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Abstract

We study normalization problems associated with use of perturbatively correlated ground-

states in extended RPA schemes in the context of a specific but typical example. The

sensitivity of the results to the amount of 2p2h admixtures to the correlated ground state is

also investigated in terms of a modification of the standard perturbative approach.
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Some time ago Van Neck et al.[1] pointed out that some annoying numerical inconsis-

tencies result from the evaluation of consistently derived perturbative expressions in the

context of the nuclear many-body problem. Specifically, they pointed out that an often used

procedure of evaluating the number of nucleons perturbatively excited above the Fermi level

(including normalization factors expanded to the appropriate perturbative order) leads to

grossly overestimated results. This happens due to the fact that, as the perturbation adds

a very large number of relatively small excited 2p2h components to the 0p0h wave function,

the relative weight of the former in the perturbed wavefunction is typically large enough

numerically so that the perturbatively expanded normalization becomes inadequate. This

type of difficulty affects also linear response calculations done in the context of the so called

extended second random phase approximation (ESRPA) [2], which uses a perturbatively gen-

erated ground state wavefunction with 2p2h admixtures, in addition to including two-body

operators in the structure of the phonons. In this note we work out an example that shows

that this numerical normalization error tends in fact to inflate significantly ESRPA strength

distributions, as was also pointed out in Ref. [1]. Moreover, considerable excess strength

still remains over the results obtained by using just the unperturbed ground state (second

random phase approximation (SRPA)) when one attends to the numerical normalization

problem. This excess strength appears to be related to the relative importance of the 2p2h

admixtures to the unperturbed ground state.

In order to explore this point we give also results obtained for a modified ESRPA in which

2p2h ground state correlations are introduced by means of the Brillouin-Wigner (BW) pertur-

bation theory, which has the effect of reducing appreciably their importance. This happens

through the lowering of the ground state energy produced by solving the appropriate disper-

sion equation. The resulting strength distribution, for reduced but still non negligible 2p2h

admixtures to the unperturbed ground state, comes out close to the simple SRPA result. We

take these facts as an indication of enough sensitivity of the calculated strengths to the corre-

lation structure of the ground-state so as to warrant the development and implementation in

realistic situations of better controlled extensions of the standard quasi-boson random-phase

approximation.

We base our argument on the linear response R(E) to an external field F̂ , which admits
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the spectral representation

R(E) =
∑

ν

[

〈0|F̂ |ν〉〈ν|F̂ †|0〉

E − Eν + iη
−

〈0|F̂ †|ν〉〈ν|F̂ |0〉

E + Eν − iη

]

. (1)

Here |0〉 and |ν〉 are the exact ground state and excited eigenstates of the full hamiltonian

Ĥ . The excited states |ν〉 can be written as

|ν〉 = Ω†
ν |0〉; Ω†

ν =
∑

i

Xν
i C

†
i −

∑

j

Y ν
j Cj, (2)

where the set {Ci, C
†
i } constitutes a complete operator basis. In the SRPA this set is re-

stricted to one and two particle-hole annihilation and creation operators out of the Hartee-

Fock (HF) ground state |HF 〉 and the coefficients Xν
i and Y ν

i are determined from the

equations of motion [4]

〈HF |
[

Ωµ,
[

Ĥ,Ω†
ν

]]

|HF 〉 = Eν〈HF |
[

Ωµ,Ω
†
ν

]

|HF 〉 = Eνδµν . (3)

The ESRPA hinges on the idea that the inclusion of 2p2h operators among the Ci requires

a modification of the quasi-boson approximation in which the HF ground state is allowed to

include perturbative 2p2h correlations. Hence, in evaluating Eq. (3) one uses in this case a

ground state of the form

|0̃〉 = c0



|HF 〉+
∑

20

c20 |20〉



 , (4)

where the amplitudes c20 are evaluated in the first order Rayleigh-Schrödinger (RS) pertur-

bation theory, i.e.,

c20 =
〈20|V̂ |HF 〉

−E20

. (5)

Here 20 ≡ (p1p2h1h2)0 indicates 2p2h excitations with independent-particle energy E20 , V̂ is

the residual interaction, and c0 is a normalization factor. Since Eq. (4) is thought of as a

perturbatively generated expression, c0 is generally set equal to 1.
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In general Eq. (3) leads to a secular problem of the form

