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Abstract

We study the gauge invariant fermions in the fermion coset representation
of SU(N)k Wess-Zumino-Witten models which create, by construction, the
physical excitations (quasiparticles) of the theory. We show that they pro-
vide an explicit holomorphic factorization of SU(N)k Wess-Zumino-Witten
primaries and satisfy non-Abelian braiding relations.
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i) Introduction

The notion of generalized statistics has attracted a great deal of attention
in the last 15 years (see e.g. [1, 2] and references therein), both in 1 + 1 and
in 2 + 1 dimensional theories.

The most natural generalization of the traditional classification of parti-
cles into bosons and fermions corresponds to the possibility of having an
arbitrary phase when two particles are interchanged. This is allowed in
2 + 1 dimensions since the statistics is characterized by the Braid group,
Bn, (instead of Sn as it is in higher dimensions), which admits more general
representations.

A further generalization is to consider the case of higher dimensional
(non-Abelian) representations of Bn which would correspond to non-Abelian
statistics. In fact, the concept of non-Abelian statistics was introduced in the
context of the Fractional Quantum Hall Effect (FQHE) in [3] as the statistics
of the quasiparticles of the so-called Pfaffian state, (see also [4], where more
general examples were treated). The approach in these papers is based on
the construction of trial ground state wave functions of FQHE systems using
the Conformal Blocks (CB) of a Conformal Field Theory, and the statistics
appears as a consequence of the braiding properties of these CB’s, which are
known [5, 6]. In particular, in [4] the mentioned CB’s correspond to those of
the SU(N)k Wess-Zumino-Witten (WZW) theories [7].

In the present Letter we address this issue from a different point of view:
we aim to construct a concrete realization of quasiparticle operators satisfying
non-Abelian braiding relations.

To this end we first show that the holomorphic and anti-holomorphic
factors of the WZW primary fields in a SU(N)k WZW theory can be con-
structed using its fermionic coset description. In fact, the natural observables
in the fermionic description, which are the gauge invariant fermions (GIF’s)
[8, 9, 10], correspond to the holomorphic factors of the WZW primaries.

Finally, by evaluating the Operator Product Algebra (OPA) of the GIF’s,
we show that they satisfy non-Abelian braiding relations [11, 6], thus giving
the desired explicit operator realization of quasiparticle operators with non-
Abelian braiding.

The present approach could be useful in the context of the FQHE for
systems whose quasiparticles obey non-Abelian statistics.

As for the holomorphic factorization that we present, it corresponds to
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a very interesting issue from a more formal point of view, and has been the
subject of recent investigations [12].

The present approach could also be useful in connection with the spinon
construction developed in [13] and with the construction of quasiparticle
representations of the characters for Conformal Field Theories [14].

ii) SU(N)k Wess-Zumino-Witten (WZW) theory as a fermionic coset

To make the paper self-consistent and set our conventions we will first
recall the fermionic coset representation of the SU(N)k WZW theory [15].
The action is given by

S =
1√
2π

∫

d2xψ̄iα ((i6∂+ 6a)δijδαβ + δij 6Bαβ)ψ
jβ, (1)

where the fermions ψiα (i = 1, · · · , N , α = 1, · · · , k) are in the fundamental
representation of U(Nk) and the U(1) gauge field aµ and the SU(k) gauge
field Bµ act as Lagrange multipliers implementing the constraints

jµ|phys >= 0, Jaµ |phys >= 0 (a = 1, · · · , k2 − 1) , (2)

for the U(1) and the SU(k) currents respectively. This corresponds to the
identification:

SU(N)k ≡
U(Nk)

SU(k)N × U(1)
, (3)

which is understood as an equivalence between the correlation functions of
corresponding fields in the two theories.

The fundamental field g of the bosonic SU(N)k WZW theory is repre-
sented in terms of fermions by the bosonization formula 1 [15]

gij = ψi†Lψ
j
R (4)

where the SU(k) indices are summed out. Their conformal dimensions are
given by (hg, h̄g) = ( N2−1

2N(k+N)
, N2−1
2N(k+N)

).

