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Abstract

We obtain local parametrizations of classical non-compact Lie groups where ad-
joint invariants under maximal compact subgroups are manifest. Extension to non
compact subgroups is straightforward. As a by-product parametrizations of the
same type are obtained for compact groups. They are of physical interest in any
theory gauge invariant under the adjoint action, typical examples being the two
dimensional gauged Wess-Zumino-Witten-Novikov models where these coordinati-
zations become of extreme usefulness to get the background fields representing the
vacuum expectation values of the massless modes of the associated (super) string
theory.

1 Introduction

It is none to say what group theory meant (and means) for theoretical physics during this
century, in particular the theory of continuous groups or Lie groups ( see e.g. [1], [2] and
references therein). The properties of their Lie algebras, easier to hand than the groups
themselves, define them locally and in fact most part of the textbooks are dedicated to
them [3]. However depending on the problem at hand, explicit parametrizations of the
group manifold become necessary. Many of them are widely known, example of them the
SU(2) or more generally the Euler angles of orthogonal groups. Of course that we can
always write locally a group element as a product of one-generator exponentials, or simply
as the exponential of an arbitrary Lie algebra element. But in most cases theses obvious

1 This work was partially supported by CONICET, Argentina
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parametrizations are of few usefulness because they obscure the global properties of the
group and generally lead to un-tractable computations.

An interesting parametrization is suggested by the Mackey theorem, the well-known
coset decomposition: let G be a group and H a subgroup of it. Then for any g ∈ G,

g = k h, k ∈ G/H , h ∈ H (1.1)

in a unique way. This leads to the theory of homogeneous spaces (or (left or right) coset
spaces) G/H , good references on the subject being [4], [5]. Among others physical appli-
cations (1.1) is fundamental in the treatment of effective field theories with spontaneously
broken symmetries [6].

But let us assume instead that we have a field theory including maps from “space-
time” on a group manifold G among its degrees of freedom, and gauge invariant under
the adjoint action of a subgroup H of G

g → hg = h g h−1 , h ∈ H (1.2)

This means that effectively the theory depends on the invariants of the group under the
adjoint action of the subgroup. That is, if we were able to write uniquely any element of
G as

g ≡ h−1 ḡ h , h ∈ H (1.3)

then clearly making a gauge transformation (1.2) identifying the h’s the theory will depend
only on ḡ that encloses the invariants mentioned above. We would like to remark that at
difference of (1.1) there no exists any general theorem assuring the decomposition (1.3);
in fact it is not difficult to find examples where it is not possible to write it.

It is the aim of this paper to get the class of local parametrizations of the type (1.3)
in a whole set of cases of physical interest. Specific examples where they must be used
(and were used in the lower dimensionality cases where parametrizations were available)
are the two dimensional gauged Wess-Zumino-Witten-Novikov models [7], [8]. It is worth
to say however that the results, being explicit parametrizations of classical groups, are
valuable on their own right independently of the applications.

2 The orthogonal groups

We consider in this section the pseudo-orthogonal groups, G ≡ SO(p, q). Its maximal
compact subgroup is H ≡ SO(p) × SO(q). In order to get its decomposition (1.3) we
need as a first step to get the

2.1 Reduction of SO(p+ 1) under SO(p).

We start by writing [5]
Pp+1(~up, Pp) = Kp(~up) H(Pp, 1) (2.1)
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where ~up is a p-dimensional real vector, Pp ∈ SO(p) and generically we will mean

H(P,Q) =

(

P 0
0 Q

)

(2.2)

In what follows the dimensionalities of matrices should be understood from the context
when not stated explicitly. The right coset element in SO(p+1)/SO(p) ∼ Sp is given by

Kp+1(~up) =
(

1− (1 + up+1)
−1 ~up~up

t ~up

−~up
t up+1

)

1 = ~up
t~up + (up+1)

2 (2.3)

Under an adjoint transformation

hPp+1 = H(h, 1) Pp+1 H(ht, 1) , h ∈ SO(p) (2.4)

the parameters of Pp+1 get transformed as:

h~up = h ~up
hPp = h Pp h

t (2.5)

The procedure will be constructive. Les us pick an arbitrary matrix Vp ∈ SO(p)
decomposed this time as a left coset w.r.t. SO(p− 1)

Vp = H(Vp−1, 1) Kp(~vp−1) (2.6)

and rewrite (2.1) for any such a Vp with the help of (2.5) as

Pp+1 = H(Vp
t, 1) P̄p+1 H(Vp, 1)

P̄p+1 = Kp+1(Vp~up) H(VpPpVp
t, 1) (2.7)

The general idea to apply here and in the subsequent cases is to fix the whole matrix Vp

(≡ ~vp−1, Vp−1 ) in terms of variables of Pp+1 (≡ ~up, Pp), leaving aside only precisely the
invariants together with the matrix Vp as parameters of Pp+1. Evidently this procedure
is equivalent to make a change of variables from the non-invariant parameters in Pp+1 to
Vp.

