
RMCASE: COMPUTER-AIDED SUPPORT FOR
HYPERMEDIA DESIGN AND DEVELOPMENT

Alicia Diaz

Tornas Isakowitz

Stern #IS-95-3

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

RMCASE: COMPUTER-AIDED SUPPORT FOR
HYPERMEDIA DESIGN AND DEVELOPMENT

Alicia Diaz
Departamento de Informatica

Laboratorio de Investigacicin y
Formacicin en Informatica

Avanzada (Lifia)
Universidad Nacional de La Plata

also CONICET
50 y 1 15, 1900 La Plata, Argentina

Email: alicia@info.unlp.edu. ar

Tomas Isakowitz
Department of Information Systems

Stern School of Business
New York University

New York, NY 10012, USA
Email: tomas@stern.nyu.edu

Presented at the International Workshop on Hypermedia Design 1995
Montpellier, France

Working Paper Series
STERN 1'3-95-3

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

RMCase: Computer-Aided Support for Hypermedia Design and Development

ABSTRACT
We present the design of a computer-aided environment, RMCase, to support the
design and construction of hypermedia applications. The environment is based upon
the Relationship Management methodology. M C a s e supports hypermedia design
and development activities. Support for cognitive design processes is achieved
through three fundamental premises that form the foundation of RMCase: (1) fluid
feedback loops between the various methodological stages, (2) manipulation of objets
at the instance level, and (3) lightweight prototyping . To achieve this, RMCase itself
is designed as a hypermedia application, where hypertextual navigation implements
feedback loops. Instance objects can be cloned and abstraction/instantiation
mechanisms are envisioned to facilitate designers back and forth movements between
the abstract and the concrete layers of an application. As a result, RMCase will
support bottom-up, top-down and middle-out software development styles.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

1. INTRODUCTION
Hypermedia design and development is a complex task that involves a variety of
activities, at the storage, access and presentation levels. As a consequence, the
constituencies participating in hypermedia projects differ from those of traditional
software development environments. Hypermedia projects involve content-authors,
librarians, musicians and graphic designers, as well as programmers, system analysts,
software managers, and, of course, users. Moreover, aesthetic and cognitive aspects,
so important for hypermedia applications, are foreign to existing software
engineering environments. Thus, there is a need for special methodologies and tools
to support the software development process of hypermedia applications.

In this paper we present the design of the Relationship Management Case Tool
(RMCase), an environment to support the development of hypermedia applications.
This article represents a continuation of our efforts to construct a CASE tool for the
development of hypermedia applications. Earlier efforts resulted in graphical editors
and sample showcase applications. RMCase has a dual foundation basis. The
Relational Management Design Methodology (RM) [Isakowitz 951 provides the
methodological foundation for RMCase; its cognitive basis is drawn from work by
Nanard and Nanard [Nanard 94,Nanard 951. RMCase is, in principle, platform
independent. It is capable of creating of systems running on the VlrWW, Toolbook,
Hypercard, and other hypermedia environments.

The RM methodology prescribes seven steps to guide hypermedia software
development. RM was conceived to be the basis for software development tools,
Thus, the completion of each of its seven steps results in well defined software
engineering artifacts, which are used as input to subsequent steps. This fundamental
characteristic of RM is no different from other CASE tools [Banker 93],[IEF 901, yet
RM specifically addresses important aspects of hypermedia application development,
not found in traditional software engineering environments, in particular design of
navigation mechanisms.

This paper is organized as follows. In section 2 we identify important requirements
for a hypermedia software development environment. Section 3, briefly describes the
RMD design methodology. The principal components of RMCase are presented next
in section 4, and then, in section 5, we elaborate upon RMCase7s envisioned
prototyping facilities. Finally, section 6 briefly summarizes the contributions we
make in this article.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

2. REQUIREMENTS FOR A HYPERMEDIA DESIGN
ENVIRONMENT
Nanard and Nanard [Nanard 951 identify the following as fundamental requirements
for a hypermedia development environment:

I. Fast feedback loop spanning the methodological steps of RM, to facilitate
evaluation and re-design activities.

11. Accessible and unconstrained cloning tools at the instance level, to facilitate the
generation of material application instances that lend themselves to evaluation by
designers, developers and users.

