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Intermediate-Thrust Arcs and Their Optimality 
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Abstract. This paper presents the general equations of the inter- 
mediate-thrust arcs in a general, time-invariant, central force field. 
Two families of planar arcs, namely, the family of Lawden's spirals 
in the equatorial plane of an oblate planet and the family of inter- 
mediate-thrust arcs in a gravitational field of the form tz/r n, have 
been considered in detail. The Kelley-Contensou condition has been 
used to test their optimality condition. It is shown that, in the first 
case, there exist portions of the arcs at a finite distance satisfying the 
condition, while, in the second case, the entire family satisfies the 
condition for n >~ 3. Hence, in a perturbed Newtonian gravitational 
force field, the intermediate-thrust arcs, under certain favorable 
conditions, can be part of an optimal trajectory. 

1. Introduction 

The possibility of different gravitational fields of force existing in 
space has often been conjectured. Finzi (Ref. 1) has queried the validity 
of Newton's  law at great distances and Tsehauner  and Fischer (Ref. 2) 
have investigated the effect of different fields of force on the motion of 
a particle. These investigation prompted Brookes and Smith (Ref. 3) 
to examine the problem of optimal rocket trajectories in a general force 
field. One type of extremal arcs is the family of singular arcs along which 
the thrust  is varying at an intermediate level. This  level of thrusting can 
be low for certain boundary conditions, and hence the arcs of inter- 
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mediate thrust  (IT-arcs) are suitable for orbital transfers using varying 
low-thrust  engines if it can be determined that  these arcs are in fact 
optimal. In  a numerical s tudy (Ref. 4), Archenti and Marchal have shown 
that, in a Newtonian force field, the coplanar arcs always contain one or 
two portions satisfying the additional optimality condition of Kelley 
(Ref. 5) and Contensou (Ref. 6). For the limiting case of Lawden's  
spiral, this optimal portion is at infinity; hence, for all practical applica- 
tions, Lawden 's  spiral is nonoptimal. 

In  this paper, we investigate the optimality of Lawden's  spiral in the 
equatorial plane of an oblate planet and also in the case of a central force 
field of the type t , /r  ~'. I t  will be shown that, in the first case, there exists 
a portion of the spirat which satisfies the Kel ley-Contensou optimality 
condition at a finite distance and, in the second case, the condition is 
satisfied over the whole arc for n >/3 .  

2. S i n g u l a r  A r c s  in  a C e n t r a l  F o r c e  F i e l d  

2.1. S t a t e m e n t  o f  the  P r o b l e m .  A rocket M, considered as 
a mass point, is moving in a central force field with center of attraction 
at 0. At a t ime t, the state of the rocket is defined by the position vector 
r(t), the velocity vector v(t), and the characteristic velocity C, which 
gives a measure of the fuel expenditure since the initial time. Specifically, 

¢ 

C = f l  t r ldt ,  (1) 

where r is the acceleration due to the propulsive thrust  T, that is 

r = T(t)/m(t) ,  (2) 

m being the instantaneous mass of the rocket. The  control at any instant 
t is the thrust  vector acceleration r ,  subject to the constraint 

0 ~< r ~< ~ x .  (3) 

I t  is proposed to transfer the rocket, by a proper selection of the control 
r(t),  from the initial condition r o , V 0 at to = 0 to the terminal condition 
r j ,  V 1 at the time t = t/ such that the final characteristic velocity C I 
is a minimum. The  final time t I may be fixed in advance, or may be 
subject to the condition t I <~ t m a  x , or may be completely free. 
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2.2. E q u a t i o n s  o f  the  S i n g u l a r  A r c s .  First, we have the state 
equations 

dr/dr -- V, (4) 

dV/dt ~- r - g(r)  r/r, (S) 

where g(r) is the gravitational force per unit  mass, with g > 0 for an 
attracting force field. Using the maximum principle, we introduce the 
adjoint elements Pr ,  P~,, Pc to form the Hamiltonian 

H = p , .  V + p~. ( r  - -gr / r )  + p , r .  (6) 

To maximize H, I" must be collinear to p~, and 

H = p,. ' V -- g(p,"  r)/r -+- (p~ -/p~)-P. (7) 

H is a constant if the function g is time invariant. For the selection of/~, 
the following rules apply: 

if p~ ~- p~, < 0, we select F - 0 (null-thrust arc), 

if p~ -k p~. > 0, we select F = Fma x (maximum-thrust  arc), 

if p,,, @ Pc = 0, we select F = variable (intermediate-thrust arc). 