Equation (2.7) suggests to put ~up in some standard form by a specific choice of (a
part of) Vp. In fact it is easy to show that the choice 2

(

~vp−1

−vp

)

= −
~up

|~up|
(2.8)

defines the rotation
Kp(~vp−1) ~up = |~up| ěp (2.9)

2 As usual we will use the notation (ěi)j = δij , (Eij)kl = δikδjl, Aij ≡ Eij − Eji, Sij ≡ Eij + Eji.
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Note that we have changed the (p−1) parameters from ~up indicating its direction in terms
of the (p− 1) parameters in ~vp−1. With such a choice of ~vp−1 (Vp−1 not fixed yet) we can
write

P̄p+1 = Kp+1(|~up| ěp) H(H(Vp−1, 1) Pp H(Vp−1, 1)
t, 1) (2.10)

where we have redefined Pp → Kp(~vp−1)
t Pp Kp(~vp−1). But according to (2.7) we can

rewrite it as
P̄p+1 = Kp+1(|~up| ěp) H(P̄p, 1) (2.11)

Inspection of this formula indicates an iterative process, the next step being to write the
analogous expression for P̄p and so on; after p steps we get

P̄p+1 =

←−p
∏

l=1

H (Kl+1(|~ul|ěl), 1p−l) (2.12)

It is convenient to introduce the angular variables

|~ul| = sin θl , 0 ≤ θl ≤ π (2.13)

and write the SO(p+ 1) element in the final form

Pp+1 = H(Vp, 1)
t P̄p+1 H(Vp, 1)

P̄p+1 =

←−p
∏

l=1

exp (θl Al,l+1) (2.14)

which displays explicitly the p invariants {θl, l = 1, · · · , p} under the adjoint action of
SO(p). Note that the number of parameters trivially matches: p

2
(p − 1) + p = p

2
(p + 1),

as should; this is the first of our results, to be used in the following.

2.2 Reduction of SO(p, q) under SO(p)× SO(q).

Our starting point is again the right coset parametrization [5] 3

Λp,q(S, Pp, Qq) = Kp,q(S) H(Pp, Qq) (2.15)

where Pp(Qq) ∈ (SO(p)(SO(q)) and the coset element is given by

Kp,q(S) = exp

(

0 N
N t 0

)

=

(

(1 + SSt)
1

2 S

St (1 + StS)
1

2

)

S = (NN t)−
1

2 sinh(NN t)
1

2N ∈ ℜp×q (2.16)

Under an adjoint transformation

hΛp,q = H(hp, hq) Λp,q H(hp, hq)
t (2.17)

3 An explicit derivation from the definition of pseudo unitary groups is given in Appendix A of [10].
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with hp(hq) ∈ SO(p)(SO(q)), the parameters of Λp,q transforms as

hS = hp S hq
t

hPp = hp Pp h
t
p

hQq = hq Qq h
t
q (2.18)

By following the strategy pursued in the past subsection we introduce two matrices Vp, Vq

belonging to SO(p), SO(q) respectively and rewrite (2.15)

Λp,q = H(Vp, Vq)
t Λ̄p,q H(Vp, Vq)

Λ̄p,q = exp

(

0 VpNVq
t

(VpNVq
t)t 0

)

H(VpPpVp
t, VqQqVq

t) (2.19)

As in (2.6) we consider left coset parametrizations

Vp = H(Vp−1, 1) Kp(~vp−1)
Vq = H(Vq−1, 1) Kq(~vq−1) (2.20)

and try to totally fix ~vp−1 and ~vq−1 to put N in a standard form. It turns out that it
is possible to choose these vectors in such a way that

Vp N Vq
t ≡ H(Vp−1, 1)Kp(~vp−1) NKq(~vq−1)

t H(Vq−1
t, 1) =

(

Nr 0
0 n

)

(2.21)

where Nr ∈ ℜ
(p−1)×(q−1) and n ∈ ℜ . In fact if we write

N =

(

N ′
r ~np−1

~nq−1
t n′

)

(2.22)

then is straightforward to verify that the gauge fixing condition ~np−1 = ~nq−1 = ~0, i.e.