1Our conventions are ψ =

(

ψL

ψR

)

and γi are the Pauli matrices, γ1 =

(

0 1
1 0

)

and

γ2 =

(

0 −i
i 0

)

.
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Other integrable representations are constructed as appropriately sym-
metrized products of these fundamental fields. In the particular N = 2 case,
higher spin integrable representations are constructed as

g
(j) i1,...,i2j
j1,...,j2j

= S
(

: gi1j1...g
i2j
j2j

:
)

= S
(

: ψi1†L ψj1R ...ψ
i2j†

L ψ
j2j
R :

)

, (5)

where S stands for symmetrization over the left and right indices separately
and j takes the values j = 0, 1/2, 1, ...., k/2. This restriction in the spin of
the representation has its origin in the selection rules imposed by the affine
(Kac-Moody) symmetry [16, 17]. It is interesting to note that in the fermion
description of SU(N)k the presence of a second index α in the fermion fields
ψiα, running from 1 to k, allows for the construction of symmetrized products
of at most k bilinears. In this way we obtain only the allowed integrable
representations, other representations being forbidden by the Pauli principle.

It will be useful for later purposes to review the decoupled picture. The
partition function is given by

Z =
∫

Dψ†DψDaµDBµ exp(−S), (6)

where S is given in eq. (1).
The decoupling transformations are2

ψL = hV −1χL ψR = h̄U−1χR,
a = ih̄∂h̄−1 ā = ih∂̄h−1,
B = iU−1∂U B̄ = iV −1∂̄V.

(7)

Taking into account the gauge fixing procedure and the Jacobians associ-
ated to the change of variables above [18] one arrives at the desired decoupled
form for the partition function:

Z = ZffZfbZWZWZgh, (8)

where

Zff =
∫

Dχ̄Dχ exp(−1

π

∫

(χiα†L ∂̄χiαL + χiα†R ∂χiαR )d2x),

2Further conventions are: z = x1+ ix2, z̄ = x1− ix2, ∂ ≡ ∂

∂z
, ∂̄ ≡ ∂

∂z̄
, a = (a1− ia2)/2,

ā = (a1 + ia2)/2, B = (B1 − iB2)/2, B̄ = (B1 + iB2)/2 and h = exp(φ + iη), h̄ =
exp(−φ+ iη).
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Zfb =
∫

Dφ exp(Nk
2π

∫

φ∆φd2x),

ZWZW =
∫

Dg̃ exp ((2k +N)Γ[g̃]) . (9)

−(2k+N)Γ[g̃] is the level −(2k+N) WZW action [7] for the gauge invariant
combination g̃ = V U−1, and Zgh corresponds to the Fadeev-Popov ghosts
partition function, whose explicit form will not be needed.

In particular, the central charge is easily evaluated as the sum of four
independent contributions coming from the different sectors, cff = Nk, cfb =
1, cWZW = (2k +N)(k2 − 1)/(k +N) and cgh = −2k2, thus giving

c =
k(N2 − 1)

k +N
, (10)

which corresponds to the central charge of the SU(N)k WZW action.

iii) Gauge invariant fermions and holomorphic factorization

The coset theory, defined by the Lagrangian (1), is manifestly invari-
ant under gauge transformations U(1) × SU(k). Consequently, the original
fermion fields ψ are not “physical” operators, as they do not commute with
the associated BRST charges. It is then natural to find a new set of fermionic
variables invariant under the BRST symmetry that, by construction, create
the physical excitations of the theory.