1II.Abstraction and instantiation mechanisms that enable developers to alternate
between bottom-up and top-down approaches.

As conceived here, RMCase itself is a hypermedia application that uses different
"work contexts" to support the methodological stages of RM. We briefly describe
how RMCase has been conceived to implement the pre-requisites described above,
we will elaborate on some of these aspects of RMCase in subsequent sections.

Gra~hical editors
The environment we propose is composed of a set graphical editors to build the
artifacts pertinent to the RM methodology: E-R, Slice and RMD diagrams, screen
designs, etc. These editors are to be interconnected and designed in a consistent
manner to facilitate the work of developers.

Fast Feedback Loous
The ability to switch back and forth between methodological stages is a crucial
component of the design and development process. Each methodological stage is
supported by one such context. Using RM terminology, we can start with any entity,
define its slices, its interface, its node-link structure, create an experimental prototype
and then go on to the next entity. Feedback loops are implemented by navigating
between different work contexts.

Prototv~ing
A prototype offers designers the ability to experience the application as it would
eventually be executed. The prototype-layer contains cloning mechanisms to enable
the replication of structures. Thus, designers can reuse design objects from other
applications and replicate a basic structure & modify it.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

Cloning
Each RMCase context contains "smart" cloning capabilities. By smart we mean that
cloning does not happen in isolation, one element at a time. We adopt a holistic
approach in which all objects pertinent to the one being cloned are also replicated.
For example, cloning an entity within the ER context replicates its complete inner
structure. Thus, if slices, access structures and other features have been defined for
the entity, they will also be cloned.

Cloning elements at a more advanced methodological stage is also quite interesting,
as it enables developers to clone along with an object its complete design structure or
parts thereof. For example, when a developers clones a screen in the user-interface
context, she can also choose to copy the complete entity wherein the screen
originates, and along with it, the screens for all the other slices of the same entity, its
access structures, and so on. Of course, developers have control over the granularity
of cloning. Thus, it possible to clone complete applications as well as individual
elements.

Abstraction and Instantiation mechanisms
These mechanisms allow designers to switch back and forth between the instance
level and the conceptual levels of an application, e.g., from E-R designs to HTML
pages and vice-versa. We report more fully on this aspect of RMCase in section 5.3.

3. RM METHODOLOGY
RM [Isakowitz 951 is a methodology for the design and construction of hypermedia
applications. RM consists of seven steps, some of which can be conducted in parallel.
We will briefly explain the RM data model in what follows. For a more detailed
elaboration, we refer the reader to [Isakowitz 951. Although RMD is, in principle, a
linear methology, our proposal in this paper will result in an environment that
supports feedback loops, cloning and prototyping to achieve a combination of top-
down and bottom-up approaches.

3.1 RM Data Model (RMD)
We now describe the Relationship Management Data Model (RMD) which is the
cornerstone of the RM methodology. A data model is a set of logical objects used to
provide an abstraction of a portion of the "real world." In our case, RMD provides a
language for describing information objects and navigation mechanisms in
hypermedia applications. The data model is based on the Entity-Relationship model
[Elmasri 901 and on HDM [Garzotto 911, and contains entities, attributes and slices.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

ER relationships can be on-one, one-many, and many to many they representing
associations among different entity types. As in database modeling, many-many
relationships are factored into pairs of one-many relationships.