Hence, the solution to the problem results in finding the time history of 
the vector p~, called the primer vector. The  primer vector along a 
maximum-thrus t  arc is not known. Its integration along a nul l- thrust  
arc, in a central force field, was presented by Vinh (Ref. 7). The  equations 
of the primer vector along an intermediate-thrust  arc, in a central force 
field, have been derived by Vinh and Marchal (Ref. 8). 

Along an intermediate-thrust  arc, we take a rotating coordinate 
system with origin at the point M such that 

M X / / r ,  M Z / / r  × V, 

M X Y Z  being a r ight-handed orthogonal trihedral. In  this system, we 
have the components 

r - (r, 0,  0), V = (X,  Y, 0),  pr = (a, b, c), p~ = (~, 8,  r)- (8) 

Then,  we have the equations for the elements along an intermediate- 
thrust  arc (Ref. 8) 

~ 2 ÷ ¢ / 2 ÷ 7 2 _  t, 

~a + ~b + 7c = O, (9) 
a ~ + b ~ + c ~ = [~2g'r + (1 -- ~)g] l / r ,  

4~ar ~ [1 -- ~2 _ ~2g,,r2/(g _ g 'r)]X -i- 2~fiY, 
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where the prime denotes the derivative taken with respect to r. The  
magnitude of the acceleration control is given by 

P~[3(1 -- ~2)(g _ g ' r ) -  ~2g"r"] 

: :  g[(g  - -  g ' r )  - -  (g"r ~ - -  5g'r + g)  ~z _ 4 g , ~ r ~ / g ]  

- -  4a2r(g - -  g 'r )  - -  2aa(g"r  z + g ' r  - -  g ) X  @ 6(~b + f ia)(g - -  g ' r ) Y  

-+- (aZ/r)[(g"r ~ + 2g"r 2) + g"2r ' / (g  - -  g 'r)] X 2 

" 2 + (2afi /r)[g r - -  2g 'r  + 2g] X Y  

-- (l/r)[(1 + 2fl ~ -- 3,2)(g - -  g ' r )  - -  g"r2a 2] y2 .  (10) 

The  problem has the first integrals 

a X  + b Y  - -  ag = H := const, (11) 

r × P r + V  × p~ - k = c o n s t .  (12) 

If  the gravitational force is of the form 

g(r)  = t~/r", (13) 

we have the additional integral of motion 

p ~ ' V - - [ 2 / ( n - - l ) ] p r ' r + [ ( n - ~ l ) / ( n - -  1 ) ] H t - - C = D  : c o n s t .  (14) 

2.3. O p t i m a l i t y  C o n d i t i o n .  A simple necessary condition for 
optimality of the intermediate-thrust  arc can be obtained by applying 
the Kel ley-Contensou condition (Ref. 5-6) 

(--  1) v (e/er)[(a~/at~)(e~41er)] <~ o, (15) 

where p is the order of the singularity (in our case, p = 2). Hence,  for 
a general central, t ime-invariant force field, we have the additional 
necessary condition for optimality of the intermediate-thrust  arc 

(~/re)[3(1 _ ~2)(g _ g 'r )  - -  ~ g " r  2] <~ O. (16) 

Since F / >  0, we shall use the equivalent condition 

p __ (~_p/r~)[3(1 _ ~2)(g _ g'r) --  ~2g"re] ~ O. (17) 
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2.4. P l a n a r  A r e s .  
equations 

y = 

In  this case, c = 0, 7 = 0, and we have the 

c~2 + fi2 _= 1, E -= ± 1 ,  

a = ( ~ / k ) [ H  + (g  - -  g '~)  ~3, 

b = - - ( a a / k ) [ H  + (g  - -  g ' r )  ~a], 

X = 2afi(g - -  g ' r ) {k  2 + 3c~r[H + (g  - -  g ' r )  cO]} 
k[3(g -- g ' r )  fi~ - -  g"r2c~ 2] ' (18) 