Kp(~vp−1) NKq(~vq−1)
t =

(

Nr 0
0 n

)

(2.23)

holds if we choose

~vp−1 ≡ (1 + |~tp−1|
2)−

1

2 ~tp−1

~vq−1 ≡ (1 + |~tq−1|
2)−

1

2 ~tq−1 (2.24)

with ~tp−1,~tq−1 satisfying 4

~tp−1 = (~nq−1
t~tq−1 − n)−1

(

~np−1 −N ′
r
~tq−1

)

4 This set of equations can be reduced to a system of two (quadratic) equations with two unknowns;
the important thing for us is that solutions exist and define the change of variables

(~np−1, ~nq−1)→ (~vp−1, ~vq−1)
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~tq−1 = (~np−1
t~tp−1 − n)−1

(

~nq−1 −N ′
r
t~tp−1

)

(2.25)

A final redefinition Nr → Vp−1
t Nr Vq−1 leads to (2.21). Finally (after reparametrizing

Pp → Kp(~vp−1)
t Pp Kp(~vp−1) , Qq → Kq(~vq−1)

t Qq Kq(~vq−1) ) we use (2.14) to fix Vp−1

and Vq−1; the result can be recast in the form

Λp,q = H(Vp, Vq)
t Λ̄p,q H(Vp, Vq)

Λ̄p,q = exp





p−1
∑

i=1

q−1
∑

j=1

Nij Si,p+j + nSp,p+q





←−−−
p− 1
∏

k=1

exp(θkAk,k+1)

←−−−
q − 1
∏

k=1

exp(θ̄kAp+k,p+k+1)

(2.26)

Again we verify the matching in the number of parameters Vp, Vq, Nij, n, θk, θ̄k ,

p

2
(p− 1) +

q

2
(q− 1) + (p− 1)(q− 1) + 1+ (p− 1) + (q− 1) =

1

2
(p+ q)(p+ q− 1) (2.27)

It is worth to say that the first term in (2.26) can be computed as in (2.16) with N as in
the r.h.s. of (2.21); however this is a formal expression for which, to our knowledge, only
the “minkowskian” cases p = 1 or q = 1 admit an explicit form.

3 The unitary groups

The treatment of these groups parallels that made in the case of the orthogonal ones,
with some additional complications due to the complex character of them. As before we
start considering

3.1 Reduction of SU(p+ 1) under U(p).

An element of SU(p + 1) can be written as

Pp+1(~up, Up) = Kp+1(~up) H(Up, u
∗
p) = Kp+1(~up) H(Pp, 1) exp (i φpTp) (3.1)

where up ≡ detUp = exp(ipφp) , ~up ∈ Cp , Up ∈ U(p), Pp ∈ SU(p) , and we have
introduced a convenient basis {Tk =

∑k
l=1(Ell − Ek+1,k+1), k = 1, · · · , p} in the Cartan

subalgebra of su(p+ 1). The right coset element in (3.1) belonging to SU(p+ 1)/U(p) ∼
CP p is given by [5]

Kp+1(~up) =

(

1− (1 + u2p+1)
−1 ~up~up

† ~up

−~up
† u2p+1

)

1 = ~up
†~up + (u2p+1)

2 (3.2)

The adjoint action under Hp ∈ U(p) is ( hp ≡ detHp)

HPp+1 = H(Hp, h
∗
p) Pp+1 H(Hp, h

∗
p)

† ←→











V ~up = hp Hp ~up
HPp = Hp Pp H

†
p

Hφp = φp

(3.3)
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As before we pick an arbitrary Vp ∈ U(p) left coset parametrized

Vp = H(Vp−1, v
∗
p−1) Kp(~vp−1) exp(iβp) , Vp−1 ∈ U(p− 1) (3.4)

and write (3.1) with the help of (3.3) as

Pp+1 = H(Vp, v
∗
p)

† P̄p+1 H(Vp, vp
∗)

P̄p+1 = Kp+1(vpVp~up) H(VpPpVp
†, 1) exp(i φpTp) (3.5)

By choosing ~vp−1 and βp (Vp−1 free) as
(

~vp−1

−v2p−1

)

= −
(~u∗

p)
p

|(~up)p|

~up

|~up|

exp(iβp) =

(

(~u∗
p)

p

|(~up)p|

) 1

p+1

(3.6)

we have
vp Vp ~up = |~up| ěp (3.7)

and identifying Vp−1 as the SU(p − 1) matrix corresponding to the Pp decomposition in
(3.5) ( previous redefinition Pp → Kp (~vp−1)