Grouping

Figure 1 : The elements of the RMD Data Model

Because entities may have a large number of attributes of a different nature (e.g.,
salary information, biographical data, photographs), it may be impractical or
undesirable to present all the attributes of an entity instance in one screen. Thus,
attributes are grouped into slices. For example, a person entity with attributes
name, age, picture and biography, may have a General slice, containing name, age
and photograph and a biography slice, with name and biography. Hence, each
instance of the entity person will have two slices. The notation for slices is shown at
the top of Figure1 (it is supposed to resemble a pizza slice!).

Navigation is supported in RMD by the six access primitives shown at the bottom of
Figure 1. Uni- and bi-directional links are used to specify access between slices of an
entity. The most significant access structures supported by RMD are indices,
guided tours and groupings. An index acts as a table of contents to a list of
information items, providing direct access to each listed item. A guided tour
implements a linear path through a collection of items allowing the user to move

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

either forwards or backwards on the path. The grouping mechanism serves as an
access point to other parts of the hypermedia document. For example, the initial
screen of many applications contains a menu or set of buttons that provide access to
different functions or classes of information.

Figure 2: An RMD diagram representing the design of an application about student life in a
Japanese university campus

A sample FWD diagram, modeling an a hypermedia tour about student life in a rural
Japanese campus, is shown in Figure 2. This application has four entities:

1. Facilities available to students, such as gym, cafeteria, library, etc.;

2. Student Body, which contains statistical information about the student
population and their GMAT and TOEFFL scores;

3, Organizations to which students belong, such as Graduate Student
Organization, MBA Council, etc.; and

4. Activities the students engage in, such as public lectures, industrial plant visits,
skiing, etc.

The application has only one relationship, organizes, that relates organizations to
activities, by specifying which organization sponsors what activity.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

4. CONTEXTS IN RMCASE
Each step in the RM methodology handles design objects (e.g., entities, relationships,
attributes, slices, access structures, etc.) in particular ways. Yet design objects are not
exclusive of any particular stage. For example, entities and attributes are used in the
E-R design and in the slice design stages. In the design process the design objects
evolve through the different RM stages, and follow an evolutionary trajectory, as part
of the software development process. It is thus possible to trace these objects through
the sequence of gradual transformations that span a continuum stretching from the
conceptual level of E-R design, to the concrete level of object code.

From a cognitive point of view, developers continuously switch back-and-forth
between different points in the trajectory of a design object. To support these
cognitive processes RMCase includes facilities to rapidly move between
methodological stages, while keeping the focus on the same design object. This kind
of navigation allows developers to easily alternate between conceptual and concrete
levels, e.g., from an E-R diagram to a HTML implementation, and vice-versa.

4.1 RMCase contexts

RMCase provides support for RM stages via special constructs called contexts1. The
concept of context is akin to that presented in [Casanova 911 and to collections, as
defined in [Garzotto 941, in the sense that a context is a collection of nodes with
associated browsing semantics.

DEFINITION: An RIM context is a hypermedia application represented via an RMD
diagram.

RMCase supports the software life-cycle of an application with a set of contexts, one
per stage. Rapid transitions between methodological stages are supported in RMCase
via hypertextual navigation among contexts. Since design objects are shared among
different contexts, this kind of navigation enables developers to focus on one or more
design objects while moving back and forth between the various stages in the
methodology. (Recall that this was one of the three fundamental requirements for a
hypermedia software development environment.)

1 Note that in this paper we do not use RM contexts to model applications, but to model the different
working contexts that co-exist in the design and development of hypermedia applications.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

Since RMCase itself is a hypermedia application, we can, and will, model it using
RM. Each context is itself a hypertext, that has design objects for nodes and
relationships between design objects as links.

4.1.1 The E-R Design Context

The E-R design context, depicted in Figure 2, facilitates the construction of E-R
diagrams, capturing the characteristics of the application domain. Three basic design
objects are handled in this context: entities, attributes and relationships.

An entity is a conceptual element from the application domain, characterized by
a set of attributes.

An attribute represents a unit of information. Attributes have a name, an type
and are always associated with a unique entity or relationship.

