =
∫

DbµDc̄µDcµ exp
(

−tr
∫

d3x (L[b] ±
i

8π
εµναc̄µDν [b]cα

∓
i

16π
(Aµ − bµ)

∗fµ[b])
)

(16)

The ± signs are introduced for convenience and are related to regulariza-
tion ambiguities arising in the evaluation of the fermion determinant which
contains a parity violating term with this ambiguity [21]. We have written

tr
∫

d3xL[b] = − log det(i/∂ +m+ /b) (17)

It was observed in ref.[16] that when L[b] is approximated by its first term in
the 1/m expansion, a set of BRST transformations can be defined so that the
corresponding BRST invariance allows to obtain the (approximate) bosonic
action. We shall explicitly prove here that this invariance is present in (16)
where no approximation for L[b] is assumed. To this end, we introduce a set
of auxiliary fields hµ (taking values in the Lie algebra of G) and l so that one
can rewrite (16) in the form

exp(−Sbos[A]) =
∫

DbµDc̄µDcµDhµDlDχ̄ exp(−Seff [A, b, h, l, c̄, c, χ̄]) (18)
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with

Seff [A, b, h, l, c̄, c, χ̄] = tr
∫

d3x (L[b− h]±
i

8π
εµναc̄µDν [b]cα

∓
i

16π
((Aµ − bµ)

∗fµ[b] + lh2µ − 2χ̄hµcµ)) (19)

where χ̄ is an anti-ghost field. Written in the form (19), the bosonic ac-
tion has a BRST invariance under the following nilpotent off-shell BRST
transformations

δc̄µ = Aµ − bµ, δbµ = cµ, δAµ = cµ, δcµ = 0, δχ̄ = l

δhµ = cµ, δl = 0 (20)

(These transformations are slightly different from those in ref.[16] due to the
present choice of functional X [b])

In view of this BRST invariance, one could add to Seff a BRST exact
form without changing the dynamics defined by Sbos[A]. Exploiting this, we
shall see that one can factor out the Aµ dependence in the r.h.s. of eq.(19) so
that it completely decouples from the path-integral over auxiliary and ghost
fields. Although complicated, this integral then becomes irrelevant for the
definition of the bosonic action for Aµ. Indeed, let us add to Seff the BRST
exact form δG,

Seff [A, b, h, l, c̄, c, χ] → Seff [A, b, h, l, c̄, c, χ] + δG[A, b, h, c̄] (21)

with

G[A, b, h, c̄] = ∓
i

16π
tr
∫

d3x εµναc̄µHνα[A, b, h] (22)

and Hνα[A, b, h] a functional to be determined in order to produce the de-
coupling. Then, consider the change of variables

bµ = 2b′µ −Aµ + Vµ[A] (23)

where Vµ[A] is some functional of Aµ changing covariantly under gauge trans-
formations,

Vµ[A
g] = g−1Vµ[A]g (24)
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so that b′µ is, like Aµ and bµ, a gauge field. Integrating over l in (18) and
imposing the resulting constraint, hµ = 0, one sees that if one imposes on
Hνα[A, b, h] the condition

εµνα

∫

d3y

(

δHνα

δbaρ(y)
+

δHνα

δAa
ρ(y)

+
δHνα

δhaρ(y)

)

caρ(y) |h=0 = εµνρ[Aν−bν−Vν [A], cρ]

(25)

then, when written in terms of the new b′µ variable, the ghost term becomes

Sghost[b
′, c, c̄] = ±

i

8π
tr
∫

d3x εµναc̄µDν [b
′]cα (26)

so that its contribution is still Aµ independent. Then, we can write the
effective action in the form

Seff [b
′, A] + Sghost[b

′, c, c̄] (27)

with

Seff [b
′, A] = S̃[b, A]

= tr
∫

d3x
(

L[b]∓
i

16π
(Aµ − bµ)(

∗fµ[b] +
∗Hµ[A, b, 0])

)

(28)

where ∗Hµ = εµναHνα.
Condition (25) made the ghost term independent of the bosonic field Aµ.