For the fermionic coset theory there is a natural candidate for this gauge
invariant fermion field. The gauge degrees of freedom aµ and Bµ that enter
in the Lagrangian (1) are of topological nature since they do not have kinetic
terms. In fact, their equations of motion are just the flat connection condi-
tions F a

µν [B] = Fµν [a] = 0. Then, we can attach to the fermion an infinite
flux line that, due to the zero-curvature condition, is only dependent on the
end point, guaranteeing its locality. This infinite Wilson line absorbs the
gauge variation of the fermion field and then the compound object has the
desired properties. We will show later that, in addition, this GIF’s are also
chiral and can be identified with the vertex operators of the coset model in
the sense defined in [11].
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Let us start defining the gauge invariant fermion fields [8]:

ψ̂iα(x) = ei
∫∞

x
dzµaµP

(

ei
∫∞

x
dzµBµ

)αβ

ψiβ(x)

ψ̂iα†(x) = ψjβ†(x)P
(

ei
∫∞

x
dzµBµ

)βα†

e−i
∫∞

x
dzµaµ

(11)

As we stated above, the Schwinger line integrals in (11) do not depend
on the choice of the path due to the zero curvature condition satisfied by the
gauge connections aµ and Bµ.

In order to analyze the properties of the GIF’s it is useful to work with
decoupled variables (7), where things are more easily tractable.

In terms of these variables, the gauge invariant fermions are given by

ψ̂iαL (x) = ei
∫∞

x
dzµaµP

(

ei
∫∞

x
dzµBµ

)αβ

h(V −1)βγχiγL (12)

ψ̂iαR (x) = ei
∫∞

x
dzµaµP

(

ei
∫∞

x
dzµBµ

)αβ

h̄(U−1)βγχiγR (13)

Using the equations of motion for the decoupled fields one can prove that
the fields ψ̂iL (ψ̂iR) are holomorphic (anti-holomorphic). In order to show it
we analyze in detail one of them, say ψ̂iL, (the same analysis can be carried
out for the other components in a similar way).

To this end we rewrite eq. (12) as

ψ̂iαL (z) = eϕ(z)Qαβ(z)χiβL , (14)

where we defined (see footnote 2 for notation)

ϕ(z) = φ+ i
∫ ∞

x
dzµǫµν∂νφ, (15)

(note that the field η cancels out as it should do, since it corresponds to the
gauge degree of freedom), and

Qαβ(z) = P
(

ei
∫∞

x
dzµBµ

)αγ

(V −1)γβ. (16)

The field ϕ(z) is the holomorphic component of the free boson φ. The
condition ∂̄ϕ = 0 directly follows from the φ equation of motion.
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The holomorphic character of the field Qαβ(z) follows from the equation

of motion of Bµ, (zero curvature condition). Calling U(x) = P
(

ei
∫∞

x
dzµBµ

)

one finds
i∂µU(x)− U(x)Bµ(x) = 0. (17)

Then,
i∂µ

(

UV −1
)

= U
(

Bµ − iV −1∂µV
)

(18)

shows that
∂̄Q = 0, (19)

while the z derivative can be written as

∂Q = Qg̃∂g̃−1 (20)

where g̃ is the field in the (negative level) WZW sector of the theory (see eq.
(9)).

Putting all these things together and using the equation of motion of the
free fermion ∂̄χL = 0, we conclude that

∂̄ψ̂L = 0, i.e. ψ̂L = ψ̂L(z). (21)

Similarly the other fields can be written as

ψ̂R(z̄) = e−ϕ̄(z̄)Q̄(z̄)χR(z̄), (22)

where
ϕ̄(z̄) = φ− i

∫ ∞

x
dzµǫµν∂νφ (23)

Q̄(z̄) = P
(

ei
∫∞

x
dzµBµ

)

U−1. (24)

One can easily show that ϕ̄ and Q̄ are antiholomorphic following the same
steps as in (15-19).

The previous heuristic definition of the gauge invariant fermions can be
also motivated by the following natural argument. One can observe that
although in the decoupling change of variables eq. (7) the fields U and V
appear, only the gauge invariant combination g̃ = V U−1 is relevant. Besides,
the above semiclassical analysis shows that we can also factorize the field g̃
into its holomorphic and antiholomorphic components as follows

g̃ = Q−1(z)Q̄(z̄). (25)
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Assuming that this factorization into holomorphic and antiholomorphic
parts is valid at the quantum level (cf. [3, 12]) it is natural to construct the
GIF’s with Q and Q̄ considered as the holomorphic-antiholomorphic factors
in (25) instead of the (functionals of) the factors U and V that appear in
the decoupling change of variables. Eq. (11) can then be considered as the
classical counterpart of the present definition (14,22,25).