†Pp Kp(~vp−1) ) we get

P̄p+1 = Kp+1(|~up|ěp) H(P̄p, 1) exp(i φpTp) (3.8)

By repeating the analysis for P̄p and after p steps we arrive to the final result

Pp+1 = H(Vp, v
∗
p)

† P̄p+1 H(Vp, v
∗
p)

P̄p+1 =

←−p
∏

l=1

exp (θl Al,l+1) Cp+1(Φ) (3.9)

It differs from (2.14) from the unitary character of Vp and the comparison of the arbitrary
Cartan element Cp+1(Φ) = exp(i

∑p
l=1 φlTl) at right in P̄p+1.

3.2 Reduction of SU(p, q) under S(U(p)× U(q)).

In order not to be repetitive we will skip some steps in what follows. An arbitrary element
in SU(p, q) can be left coset decomposed under S(U(p)× U(q)) as

Λp,q(S, Up, Uq) = Kp,q(S) H(Up, Uq) , up = uq
∗

Kp,q(S) =

(

(1 + SS†)
1

2 S

S† (1 + S†S)
1

2

)

= exp

(

0 N
N † 0

)

S = (NN †)−
1

2 sinh(NN †)
1

2N , S,N ∈ Cp×q (3.10)

The adjoint action under H(hp, hq) ∈ S(U(p)× U(q)) is

HΛp,q = H(hp, hq) Λp,qH(hp, hq)
† ←→











HS = hp S hq
†

HUp = hp Up h
†
p

HUq = hq Uq hq
†

(3.11)
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Two matrices Vp, Vq belonging to U(p), U(q) respectively with vpvq = 1 are introduced
and following similar steps as in Subsection 2.2 we find that it is possible to fix N in the
way

N =

(

Nr 0
0 n

)

(3.12)

where now Nr ∈ C
(p−1)×(q−1) and n ∈ ℜ. Then by using the results of the past subsection

we get the final result for the parametrization

Λp,q = H(Vp, Vq)
† Λ̄p,q H(Vp, Vq)

Λ̄p,q = exp

(

0 N
N † 0

)
←−
p−1
∏

l=1

exp (θl Al,l+1)

←−
q−1
∏

l=1

exp
(

θ̄l Ap+l,p+l+1

)

C(Φ) (3.13)

where H(Vp, Vq) ∈ S(U(p)×U(q)) and we denote by C(Φ) an arbitrary element in the
Cartan subalgebra of the Lie algebra of S(U(p)× U(q)).

3.3 Decomposition under the maximal torus

Some times is useful to have the adjoint decomposition of unitary groups under the Cartan
subalgebra. We will work out for definiteness the case of SU(n + 1); the non compact
versions differ as usual by signs in the coset elements and Wick rotations of some compact
generators.

To this end we begin by searching for the coset decomposition of SU(n + 1) under
C(SU(n + 1)); from (3.1)

Pn+1(~un, Un) = Kn+1(~un) H(Un, u
∗
n)

Kn+1(~un) = exp θn

(

0 řn
−řn

† 0

)

=

(

1− (1 + u2n+1)
−1 ~un~un

† ~un

−~un
† u2n+1

)

|~un|
2 + (u2n+1)

2 = 1 , ~un = sin θn řn , řn
†řn = 1 , θn ∈ [0, π] (3.14)

By introducing

Un = Pn

(

1n−1 0
0 un

)

, Pn ∈ SU(n)

un ≡ detUn = exp(iϕn) (3.15)

we can rewrite (3.14) as

Pn+1(~un, Un) = Kn+1(~un) H(Pn, 1) exp(i ϕnHn) (3.16)

where this time is convenient to introduce the basis {Hk = Ekk−Ek+1,k+1, k = 1, · · · , n}
in the Cartan subalgebra of su(n+ 1). By repeating with Pn and iterating we get

Pn+1 =

←−n
∏

l=1

(

Kl+1(~ul) 0
0 1n−l

)

exp(i ~ϕ · ~H) (3.17)
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Now let us pick an element Cn+1(~α) ≡ exp(αiHi) ∈ C(SU(n + 1)) and write as usual

Pn+1 = Cn+1(~α)
†

←−n
∏

l=1

(

Cn+1(~α)

(

Kl+1(~ul) 0
0 1n−l

)