We shall now impose a second constraint in order to completely decouple the
auxiliary field b′µ from Aµ in Seff . Indeed, consider the conditions

δ2Seff [b
′, A]

δAa
ρ(y)δ b

′b
σ (x)

= 0 (29)

In terms of the original auxiliary field bµ these equations read

δ2S̃[b, A]

δAa
ρ(y)δb

b
σ(x)

−
δ2S̃[b, A]

δbaρ(y)δb
b
σ(x)

+
∫

d3u
δ2S̃[b, A]

δbcβ(u)δb
b
σ(x)

δV c
β (u)

δAa
ρ(y)

= 0 (30)

Eqs.(30) can be easily written in terms of L, H and V as a lengthy equation
that we shall omit here.
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The strategy is now as follows: once a given approximate expression for
the fermion determinant is considered, one should solve eq.(30) in order to
determine functionals V in eq.(23) and G in eq.(22), taking also in account
the condition (25). In particular, if one considers the 1/m expansion for the
fermion determinant, equations (25) and (30) should determine the form of
V and G as a power expansion in 1/m. In ref.[21] the 1/m expansion for the
fermion determinant was shown to give

ln det(i/∂ +m+ /b) = ±
i

16π
SCS[b] + IPC [b] +O(∂2/m2), (31)

where the Chern-Simons action SCS is given by

SCS[b] = εµνλ tr
∫

d3x (fµνbλ −
2

3
bµbνbλ). (32)

Concerning the parity conserving contributions, one has

IPC [b] = −
1

24πm
tr
∫

d3x fµνfµν + · · · , (33)

To order zero in this expansion, solution of eqs.(25),(30) is very simple.
Indeed, in this case the fermion determinant coincides with the CS action
and one can easily see that the solution is given by

V (0)
µ [A] = 0 (34)

G(0)[A, b, h, c̄] = ±
i

16π
tr
∫

d3x c̄µ (
1

2
∗fµ[A] +

1

2
∗fµ[b]− 2∗Dµα[A]hα) (35)

With this, the change of variables (23) takes the simple form

bµ = 2b′µ − Aµ (36)

and the decoupled effective action reads

S
(0)
eff [b, A, c̄, c] = ∓

i

16π
(2SCS[b

′]− SCS[A]) + Sghost[b
′] (37)

We then see that the path-integral in eq.(18), defining the bosonic action
Sbos[A], factors out so that one ends with a bosonic action in the form

S
(0)
bos[A] = ±

i

16π
SCS[A] (38)
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as advanced in [10],[16]. Let us remark that in finding the solution for G one
starts by writing the most general form compatible with its dimensions,

G(0)[A, b, h, c̄] = tr
∫

d3x εµναc̄µ (d1bνAα + d2Aνbα + d3bνbα + d4AνAα

+d5bνhα + d6hνbα + d7Aνhα + d8hνAα + d9∂νAα + d10∂νbα + d11∂νhα)

(39)

All the arbitrary parameters di are determined by imposing the conditions
(25) and (30) with ∗Hµ transforming covariantly (as hµ does) under gauge
transformations which leads, together with a gauge invariant action, to the
solution (35).

To go further in the 1/m expansion one uses the next to the leading
order in the fermion determinant as given in eq.(31). Again, starting from
the general form of G and after quite lengthy calculations that we shall not
reproduce here, one can find a unique solution for Vµ and Hνα leading to a
gauge invariant action,

V (1)
µ [A] = ±

2i

3m
∗fµ[A] (40)

G(1)[A, b, h, c̄] = G(0)[A, b, h, c̄] ∓
1

96πm
tr
∫

d3x c̄µεµναενρσ
(

1

2
[ fρσ[A− h] + 3fρσ[b− h]− 2Dρ[A− h](Aσ − bσ) , (Aα − bα) ]

+ 4 [ fρσ[A− h] , hα ]
)

(41)

The corresponding change of variables (23) takes now the form

bµ = 2b′µ − Aµ ±
2i

3m
∗fµ[A] (42)

and the decoupled effective action reads

S
(1)
eff [b, A, c̄, c] = S

(0)
eff [b, A, c̄, c] + tr

∫

d3x
(

1

6πm
f 2
µν [b

′] +
1

24πm
f 2
µν [A]

)

(43)

so that one can again integrate out the completely decoupled ghosts and b′

fields ending with the bosonic action

S
(1)
bos[A] = ±

i

16π
SCS[A] +

1

24πm
tr
∫

d3x f 2
µν [A] (44)

9



This result extends to order 1/m the bosonization recipe presented in refs.
[10],[16].