A relationship is a conceptual tie among two or more entities. A relationship
has cardinality be one-one, one-many, many-one or many-many (RM splits
many-many relationships into two one-many relationships. Relationships can
also contain attributes.

The E-R design context has well-defined functionalities: to manipulating entities,
attributes and relationships between entities. Besides the common create/delete
operations, there are operations to split an entity into two or more entities and to
merge several entities into one. This functionality becomes crucial as designers return
to the E-R design context via feedback loops.

Figure 3: The E-R context implements E-R design activities

Figure 3 presents an RMD rnodel of the E-R context. We observe that a designer can
navigate among an entity and its attributes via the relation has/isAtributeOf, The

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

target and source indices are used to navigate among the entities and the relationships
where its is involved. There is also a grouping that provides access to all the entities
and relationships defined during this stage. This context manipulates and produces an
E-R diagram that is used as input for the next methodological step: slice design.

4.1.2 The Slice Design Context

Here the designer states the inner structure of an entity from a navigational point of
view. Defining slices and links among them is tantamount to defining a navigational
structure within an entity. The design objects are: entities, attributes, slices and links
among slices. A slice is a set of attributes belonging to a given entity. Any attribute
could be part of more than one slice. Each entity has a distinguished slice, called the
entity's head, that is to be used as a default entry point for incoming access
constructs. The slice design context generates an "exploded" version of an E-R
diagram, which is called an E-R+ diagram. This context's functionality includes
creation and deletion operations for its design objects, as well as splitting and
merging of slices, and selection of entity heads.

Operations at this level may impact the E-R design context, For example, merging
slices belonging to two different entities can result in splitting the two original
entities into three: one to include the attributes of the merged slices, the other two
containing the set differences between the two original entities and the set of
attributes in the mkrged slice2. The reciprocal also holds, namely operations in the E-
R design context can affect the slice design context. For example, splitting an entity
may force a splitting of its slices.

4.1.3 The navigational design context

Here developers specify the navigational features of an application. The navigational
context also manipulates slices, entities and relationships. In this context designers
create menu-like structures using groupings, and other access paths using indices and
guided tours. Designers also decide here what relationships will be navigable in the
final application. The selected relationships are outfitted with RXI access structures.
For example, a teaches relationship between a faculty member and the courses s/he
teaches, may be implemented via a conditional index. The designer also specifies the

2 However, if all slices of two entities are merged, so are the entities themselves.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

conditions that are part of the access structures (e.g., "teaches(Course)=last~name~~ or
"rank=associate").

Since all RM access structures interconnect entities, it is necessary to specify the
specific entity slice that a user will encounter when traversing an access structure. By
default, entity heads (defined during slice design) act as destination slice for d l
incoming access mechanisms. Yet, this context provides designers with the
opportunity to indicate alternative destination slices, individually, for each
occurrence of an access structure.

4.1.4 Node-link conversion context

The node-link conversion context contains three kinds of facilities to support the
conversion of RMD diagrams into node-link webs:

I. Facilities to edit the rules that specify how to convert RMD diagrams into node-
link webs. These facilities are to be used mainly by the developers of RMCase
itself.

2. Facilities to execute the conversion itself, a kind of "compiler". When activated,
these facilities automatically generate a web of nodes and links.

3. Facilities to manipulate the node-link web itself.

Each slice is mapped into a node, and each access structure into a corresponding set
of links and nodes. Links between slices are passed along to the node-link web. In
addition, anchors are defined for each outgoing link, including guided tours and
indices. In an index, the anchor provides navigation into the item it denotes. In a
guided tour, the first anchor selects the first element in the guided tour, the next
anchor the second, and so on.

This context is conceived as an automated process, which we incorporate into
RMCase mainly for browsing and debugging purposes.