AX ν = EνNX ν, (6)

with

A =

(

A B

B∗ A∗

)

, X ν =

(

Xν

Y ν

)

, N =

(

N 0
0 −N∗

)

. (7)

where the submatrices A, B and N given by

Ai,j = 〈0̃|
[

Ci,
[

Ĥ, C
†
j

]]

|0̃〉, Bi,j = 〈0̃|
[

Ci,
[

Ĥ, Cj

]]

|0̃〉, Ni,j = 〈0̃|
[

Ci, C
†
j

]

|0̃〉. (8)

Furthermore, one can write Eq. (1) in a representation independent form as

R(E) = F †(EN + iηI − A)−1F , (9)

where the matrix F represents the operator F̂ and is defined as

F ≡

(

FA

FB

)

, with







FA
i = 〈0̃|

[

Ci, F̂
]

|0̃〉,

FB
i = FA∗

i (F̂ → F̂ †).
(10)

Eq. (9) can be reduced with the help of projection operators P and Q onto subspaces

involving 1p1h and 2p2h excitations respectively. One gets

R(E) = F̃ †
P (E)GP (E)F̃P (E) + F †

QGQ(E)FQ, (11)

where

GP (E) = [ENP + iηIP −AP − (APQ −NPQE)GQ(E) (AQP −NQPE)]−1
, (12)

with

GQ(E) = [ENQ + iηIQ −AQ]
−1

, (13)

and

F̃P (E) = FP −NPQFQ +APQGQ(E)FQ. (14)

3



When using the ESRPA some more complicated two-body effects are trimmed by keeping

terms up to second order in V̂ for the forward sector within the P space, terms linear in V̂

for the backward sector within the P space and for the coupling between the P and Q spaces,

and only terms of zeroth order within the Q space. The usual argument (see e.g. Ref. [2])

for this procedure involves again the limitations stemming from the perturbative dressing of

the ground state, Eq. (4).

Finally, we set up a modified extended second RPA (MESRPA) in which Eq. (4) is

replaced by the corresponding expression obtained from the BW perturbation theory. This

in fact coincides with the ESRPA result but the coefficients c20 are now given as

c20 =
〈20|V̂ |HF 〉

E0 −E20

, (15)

where the ground state energy E0 is the lowest solution of the secular equation

E0 =
∑

20

|〈20|V̂ |HF 〉|2

E0 − E20

. (16)

This leads to increased energy denominators in Eq. (15) and hence to reduced 2p2h admix-

tures to the HF ground state. One obtains in this way

Nij = δij +∆Nij (17)

where i ≡ ipih and the nonzero ∆Nij are just

∆N11′ = |c0|
2
∑

20,2
′

0

c∗20c2′0〈20|D̂11′|2
′
0〉, (18)

where D̂11′ =
[

Ĉ1, Ĉ
†
1′

]

− δ11′ . (Note that within the quasi-boson approximation D̂11′ ≡ 0).

The explicit result for the matrix element 〈20|D̂11′|2′0〉 is

〈(p1ph1h2)0|D̂ph,p′h′|(p′1p
′
2h

′
1h

′
2)0〉 = − [1 + P (h1, h2)P (h1′, h2′)] (19)

×
[

δp,p′δh1,h′P−(h, h2)P
−(p1, p2)δh

1′
,hδh2,h2′

δp2,p2′δp1,p1′

]

+ p ↔ h,
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where P−(i, j) ≡ [1 − P (i, j)], while the operator P (i, j) exchanges the arguments i and j.

The matrix elements of A are

Aij = δijEj + Vij +∆Aij , (20)

where Vij ≡ 〈iV̂ |j〉 and the nonzero matrix elements ∆Aij are:

∆A11′ = |c0|
2
∑

20,2
′

0

(E1 − E20 + E0)c
∗
20
c2′

0
〈20|D̂11′ |2

′
0〉. (21)

Finally the matrix elements of F are:

FA
i =

{

f1 +
∑

1′ ∆N11′f1′ for i = 1
c0
∑

20
c20f220 for i = 2,

(22)

where

f1 ≡ 〈1|F̂ |HF 〉, and f220 ≡ 〈2|F̂ |20〉. (23)

Note that the corresponding ESRPA quantities are obtained by setting c0 = 1 and E0 = 0

in the MESRPA expressions.