~E{(g -- g ' r )  f i2[--k2 @ 3 a r [ H  + (g  - -  g ' r )  c~]] t 
+ g"r2~2[k 2 + c~r[H + (g  - -  g ' r )  o~3]]} 

k~[3(g -- g ' r )  fi2 _ g,,r2~2] 

where r is obtained as a function of ~ from the relation 

r [ H  + (g - -  g ' r )  a3] ~ = k2rg - -  (g - -  g ' r )  ~ ] .  (19) 

3. O p t i m a l i t y  o f  L a w d e n ' s  S p i r a l  in  the  E q u a t o r i a l  P l a n e  o f  a n  
O b l a t e  P l a n e t  

Archenti  and Marchal (Ref. 4) have shown that the optimal portion 
of Lawden 's  spiral, in the case of an inverse-square force field, is at 
infinity. We propose to show that, in the equatorial plane of an oblate 
planet, there exist spirals with optimal portion at a finite distance 
from the center of force. 

In the equatorial plane of an oblate planet, the function g ( r )  has the 
form 

g(r) = (~/r2)[1 + ~(R/r)2] + o(E~), (20) 

where R is the equatorial radius of the planet; for the Earth, according 
to Jeffreys (Ref. 9), e = 1.638 × 10 -3. For Lawden 's  spiral, H ~ 0, and 
Eq. (19) becomes 

r (g  - -  g ' r )  2 c~ = k2[g - -  (g  - -  g ' r )  c~2]. 

We define a nondimensional radial distance p and a nondimensional 
parameter k 1 such that 

p = r / R ,  kl 2 = k2R/ l  ~. ( 21 )  

Hence, 

k12p = 9c~2/(1 -- 3a 2) + ekla(7 -- 15a2)/2% 6 + O(e2). (22) 
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With this expression for p, we can write the optimality condition (17) as 

Q = ~8(9 - 25c~ 2 ÷ 20c~') 

+ (~h14/243c~6)(80/3 -- 124c~2 -- 266o~4 q- 2200o~ n -- 3890c~s q- 2520o~ lo) 

+ O(e 2) ~< 0, (23) 

where 

Pp [ paRak z 3/?~(3p 2 @ 5e) - -  2~2(3p 2 ~- 10e)_] 2. Q (24) ~ -  • ~ (3o 3 + 5~) 

For real arcs, the value of ~ is constrained by 

0 ~< a S <~ ~2, ~2 = (p3 + e)/(302 + 5@ (25) 

Hence,  the values of ~z which limit the range of optimality for Lawden 's  
spirals in the oblate planet case are the roots of the equation 

Q(~) = 0 (26) 

containing the interval (25). 
Consider the space kl 4, E > 0 (Fig. 1). We propose to find in this 

space the region in which it is possible to obtain the values of O and 
from Eqs. (22) and (26) such that these values satisfy Ineqs. (25). This  
region is then the region where Lawden 's  arcs can be optimal. Assume 
that the problem has been solved, and consider a point (k~0, %) in this 

13 
T ' g "  

I 
I 

k~ 6 ) /  13/16 

Fig. 1. Region of existence of optimal arcs. 
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region. If we move the point along the hyperbola k14~ = k~0e0, the 
solution of (26) remains always a02, and hence by (22) we have the same 
value for k12p. Now, if we write the second equation (25) as 

%~ = [(kd.) 2 + k&]/[3(k&)~ + 5k&], 

we see that the interval for ~2 remains the same. Therefore, if a point 
(k~0, %) is in the region of optimality, the entire hyperbola h14E = k~0e 0 
passing through this point is contained in this region. Hence, this region 
is bounded by the hyperbola with the smallest positive value of ekl ~ 
satisfying the optimality condition. From Eq. (26), we have 

where 

~k? = - P . ( ~ ) / f ~ ( ~ )  > o, 

Pg(c~ 2) = 243a~4(9 _ 25c~2 q- 20c~), 

P5(c~2) = ~ -- 124c~2 _ 266c~'~ + 2200c~ 6 -- 3890c~s + 2520cd °. 