It is worthwhile to notice that these new fields create physical excitations
since they commute with the SU(k) BRST charges, QBRST and Q̄BRST . The
expressions for these charges in the decoupled picture is [19]

QBRST =
∮

dz : [ca(z)

(

χ†
LT

aχL − 2k +N

2
∂Q−1Q

)

− 1/2fabccabbcc] :,

Q̄BRST =
∮

dz̄ : [c̄a(z̄)

(

χ†
RT

aχR − 2k +N

2
∂̄Q̄−1Q̄

)

− 1/2fabcc̄ab̄bc̄c] : (26)

where c, c̄, b, b̄ are ghost fields.
To show that the gauge invariant fermions defined above commute with

these charges it is sufficient to show that the Operator Product Expansion
(OPE) with the integrands in eq. (26) is regular. Using the expressions
(14,22) for the gauge invariant fermions, and the transformation properties
of Q and Q̄ under left and right SU(k) chiral rotations, one can show that
this is indeed true.

Let us now show how the SU(N)k WZW fields can be built up from the
gauge invariant fermions. This can be done by simply taking the product

k
∑

α=1

(ψ̂†
L)
iαψ̂jαR =

k
∑

β,γ=1

(χ†
L)
iβe−2φ

(

Q−1Q̄
)βγ

χjγR (27)

and using the explicit expressions for Q as given by eq. (16). We finally
obtain

k
∑

α=1

(ψ̂†
L)
iαψ̂jαR =

k
∑

α=1

(ψ†
L)
iαψjαR = gij (28)

where the last equality follows from eq. (4).
This simple calculation shows that the gauge invariant fermions, which

create physical states in the holomorphic or in the antiholomorphic sectors,
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can be used to construct the SU(N)k WZW primary fields gij. This con-
struction exhibits the holomorphic factorization of the fields gij [3, 12]. The
same conclusion applies to the WZW primaries corresponding to other in-
tegrable representations, since they all can be constructed from the field in
the fundamental representation, gij, by taking suitable symmetrized normal
ordered products.

We will now evaluate the OPE between the energy momentum tensor
and the GIF’s in order to prove their primary character and to obtain their
conformal dimensions. The energy momentum tensor can be written as the
sum of three independent contributions, a free fermion part, a free boson
part and a WZW part. Then, the conformal dimensions of the GIF’s are
given by the sum of the free fermion contribution, the vertex operator of the
free boson contribution and that of the composite operators Q.

For the free fermions χL and χR the dimensions are (1/2, 0) and (0, 1/2)
and for the vertex operators e±ϕ and e±ϕ̄, they are ( −1

2Nk
, 0) and (0, −1

2Nk
)

respectively.
As for the conformal dimension of the composites Q(z) and Q̄(z̄), they are

determined simply by the conformal transformation properties of the WZW
field g̃. Since this field is a Virasoro primary of the WZW Conformal Field
Theory and the left and right Virasoro algebras commute with each other,
the holomorphic and antiholomorphic operators Q(z) and Q̄(z̄) are primaries
of the left and right Virasoro algebras separately.

