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Induced Parity Breaking Term at Finite Temperature
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We compute the exact induced parity-breaking part of the effective action for 2 + 1 massive
fermions in QED3 at finite temperature by calculating the fermion determinant in a particular
background. The result confirms that gauge invariance of the effective action is respected even
when large gauge transformations are considered.
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Because of its relevance both in Field Theory and Condensed Matter physics, much effort has been devoted in
the last decade to the study of three dimensional gauge theories coupled to matter. An important ingredient in this
theories is the parity anomaly [1] which induces, through fluctuation of massive Fermi fields, a Chern-Simons term in
the effective action of the gauge field [2].
As originally stressed in [1], a fundamental property of the Chern-Simons (CS) action is the existence of a quan-

tization law: due to the non-invariance of the CS term under gauge transformations of ”non-zero” winding number,
the coefficient which appears in front of the (non-Abelian) Chern-Simons three form SCS should be quantized so
that exp(iSCS) is singled valued. Even in the Abelian case “large” gauge transformations come into play whenever
the theory is formulated in an appropriately compactified manifold [3]- [4] and in that case the quantization law
also holds. Putting together all these facts one can state that in three dimensional gauge theories with Fermi fields,
calculations of the effective action for the gauge field using gauge-invariant regularizations lead to a parity anomaly
which manifests through the occurrence of a CS term with a quantized coefficient which depends on the number of
fermion species.
A natural question raised when the analysis of three dimensional gauge theories was extended to the case of finite

temperature was whether quantization of the CS coefficient induced by fermion fluctuations survives the effects of
temperature or it is smoothly renormalized. The question was originally discussed in [5] where it was argued that the
coefficient of the CS term in the effective action for the gauge field should remain unchanged at finite temperature.
Contrasting with this analysis, perturbative calculations for both relativistic and non-relativistic theories, abelian and
non-abelian, have yielded induced actions with CS coefficients which are smooth functions of the temperature [6]-
[15], this seeming to signal a kind of gauge anomaly at finite temperature.
The problem of renormalization of the CS coefficient induced by fermions at T 6= 0 was revisited in refs. [16]- [17]

where it was concluded that, on gauge invariance grounds and in perturbation theory, the effective action for the
gauge field cannot contain a smoothly renormalized CS coefficient at non-zero temperature. More recently, the exact
result for the effective action of a 0 + 1 analogue of the CS system [18] as well as a zeta-function analysis of the
fermion determinant at T 6= 0 in the 2+ 1 model [19] have explicitly shown that although the perturbative expansion
leads to a smooth temperature dependent and hence non-quantized CS coefficient, the complete effective action can
be made gauge invariant, the induced CS term’s non-invariance revealed by perturbation theory being compensated
by non-local contributions to the effective action.
Originally [2] the parity anomaly for fermions at T = 0 was analyzed by considering a particular gauge field

background configuration which allowed the closed computation of the anomalous part of the fermion current. In
the same vein, we compute in this work the induced parity-breaking part of the effective action for three dimensional
massive fermions in QED3 at finite temperature by considering a particular gauge field configuration which allows the
obtention of a closed exact result for the fermion determinant. Our result confirms that gauge invariance, even under
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large gauge transformations, is respected and at the same time reproduces in the appropriate limits the perturbative
and zero temperature results.
We define the total effective action Γ(A), as usual, by the formula

e−Γ(A,M) =

∫

DψDψ̄ exp

[

−

∫ β

0

dτ

∫

d2x ψ̄(6∂ + ie 6A+M)ψ

]

(1)

We are using Euclidean Dirac’s matrices in the representation γµ = σµ and β = 1
T

is the inverse temperature. The
label 3 is used to denote the Euclidean time coordinate τ . The fermionic (gauge) fields in (1) obey antiperiodic
(periodic) boundary conditions in the timelike direction. We are concerned with the mass-dependent parity-odd piece
Γodd of Γ, which, as a parity transformation changes the sign of the mass term (the only odd term under parity in
the Euclidean action), can be obtained as follows:

2Γodd(A,M) = Γ(A,M)− Γ(A,−M) (2)

In any gauge invariant regularization scheme there is also a mass-independent (and temperature independent) con-
tribution (the parity anomaly) which corresponds to a CS term with a coefficient such that it changes in multiples of
iπ under large gauge transformations [19,20].
The calculation of (2) for any gauge field configuration is not something we can do exactly. Instead of making

a perturbative calculation dealing with a small but otherwise arbitrary gauge field configuration, we shall consider
a restricted set of gauge field configurations which can however be treated exactly. Moreover, as we want to make
a calculation which preserves the symmetry for gauge transformations with non-trivial winding around the time
coordinate, any approximation assuming the smallness of A3 could put this symmetry in jeopardy.
A convenient class of configurations from this point of view is that of time-independent magnetic fields in a gauge

such that

A3 = A3(τ), Aj = Aj(x) (j = 1, 2) (3)

namely, A3 is only a function of τ , and Aj is independent of τ . Under these assumptions, we see that the only
τ -dependence of the Dirac operator comes from A3. This dependence can however be erased by a redefinition of the
integrated fermionic fields. The set of allowed gauge transformations in the imaginary time formalism is defined in
the usual way:

ψ(τ, x) → e−ieΩ(τ,x)ψ(τ, x) , ψ̄(τ, x) → eieΩ(τ,x)ψ̄(τ, x)

Aµ(τ, x) → Aµ(τ, x) + ∂µΩ(τ, x) (4)

where Ω(τ, x) is a differentiable function vanishing at spatial infinity (|x| → ∞), and whose time boundary conditions
are chosen in order not to affect the fields’ boundary conditions. It turns out that Ω(τ, x) can wind an arbitrary
number of times around the cyclic time dimension:

Ω(β, x) = Ω(0, x) +
2π

e
n (5)

where n is an integer which labels the homotopy class of the gauge transformation.
As we are interested in evaluating the fermionic determinant in a gauge invariant way

det(6∂ + ie 6A + M) =

∫

DψDψ̄ exp

{

−

∫ β

0

dτ

∫

d2xψ̄(6∂ + ie 6A + M)ψ

}

, (6)

we can always perform a gauge transformation in order to pass to an equivalent expression where the gauge field
A′

µ = Aµ + ∂µΩ is constant in time. For the particular set of configurations (3) such a transformation renders A′
3

constant. We see that there is a family of Ω’s achieving this while respecting the boundary conditions (5),

Ω(τ) = −

∫ τ

0

dτ̃A3(τ̃ ) +

(

1

β

∫ β

0

dτ̃A3(τ̃ ) +
2πn

eβ

)

τ (7)

where n is an arbitrary integer. The freedom to chose n could be used to further restrict the values of the constant A′
3

to a finite interval. In this sense, the value of the constant in such an interval is the only ‘essential’, i.e., gauge invariant,
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A3-dependent information contained in the configurations (3), describing the holonomy
∫ β

0 dτ̃A3(τ̃ ). However, we will
limit ourselves to small gauge transformations (n = 0) in order to avoid any assumption about large gauge invariance
of the fermionic measure in (6) and safely discuss the effect of large gauge transformations on the final results. Thus

the constant field A′
3 simply takes the mean value of A3(τ), Ã3 = 1

β

∫ β

0 dτ A3(τ). Note that the spatial components
of Aµ remain τ -independent after this transformation.
It is convenient to perform a Fourier transformation on the time variable for ψ and ψ̄, since the Dirac operator is

now invariant under translations in that coordinate:

ψ(τ, x) =
1

β

n=+∞
∑

n=−∞

eiωnτψn(x), ψ̄(τ, x) =
1

β

n=+∞
∑

n=−∞

e−iωnτ ψ̄n(x) (8)

where ωn = (2n + 1)π
β
is the usual Matsubara frequency for fermions. Then the Euclidean action is written as an

infinite series of decoupled actions, one for each Matsubara mode

1

β

+∞
∑

n=−∞

∫

d2xψ̄n(x)
[

6d + M + iγ3(ωn + eÃ3)
]

ψn(x) (9)

where 6d = γj(∂j + ieAj) is the Dirac operator corresponding to the spatial coordinates and the spatial components
of the gauge field.
As the action splits up into a series and the fermionic measure can be written as

Dψ(τ, x)Dψ̄(τ, x) =
n=+∞
∏

n=−∞

Dψn(x)Dψ̄n(x) (10)

the 2 + 1 determinant is an infinite product of the corresponding 1 + 1 Euclidean Dirac operators

det(6∂ + ie 6A + M) =

n=+∞
∏

n=−∞

det[ 6d+ ρne
iγ3φn ] , (11)

where we have also defined

ρn =

√

M2 + (ωn + eÃ3)2 ;φn = arctan(
ωn + eÃ3

M
) . (12)

Explicitly, the 1 + 1 determinant for a given mode is a functional integral over 1 + 1 fermions

det[ 6d+ ρne
iγ3φn ] =

∫

Dχn Dχ̄n exp

{

−

∫

d2xχ̄n(x)(6d + ρne
iγ3φn)χn(x)

}

. (13)

We now realize that the change of fermionic variables

χn(x) = e−i
φn
2

γ3χ′
n(x) , χ̄n(x) = χ̄′

n(x)e
−i

φn
2

γ3 , (14)

makes the action in (13) independent of φn. Concerning the fermionic measure, it picks up an anomalous Fujikawa
jacobian [21] so that one ends with

det[ 6d+M + iγ3(ωn + eÃ3)] = Jn det[ 6d+ ρn] (15)

where

Jn = exp(−i
eφn

2π

∫

d2xǫjk∂jAk) , (16)

with ǫjk denoting the 1 + 1 Euclidean Levi-Civita symbol.
Recalling the definition of Γodd, we see that the second factor in expression (15) does not contribute to it, since it

is invariant under M → −M . As a consequence, the parity odd piece of the effective action is given in terms of the
infinite set of n-dependent Jacobians:
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Γodd = −

n=+∞
∑

n=−∞

log Jn = i
e

2π

n=+∞
∑

n=−∞

φn

∫

d2xǫjk∂jAk . (17)