In this way, from the knowledge of the 1/m expansion of the fermion
determinant one can systematically find order by order the decoupling change
of variables and construct the corresponding action for the bosonic field Aµ.
One finds for the change of variables

bµ = 2b′µ − Aµ ±
2i

3m
∗fµ[A] +

1

m2
C(2)Dρ[A]fµρ[A] + . . . (45)

Here C(2) is a (dimensionless) constant to be determined from the 1/m2

term in the fermion determinant expansion, which should be proportional to
∗fµDρfρµ. Evidently, finding the BRST exact form becomes more and more
involved and so is the form of the bosonic action which however, can be
compactly written as

Sbos[A] = tr
∫

d3x
(

L[−A + V [A]]

∓
i

16π
(2Aµ − Vµ[A])(

∗fµ[−A + V [A]] + ∗Hµ[−A + V [A], A, 0])
)

(46)

(ii) The Abelian case

As it should be expected, the obtention of the bosonic action from the
knowledge of the fermion determinant expansion in powers of 1/m greatly
simplifies in the Abelian case. We shall briefly describe this calculation and
then discuss another approximation which allows to obtain the bosonic action
in the m→ 0 limit.

No ghosts have to be employed when using the identity (4) in the Abelian
case. Moreover, since in both approximations to be considered only quadratic
terms are included in the determinant expansion, no additional exact BRST
terms are necessary in order to decouple the auxiliary field bµ from the bosonic
field Aµ. One then has, instead of (18)-(19),

exp(−Sbos[A]) =
∫

Dbµ exp(−Seff [A, b]) (47)

with
Seff [A, b] =

∫

d3x (L[b] + iλAµ
∗fµ[b]) (48)
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(There is no need in the Abelian case to introduce an X [b], since the action
(48) is already gauge invariant with Aµ and bµ transforming as gauge fields.)

Again, we consider the change of variables with

bµ = (1− θ)b′µ + θAµ + Vµ[A] (49)

where Vµ[A] is a (gauge invariant) functional of f [A] so that b′µ is also a
gauge field. Parameters θ and λ are at this stage arbitrary, and θ can be a
functional of ∂2/m2 (One could have introduced these parameters also in the
non-Abelian case but they were chosen so as to simplify calculations in the
1/m expansion). In terms of L[b] and Vµ[A] the decoupling conditions (30)
become here

2iλερσα∂
α
x δ(x− y) + θy

∫

d3z
δ2L[b(z)]

δbρ(y)δbσ(x)

+
∫

d3u

(

∫

d3z
δ2L[b(z)]

δbβ(u)δbσ(x)

)

δVβ(u)

δAρ(y)
= 0 (50)

If we now use for L[b] the result of the 1/m expansion of the fermion
determinant [21],

L[b] = ∓
i

8π
εµναbµ∂νbα +

1

24πm
f 2
µν [b] +O(

1

m2
) (51)

and try for Vµ[A] the functional form

Vµ[A] = i
C

m
εµναfνα[A] (52)

we get, from the decoupling equation (50),

C = ±1/3 (53)

if we choose λ = ∓1/8π to have for simplicity (as in the non-Abelian case)
θ = −1. The bosonic action for Aµ can be easily found to be

Sbos[A] = ±
i

8π

∫

d3x εµναAµ∂νAα +
1

24πm

∫

d3x f 2
µν [A] +O(1/m2) (54)

This result extends that originally presented in ref.[7]. One can in princi-
ple determine, following the same procedure, the following terms in the 1/m
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expansion of Sbos by including the corresponding terms in the fermion deter-
minant expansion. It is evident that, in the absence of an additional BRST
exact term, the decoupling equation (50) can have a non-trivial solution pro-
vided one uses for L[b] an approximation only involving terms quadratic in
the fields. This in turn implies that Vµ[A] should be a linear functional.
Higher order terms in the 1/m expansion involve cubic and higher order
terms in bµ thus necessarily requiring the addition of a BRST exact term in
order attain the decoupling of bµ and Aµ.