4.1.5 User-interface design context

This context provides facilities to design and edit the user-interface. We conceive a
set of screen-designing tools like those available in many commercial applications
(e,g., Toolbook, Visual Basic, MS Access, etc.) Anticipating different deployment
platforms, this context enables designers to assign multiple user-interface designs for
each node, such a Toolbook or HTML pages. The appropriate design will be picked
at construction time to generate the object application. To assist developers in the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

design of good user-interfaces it is possible to incorporate design principles such as
those advocated by Kahn et al. [Kahn 941 into RMCase .
We contemplate the following set of functionalities for the user-interface context:

a) associate to each node an interface object

b) associate to each anchor an interface object

c) define visual effects to indicate link traversal, e.g., venetian blinds, iris effect, etc.

In sum, the user-interface context assists developers in the generation of a set of
platform specific templates. These templates are to be populated with information in
the hyperbase population context.

4.1.6 Hyperbase Population Context

This context supports the generation of an application by populating entities, slices,
screen templates, etc. with instance data. For example, a database may be used to
generate a collection of HTML pages. If the information resides within a database,
there are at least two alternative approaches for hyperbase population.

a) Pre-populated applications, The database information is "pumped" into a set of
node instance at generation time. Thus, the data is hard-coded into the
application. As a result the data can only be updated by manually with the
assistance of software developers. The pre-populated approach is recommended
for applications that are updated on an infrequent basis, e.g., twice a year.

b) Dynamic applications. The hypermedia application obtains information "on
demand" from the database by issuing queries. In this case, the database is used to
update the data. The dynamic approach is recommended for applications that
have high volatility data.

By definition, this context is responsible for establishing a kind of bridge between the
hypermedia application and information that is external to it. This is a rather complex
task that requires a special kind of system, a Relationship Management System,
which will be reported elsewhere.

4.2 Inter-context navigation
Navigation between contexts supports rapid feed-back loops within methodological
stages. It enables designers and developers to switch back and forth among different
views of the application objects.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

Navigating from a context to another means making the new context the current one.
Focus preservation is an essential characteristic of inter-context navigation. For
example by positioning the cursor on an entity in the E-R design context and
selecting a "navigation to slice design" action, a designer will be transported into the
slice design context. The focus will be on the set of slices corresponding to the
originating entity. Similarly, navigation from the slice design context to the user-
interface design context shifts the focus from a slice to the screen templates
associated with it.

As the development activity progresses, developers continuously move back and
forth between abstract structures representing the application to specific application
instances. At the instance level, application components can be objectively evaluated,
subsequently triggering redesign and re-construction activities. Thus, not only do
developers need tools that support feedbacks between the methodological stages, they
also need mechanisms to move easily and rapidly between the abstract and instance
levels [Nanard 951.

A prototype is useful because it provides enough feedback on the design process
without involving a through completion of all development tasks. We envision within
RMCase the ability to construct prototypes at any stage during software design and
development, even (actually "specially") from incomplete designs. The converse,
constructing a design from a prototype supports a bottom-up approach to software
development.

5.1 Prototype objects
Prototypes are partial implementations that may cover as little as a single screen, and
as much as a preliminary version of the whole application. Prototypes usually contain
dummy information and lack many of the application maintenance features.
However, even with these limitations, prototypes are useful to test design concepts, to
demonstrate an application to users and, overall, to provide important feedback for
the software development process.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

5.2 The Prototyping context
There a specialized prototyping context that represents the instance level. The
prototyping context is where software developers can test different aspects of the
design of a hypermedia application, such as its information structure and navigation
patterns, as well as implementation aspects of the application such as populated
screen templates. Although, strictly speaking, the prototyping context does not share
design objects with any of the other contexts, here is a close relationship between a
prototype and the remaining design objects.

The prototype context provide the following functionality:

testing capabilities, i.e., fill in specialized data to experience it on the computer,
navigate access structures, etc.

cloning capabilities that enable a designer to replicate parts of an application. The
granularity of the cloning operation is adjustable. Hence a designer can also clone
design artifacts, such as the RMD-diagram along with an object at the prototype
level.