There only remains to perform the summation over the φn’s, whose sign will obviously depend on the sign of M .
Using standard finite-temperature techniques, this series can be exactly evaluated, yielding

Γodd = i
e

2π
arctan

[

tanh(
βM

2
) tan(

e

2

∫ β

0

dτA3(τ))

]

∫

d2xǫjk∂jAk . (18)

This is one of the main results in our paper: we have been able to compute the exact mass-independent parity-
odd piece of the effective action in QED3 at finite temperature for the restricted set of configurations (3). Several
important features of this result should be stressed.
First of all, this result has the proper zero temperature limit:

lim
T→0

Γodd =
i

2

M

|M |
SCS =

i

2

M

|M |

e2

2π

∫

d3xǫµναAµ∂νAα. (19)

As it is well known, in the zero temperature case the mass-dependent part of the parity breaking is not invariant
under large gauge transformations. The quantization of the flux of the magnetic field in the last factor of (18) as q 2π

e

shows that (19) changes by the addition of inqπ under a large gauge transformation (5). The gauge non-invariance
appearing when n and q are odd is compensated by the parity anomaly when the result is regularized in a gauge
invariant scheme. Notice also that only in the zero temperature limit is the result non-analytic in M .
The same situation occurs in the finite temperature result (18). A large gauge transformation with odd winding

number n = 2p + 1 shifts the argument of the tangent in (2p + 1)π. Although the tangent is not sensitive to such
a change, one has to keep track of it by shifting the branch used for arctan definition. This amounts to exactly the
same result as in the T → 0 limit.
Next we observe that an expansion in powers of e yields the usual perturbative result

Γodd =
i

2
tanh(

βM

2
)SCS +O(e4) (20)

where the coefficient of the Chern-Simons term acquires a smooth temperature dependence. Were we considering only
the first non trivial order in e, we would find a clash between temperature dependence and gauge invariance [16]- [17].
Now we learn, as it was first stressed in [18] in a 0 + 1−dimensional example and in [19] in a setting similar to ours,
that one has to consider the full result in order to analyze gauge invariance. The apparent impossibility of respecting
gauge invariance shown by (20) is in fact compensated by non-local higher order terms in the perturbative expansion.
Finally, we observe that the result (18) is not an extensive quantity in Euclidean time. It is however extensive in

space, and that is indeed all one expects in Finite Temperature Field Theory. In contrast, the T = 0 limit becomes
an extensive quantity in space-time, as is expected from zero temperature Field Theory.
We shall now extend the previous results to the somewhat more general situation of gauge fields satisfying the

constraint of Aj being again time-independent, but allowing for a smooth spatial dependence of A3 besides the
previous arbitrary time dependence.
The fermionic determinant we should calculate, after getting rid of the τ dependence of A3 will have a form

analogous to (11) with the only difference of having an x dependence in ρn and φn. The determinant corresponding
to the n-mode is again written as in eq.(13) and we can perform the two-dimensional chiral rotation (14). The
x-dependence of the phase factor φn produces in this case a different anomalous Jacobian,

det
[

6d+ ρn(x)e
iγ3φn(x)

]

= J ′
n det[ 6d′ + ρn(x)] , (21)

where 6d′ = 6d − i
2 6∂φnγ3 . This affects the result in two ways: first, as the fermionic operator in the r.h.s. depends on

the sign of M , there will be a contribution to Γodd coming from the determinant of 6d′ + ρn(x). Second, the Jacobian
is a slightly more involved function of φn [21],

J ′
n = exp

{

−i
e

2π

∫

d2x[φn(x)ǫjk∂jAk +
1

4
φn(x)∆φn(x)]

}

. (22)

In a first approximation, we shall only take into account the contribution coming from the Jacobian, since the one
that follows from the determinant of the Dirac operator is of higher order in a derivative expansion (and we are
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assuming that the x-dependence of Ã3 is smooth). Moreover, the contribution which is quadratic in φn is irrelevant
to the parity breaking piece, since it is invariant under the change M → −M . Thus, neglecting the terms containing
derivatives of Ã3, we have for Γodd a natural generalization of eq.(18)

Γodd = i
e

2π

∫

d2x arctan

[

tanh(
βM

2
) tan(

e

2

∫ β

0

dτA3(τ, x))

]

ǫjk∂jAk(x) . (23)

The approximation of neglecting derivatives of Ã3 is reliable if the condition |e ∂jÃ3| << M2 is fulfilled. To end
with this example, let us point that all the remarks we made for the case of a space-independent A3 apply also to
this case.
In conclusion, using particular gauge field configurations we have computed the mass-dependent parity-violating

part of the effective action for 2 + 1 massive fermions at finite temperature obtaining an exact result. Once the
standard parity anomaly is taken into account, we have shown that gauge invariance holds even when large gauge
field configurations are considered. Our method, which made use of the calculation of the 1 + 1 anomaly, can be also
applied to the analysis of the non-Abelian case; details of this case will be given elsewhere.
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