Alternatively to the 1/m determinant expansion, one can consider an
expansion in powers of bµ retaining up to quadratic terms. The result can
be written in the form [11]

L[b] =
i

2
εµναbµP∂νbα +

1

4m
fµν [b]Qfµν [b] (55)

where P and Q are functionals to be calculated within a loop expansion,

P ≡ P

(

∂2

m2

)

Q ≡ Q

(

∂2

m2

)

(56)

In order to decouple the bµ field one again proposes a change of variables
like in (49) but now trying for Vµ the (gauge-invariant) functional form

Vµ[A] =
i

m
εµναRfνα[A] = 2

i

m
εµναR∂νAα (57)

with

R ≡ R

(

∂2

m2

)

(58)

One finds, from the decoupling conditions (50),

δ2Seff [b
′, A]

δAρ(y)δb′σ(x)
=

(1− θ)

(

iερσα

(

2λ+ θP − 2
∂2

m2
QR

)

∂αδ(x− y)

+
2

m

(

1

2
θQ− PR

)

(

∂ρ∂σ − δρσ∂
2
)

δ(x− y)
)

= 0 (59)
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θ being here a functional of ∂2/m2. The solution of this equation is

R = −λ
Q

(

P 2 − ∂2

m2Q2
) θ = −2λ

P
(

P 2 − ∂2

m2Q2
) (60)

With this choice, the change of variables decouples the bµ integration so that
one can finally get the bosonic action for Aµ which now reads

Sbos[A] =
∫

d3x



−(2λ)2
i

2
εµναAµ

P
(

P 2 − ∂2

m2Q2
)∂νAα

+(2λ)2
1

4m
fµν [A]

Q
(

P 2 − ∂2

m2Q2
)fµν [A]



 (61)

This result coincides with that found in ref.[11], obtained by a direct func-
tional integration on bµ. As it was proven in this last work, it corresponds
for massless fermions to the bosonization action proposed in ref.[6].

Let us point that in previous works on bosonization based in the intro-
duction of auxiliary fields bµ one needed the explicit (gaussian) integration
on bµ, this being only possible in the Abelian case and in the context of
a quadratic approximation. An important point in the derivation above is
that we have shown the equivalence between our approach to bosonization
and that based in the direct functional integration on bµ. Now, in the non-
Abelian case any approximation of the fermion determinant is non-quadratic
and a closed functional integration on bµ is not possible, but the approach
presented here can still be followed. This is due to the fact that an appro-
priate change of variable and addition of BRST exact terms allows to factor
out the bµ integration, this being also true within approximation schemes
different from the 1/m expansion.

In summary, we have developed in the present work a systematic pro-
cedure to construct the bosonic action accompanying the fermion current
bosonization recipe. In the path integral approach to bosonization, one needs
to decouple an auxiliary field from the vector field Aµ describing the system
in the bosonic language. We showed that an adequate change of variables and
the existence of a BRST symmetry allows this decoupling. In our scheme,
one has to determine a functional Vµ[A] appearing in the change of vari-
ables (eq.(23)) and an exact BRST term δG to be added to the effective
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action. We derived two equations (eqs.(25),(30)) that allow to determine
Vµ and G and showed through formula (46) how to construct the bosonic
action. Of course one also needs to calculate the fermion determinant, this
implying some kind of approximation. For the non-Abelian case we consid-
ered the 1/m approximation showing how to construct the bosonic action
order by order in the 1/m expansion (eqs.(44)-(45)). We also discussed in
the Abelian case a quadratic approximation for the fermion determinant. In
both cases we obtained consistent formulae for the bosonic action (eqs.(54),
(61)) which, together with eq.(1), give the bosonization recipe for three di-
mensional fermions. Let us end by noting that the same approach could in
principle be applied in d > 3 dimensions.
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