Besides providing these functionalities, the importance of the prototyping context
resides in its connectivity to the other contexts. Thus a developer can navigate from
the ER context directly to a prototype. A by-product of such a transition is the
generation of default slices, screen-layouts, dummy data and the remaining elements
necessary to create a prototypical instance of the entity. Developers and users can
then evaluate and modify the prototype. Any changes are propagated back into the
conceptual level, for example, by adding an attribute to an entity or a new
relationship.

As Figure 4 shows, the prototype context has a special relationship with the
remaining contexts. It is connected to all of them, and navigation from prototyping
carries along important transformations.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

Figure 4: The prototyping context plays a distinguished in RMCase. Navigation formlto this
context support both top-down and bottom-up software development approaches.
The resulting process is thus an "middle-out" design environment.

6. CONCLUSION
We have presented the design of a computerized environment, RMCase, to support
the design and development of hypermedia applications. Not only does the
environment follow a methodology (RMD) but it takes into consideration cognitive
aspects of hypermedia software development. RMCase is meant to support
developers and designers in their evolutionary cycle of experimentation, building,
and re-shaping. Moreover, we have identified prototype as an important component
of this process, and we envision adequate support for such functionality. As the
interface becomes the most common of working environments for users, we also
anticipate mechanisms that will allow users to work backwards from a user-interface
to a structured design. The main benefits of our approach are that it will facilitate the
work of designers and developers of hypermedia applications while simultaneously
enhancing the quality of their products. We foresee immediate applications in the
realm of WWW and other hypermedia application platforms (Toolbook, Hypercard,
Microcosm).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

7. REFERENCES
Banker 93 R. D. Banker, T. Isakowitz, R. J. Kauffman, R. Kumar and D.

Zweig, "Tools for managing repository objects", in Analytical
methods for software engineering economics 11, P. T. Geriner, T.
Gulledge and W. P. Hutzler, Eds. New York: Springer-Verlag,
1993.

[Casanova 911 M. Casanova, L. Tucherman, J. L. Range1 Neto, N. Rodriguez, L.
Soares, "The Nested Context Model for hiperdocumentos",
Hypertext'9l Proceedings, ACM Press, 199 1.

[Elmasri 901 R. Elmasri and S. Navate. Fundamental of Database Systems. The
BenjamdCummings Publishing Company, second edition, 1990.

[Garzotto 941 F. Garzotto, L. Mainetti, P. Paolini, "Adding Multimedia
Collections to Dexter Model", in ECHT94 Proceedings, ACM
Press, 1994.Garzotto 94

[Garzotto 911 F. Garzotto, P. Paolini, D, Shwabe, "HDM - A Model for the
Design of Hypertext applications", in Hypertext'91 Proceedings,
ACM Press, 199 1.

[IEF 901 Information Engineering Facility (IEF) technology overview, 2nd
edition, TI Part # 2739900-8027, Nov. 1990

[Isakowitz 951 T. Isakowitz, E. A. Stohr and P. Balasubramaninan, "RM: A
Methodology for Structured Hypermedia Design", Communications
of the ACM, August 1995.

[Kahn 941 P. Kahn, R. Peters and G. P. Landow, "Three Fundamental
Elements of Visual Rethoric in Hypertext". In Designing User-
Interfaces for Hypermedia, W. Schuler, J . Hannemann, N. Streitz,
eds., Springer-Verlag, 1994.

[Nanard 941 J. Nanard, M. Nanard, "Key features in a hypertext design
environment for supporting the process of hypertext structure
design", in Methologies for designing and developing hypermedia
applications, collection edited by T. Isakowitz and M. Thiiring,
September 1994.

[Nanard 941 J. Nanard and M. Nanard, "Hypertext Design Environments and
Hypertext Design Process", Communications of the ACM, August
1995.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-03