(27) 

(2s) 

The polynomial Pg(a 2) is always positive, while in the interval 0 ~ ~z ~ ½ 
(½ being the maximum value of %2) ps(a2) has a real pole 

~R 2 = 0.27160967. (29) 

The expression (27) has the limiting values ~13 and ~ for c~ ~ equal to 
½ and aR 2, respectively. Hence, the region of the (hi 4, ~) plane where 
optimal intermediate-thrust arcs may occur is bounded by the hyperbola 
k l 4 e _  ~,la and the optimal values of the parameter ~2 in the polar 
equation (22) of the spiral are bounded by 

~;~ ~< ~2 ~< }. (30) 

We see that the effect of the oblateness of the attracting body has moved 
the optimal portion of Lawden's spiral from infinity to a finite distance 
which is, of course, still very large for small values of e. 

4. O p t i m a l i t y  of  the  Planar Singular Arcs  in a Gravitational 
Field of the Form ~[r" 

4.1. Equations of the Singular Arcs. From the general 
equations of planar, singular arcs, by using g = tz/r ~, we have 

[Hrnhx + (n + i) ~]2 = (k2r~-Z/t~)[l _ (n q- 1) ~2], (31) 
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wi th  the  K e l l e y - C o n t e n s o u  opt imal i ty  condi t ion  

Pr2/g 2 = {(n 4- 1)/[3 - -  (n 4- 3)c~2] 2} 

× {~Z[aF~n 4- b ~  ~ q- cF~ 2 q- a~] - [4(n - 1) Hr%~/l~] 

× [2(n q- 3) c~' - -  3(n -1- 3) a 2 4- 3] 

- -  (H2r2'~/fz%~2)[3 4- (n - -  1)(n 4- 3) ~']} ~< 0, 

where  

(32) 

and 

p~-I = [2n/(n + 1)] 2 ~M6/[1 --  (n ÷ 1) ~21 .  (38) 

In  t e rms  of  these  new parameters ,  we wri te  the polar  equa t ion  of  the  
spiral [Eq. (35)] as 

{pn/p , _]_ [(n @ 1)/(n - -  1)](a3/aM3)} ~ 

= [2n/(n - -  1)] 2 (pn-~lp~-~)[1 --  (n + 1) ~2]/[1 - -  (n + 1) ~M 2] (39) 

a t = 4(n -r  1)(n q- 3)(n --  5), 

bl = --3(n ~- 3)(3n 2 --  4n --  23), 

cl = 12(2n 2 --  n - -  19), (33) 

a~ = - 2 7 ( n  - 3) .  

W e  define the  nond imens iona l  radial  d is tance p and the  nond imens iona l  
Hami l t on i an  cons tan t  K by  the relat ions 

pn-~ = k2r~-l/tz( n 4- 1)2, Kp ~ = Hr~)z(n  4- 1), (34) 

and rewri te  Eqs.  (31) and (32) as 

[Ko~ + ~312 = pn-l[1 _ (,~ + 1) ~2], (35) 

er2/g 2 = {(n + 1)/[3 - -  (n ÷ 3) ~212}{~2[a~6 ÷ bl~' + q~2 + d,] 

- -  4(n - -  1)(n q- 1) Kpn~[2(n 4- 3) ~' - -  3(n + 3) ~ -k 31 

- -  [(n 4- 1) 2 K2p~/c~2][(n - -  1)(n ÷ 3) ~' 4- 3]} ~< 0. (36) 

L e t  aM be the  m a x i m u m  value of  % and let pM be the  cor responding  value 
for  p; by  us ing Eq.  (35), we have 

K = [(n --  1)/(n + 1)] O~M3/pM" (37) 
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and the optimality condition as 

S = (axo~ 6 4- b,o~ 4 4- ClO~ 2 4- dl) -- 4(n -- 1) ~ (O~Ma/OO(p~/pM ") 

× [2(n ÷ 3) ~ 4 _  3(n 4- 3) ~2 4- 3] 