Cn+1(~α)
†

)

Cn+1(~ϕ) Cn+1(~α)

(3.18)

We see that the (ϕl) variables are invariant; we must choose the αi’s to kill parameters in
the productory. It is easy to show that the versors řl get transformed as

αřl = exp(−iα̃l+1) exp(i
l
∑

i=1

α̃iEii) řn , l = 1, · · · , n (3.19)

where

α̃k =











α1 if k = 1
−αk−1 + αk if k = 2, . . . , n
−αn if k = n+ 1

(3.20)

Then we can put the phases of the (αřl)
l components, l = 1, · · · , n, to zero by choosing

the α′s such that 5

2α1 − α2 = −phase(ř1)
1

−α1 + 2α2 − α3 = −phase(ř2)
2

...
...

−αn−1 + 2αn = −phase(řn)
n (3.21)

In other words, from (3.18) we get the final result

Pn+1 = Cn+1(~α)
† P̄n+1 Cn+1(~α)

P̄n+1 =

←−n
∏

l=1

(

Kl+1(~ul) 0
0 1n−l

)

Cn+1(~ϕ) (3.22)

with the constraints implied by (3.21): (řl)
l ∈ ℜ , l = 1, . . . , n.

4 The decomposition of Sl(n) under SU(n).

This is one of the two irreducible riemannian cases 6 in the sense that the coset element is

not of the form exp

(

0 N
±N † 0

)

for some matrix N (off-diagonal cosets). We start from

the well-known coset decomposition under SO(n) of any unimodular real n× n matrix

gn = Sn Pn , Sn
t = Sn , Pn ∈ SO(n) (4.1)

5Equations (3.21) can be formally solved by αi = −K−1i
j phase(řj)

j where K is the Killing-Cartan
matrix of the An algebra; it is probable that this fact does not be an accident but occurs in other cases
G/C(G).

6 The other one is SU∗(2n)/USp(2n) and will not be considered here.
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Also Sn is positive definite and detSn = 1. But we know from elementary linear algebra
that any such a matrix is diagonalizable by an orthogonal one Qn completely determined

Sn = Qn
t Diag(λ1

2, . . . , λn
2) Qn

n
∏

i=1

λi = 1 , λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 (4.2)

from where after a redefinition Pn → Qn
tPnQn we get

gn = Qn
t ḡn Qn , Qn ∈ SO(n)

ḡn = Diag(λ1
2, . . . , λn

2) Pn (4.3)

Analogous steps using well known results yield the complexification of (4.3), namely the
decomposition of Sl(n, C) under SU(n, C) that we quote without proof

gn = Vn
† ḡn Vn , Vn ∈ SU(n, C)

ḡn = Cn(~α)

←−
n−1
∏

l=1

(

Kl+1(~ul) 0
0 1n−1−l

)

Cn(~β) (4.4)

where Cn ∈ C(SU(n, C)) and the vectors ~ul are constrained by (řl)
l ∈ ℜ as in Section

3.3.

5 Conclusions

We have obtained in this paper adjoint parametrizations defined by (1.3) w.r.t. maximally
compact subgroups for a large set of non-compact groups, the classically riemannian
cosets. The constructive procedure used allows to extend them straightforwardly to non
riemannian decompositions, for example SO(p+n, q) under SO(n, q) . Few words about
symplectic groups: these groups can be treated in the same way as made here; the fact
that USp(2p, 2q) ∼ U(2p, 2q; C)

⋂

Sp(2p+2q; C) seems to suggest that the corresponding
decomposition under USp(2p)× USp(2q) could follow from replacing in (3.13) E by Z
generators 7 and respective Cartan subalgebras, but we have not checked this.

We remark the locality of the parametrizations obtained; the changes of variables
needed to carry out the job are singular in some points of the group manifold as can be
seen by direct inspection of (2.8) , (3.6) for example.

Possible applications in physical problems of these parametrizations are in the context
of GWZW models as models of strings moving on background fields. Equation (2.26)
can be used to treat systematically all the models in [9] where the lowest dimensional
cases were considered. Also the measure on the group can be computed straightforwardly
through the Maurer-Cartan forms without introducing Fadeed-Popov ghost due to con-
straints because they were solved once for all. For p+q = 2 (A1 algebras) parametrization
(3.13) is widely known; for p = 2, q = 1 was introduced in [10]; it allows to extend the
study of coset models in the search of physically relevant string backgrounds represented
by exact conformal field theories.

7 See reference [5], chapter 5 for definitions.
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