We next give numerical results for the GT resonance (F̂± ≡ ~σt±) in
48Ca using the MY3

force [7] in the 0h̄ω−3h̄ω oscillator space. Four different ways of handling the nuclear ground

state will be compared. The first one is just the plain SRPA in which the equations of motion

(3) are evaluated with the HF ground state. We give also results for the ESRPA (for which the

normalization coefficient c0 is set equal to 1), for a normalized version of this approximation

(NESRPA) in which c0 is determined so that 〈0̃|0̃〉 = 1 with the c20 coefficients given by Eq.

(5), and finally for the MESRPA, which uses a normalized ground state with amplitudes c20

evaluated using Eq. (15). In order to obtain smooth strength functions S(E) ≡ − 1

π
Im R(E)

with R(E) given by Eq. (11), the energy variable is taken to be complex: E → E + i∆,

with ∆ = 1 MeV for the 1p1h and ∆ = 3 MeV for the 2p2h subspace respectively. Solving

the dispersion equation Eq. (16) gives E0 = −29 Mev, which amounts to about 8% of the

experimental ground state binding energy. The results are shown in Fig. 1 and in Table 1

below. The positive branch of the GT sum rule S+ −S− = 3(N −Z) with S± ≡
∫

S±(E)dE

is divided into a low energy part S<
+ (E < 20 Mev) and a high energy part S>

+ (E > 20 Mev).
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These quantities are the relevant ones for the problem of the quenching of GT strength. In

the usual RPA the low energy part S<
+ essentially exhausts the sum rule. When 1p1h−2p2h

coupling is introduced via the SRPA, 30% of this strength is shifted to the high energy

region. This amount is somewhat reduced when ground state correlations are introduced

via the ESRPA. This results from the combined effect of the Q-space part of Eq. (11) and

of the interference effects generated by the last term of Eq. (14) [3]. Furthermore one gets

now also a contribution in the negative branch S− so that S<
+ increases to 82% (third line

in Table 1). As shown in the first two columns of Table 1, the ground state wavefunction

involved in the derivation of the ESRPA expressions has a serious normalization problem.

In the NESRPA this is fixed by suitably reducing the value of c0. This has only a relatively

small effect on S<
+ and reduces both S>

+ and the negative branch contribution S− (fourth

line of Table 1). When ground state correlations are introduced via the MESRPA, on the

other hand, the percentage of 2p2h admixtures to the ground state is reduced from 62% to

31% while the strength distribution becomes quite similar to the simple SRPA result. This

last feature indicates important sensitivity to the amount of ground state correlations which

therefore, as stated above, deserves a more controlled treatment. It is worth noticing that,

when the interaction among the 2p2h configurations is neglected, the BW approximation for

the ground state wavefunction coincides with the diagonalization procedure [6]. This means

that the 0p0h − 2p2h coupling in the initial nucleus is treated at the same footing as the

1p1h − 2p2h coupling in the final nucleus. Thus we feel that, in the context of the present

calculations, it is more consistent to use the BW perturbation theory than the RS one.

Even though the present discussion has been limited to one specific case involving the

Gamow-Teller response within the extended RPA, the observed trends should apply also to

other schemes which include ground state correlation effects perturbatively, both for this [7]

and for other types of response functions, notably the longitudinal and transverse inclusive

responses in quasi-free electron scattering [8, 9, 10]. In all cases ground-state normalization

is numerically important and sensitivity to the amount of 2p2h correlations should be high,

so that a moderate reduction of the 2p2h ground state component will lead to results which

are not far from those obtained in the simple SRPA.
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TABLES

Table 1: Ground state normalization factor, summed weights of 2p2h components (see Eq.
(4)), GT integrated strength S+ in the resonance region (<), above it (>), and total GT
strengths S+ and S−. The first column identifies the approximation scheme. Strengths are
given in percent of 3(N − Z).

|c0|2
∑

20
|c20 |

2 S<
+ S>

+ S+ S−

RPA 1 0 100 0 100 0
SRPA 1 0 70 30 100 0
ESRPA 1 1.60 82 27 109 9
NESRPA 0.38 1.60 80 23.5 103.5 3.5
MESRPA 0.69 0.45 72.8 28 100.8 0.8

FIGURES

Figure 1: Folded Gamow-Teller strength distributions in 48Ca for different approximation
schemes.
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This figure "fig1-1.png" is available in "png"  format from:

http://arxiv.org/ps/nucl-th/9403017v1
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