-- (n -- 1) 2 (~,~t6#a)(O2n/p~)[(n - -  1)(n + 3) ~ + 31 ~< 0, (40) 

where 

S = [Pr2/(n + 1)g2c~2113 -- (n + 3) ~212. (41) 

4.2. L a w d e n ' s  S p i r a l .  This  arc is obtained when the Hamil tonian 
constant K is zero. We have 

p~,t = oo, O~M = 1 /~ / (n  + 1). (42) 

T h e  polar equation of the spiral is 

p~-i = ~6/[ 1 _ (n + 1)~2], (43) 

and the optimality condition is 

S = al~ 6 + bl~ 4 + ci ~2 + di ~< 0. (44) 

4.3. R e v e r s i b l e  A r c .  Th is  arc was found by Marchal  for n = 2 
(Ref. 10). For  this limiting case, 

~M = O, PM = 0, (45) 

and we have the polar equation of the curve 

pn + a a / K  = O. 

We can take K = 1 by a change of the reference length and have the 
equation 

p" = --c& (46) 

T h e  optimality condition becomes 

S = (a~a" + bla 4 + c,~ 2 4- da) + 4(n ÷ 1)(n - -  1) 

x a212(n 4- 3) a 4 -- 3(n 4- 3) c~ 2 4- 3] 

- -  (n 4- 1) 3 a2[(n - -  1)(n ÷ 3) ~4 4- 3] ~< 0. (47) 

4.4. O p t i m a l i t y  o f  t h e  P l a n a r  S i n g u l a r  A r e s  f o r  n > 2. T h e  
test funct ion - -S (~  2) for Lawden 's  spiral [Eq. (44)] and the reversible 
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arc [Eq. 47)] has been computed for different values of n = 3,..., 9, for 
~2 between zero and its maximum value ~M 2. While the arcs are non- 
optimal for n = 2, because the function is negative, for the case n ) 3, 
the function is always positive. Figure 2 presents the result for Lawden 's  
spiral, and Fig. 3 presents the results for the reversible arc. Hence,  we 
can conclude that, for the case n ) 3, Lawden 's  spiral and the reversible 
arc always satisfy the Kel ley-Contensou optimality condition and thus 
can be part of an optimal trajectory. These  cases are limiting cases of the 
general arc given by Eq. (39). It  is possible to show that, for this general 
case, the test function - -S (~  2) is also positive. The  function S, given by 
Eq. (40), is a quadratic function in (p/pu)% Its discriminant is given by 

where 

A = 4(O~M6/O~')(n + 1) 2 (n -- 1)2F, (48) 

F = 4(n -- 1) 2 ~212(n + 3) ,4 _ 3(n q- 3) ~2 _5 3]2 

+ [(n -- 1)(n q- 3) =' + 3](a1~ 6 + blC~ 4 ~- clc~ 2 -]- dl). (49) 

Figure 4 plots the values of F for different values of n, for ~e between 
0 and ~M ~. The  function F is always negative for n > 2, ~2 > 0. Hence, 
the test function - -S (~  2) always keeps the same sign which we have 
shown to be positive for some particular cases. 
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Fig. 2. Plot of the test function S for Lawden's spiral. 
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Fig. 3. Plot of the test function S for the reversible arc. 
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5. Conclusions 

In this paper, we have derived the general equations of the inter- 
mediate-thrust arc (IT-arcs) in a general, time-invariant, central force 
field. Two families of planar arcs, namely, the family of time free, 
intermediate-thrust arcs in the equatorial plane of an oblate planet 
and the family of intermediate-thrust arcs in a gravitational field of the 
form i~/r n have been considered. The Kelley-Contensou condition has 
been used to test their optimality. It is shown that, in the first case, 
there exist portions of the arcs at a finite distance satisfying the optimality 
condition, while, in the second case, the entire family satisfies the con- 
dition for n ~ 3, ~2 > 0. Hence, in a perturbed Newtonian gravitational 
force field, the intermediate-thrust arcs (IT-arcs), under certain favorable 
terminal conditions, can be part of an optimal trajectory. 
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