In fact, Q transforms in the fundamental representation of the affine Lie
algebra SU(k)−N−2k, i.e., its OPE with the affine current is given by

J̃a(z)Q(w) =
taQ(w)

z − w
+N [J̃aQ](w) + r.t., (29)

where N denotes normal ordering and r.t. stands for regular terms.
Using this equation and the Sugawara representation of the energy mo-

mentum tensor [20], we obtain:

T̃ (z)Q(w) = − k2 − 1

2k(k +N)

Q(w)

(z − w)2
+

2

z − w
∂wQ(w) + r.t., (30)

from which one can read off the dimension of Q, hQ = − k2−1
2k(k+N)

.
Adding to hQ the contributions from the free fermions and that of the ver-

tex operator of the free boson, we get for the dimension of the GIF operator
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the expression

hψ̂ = − k2 − 1

2k(k +N)
+

1

2
− 1

2Nk
=

N2 − 1

2N(k +N)
. (31)

This shows that the GIF’s have the conformal dimensions corresponding
to the holomorphic or antiholomorphic factors of the SU(N)k WZW pri-
maries (4).

According to [11] this means that the GIF’s are the vertex operators of the
WZW theory. Usually the so-called Chiral Vertex Operators are introduced
in this context [11, 5] and can be constructed as appropriate projections of
the GIF’s. They formally correspond to (considering for simplicity the case
of N = 2)

Φ
(

j
i k

)

= ΠiS
(

ψ̂ψ̂..ψ̂
)

Πk , (32)

where Πi stands for the projector on the integrable representation of spin i
and S is the Young symmetrizer that projects the product of 2j GIF’s onto
the representation of spin j.

iv) Braiding relations among GIF’s

We now evaluate the OPA satisfied by the GIF’s, which can be easily
calculated using the explicit expressions in eqs. (14,22).

Let us consider first the OPE of two fields ψ̂iαL :

ψ̂iαL (z)ψ̂jβL (w) = eϕ(z)Qαα′

(z)χiα
′

L (z)eϕ(w)Qββ′

(w)χjβ
′

L (w). (33)

The OPE of the two U(1) bosonic vertex operators appearing in (33) is
simply given by

eϕ(z)eϕ(w) =
1

(z − w)
1

N−k

e2ϕ(w) + ... , (34)

and that of the free fermions, which is conveniently separated into symmetric
and antisymmetric combinations, by

χiαL (z)χ
jβ
L (w) = 1/2(: χiαL (w)χjβL (w) : − : χjαL (w)χiβL (w) :) +

1/2(: χiαL (w)χ
jβ
L (w) : + : χjαL (w)χiβL (w) :) + ... . (35)
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Finally for the OPE of the WZW vertex operators we have

Qαα′

(z)Qββ′

(w) =
∑

l

C(l)
QQz

hl−2hQ
[

Φαβα
′β′

l (w) + ...
]

(36)

where the Φl’s are the primary fields associated with the integrable rep-
resentations of the affine chiral algebra [20], and the dots stand for their
descendants. In our case, we have

Qαα′

(z)Qββ′

(w) =
CAQQ

(z − w)−hA+2hQ
Φαβα

′β′

A (w)+
CSQQ

(z − w)−hS+2hQ
Φαβα

′β′

S (w)+...

(37)
where ΦA and ΦS are the antisymmetric and symmetric channels of the
product in the right hand side of (36) with dimensions hA = (2−k)(k+1)

k(k+N)
,

hS = (k+2)(1−k)
k(k+N)

respectively.

Combining eqs. (33,34,37) we obtain

ψ̂iαL (z)ψ̂jβL (w) = (z − w)−hSSijαβ(w) + (z − w)−hAAij
αβ(w) + ... , (38)

where Sijαβ (Aij
αβ) is symmetric (antisymmetric) in the indices α, β and anti-

symmetric (symmetric) in the indices i, j. Their conformal weights hS and
hA are given respectively by:

hS =
1 +N

N(N + k)
, and hA =

1−N

N(N + k)
. (39)

As already stressed, the Chiral Vertex Operators Φ
(

i
j k

)

introduced in

[11, 5] correspond to suitable projections of the GIF’s over the integrable
representations of the SU(N)k affine algebra (see eq. (32)). With these op-
erators one can verify explicitly the N = 2 braiding relations [11, 5]

Φ
(

k1
j1 p

)

(z1)Φ
(

k2
p j2

)

(z2) =
∑

p′

Bpp′

[

k1 k2
j1 j2

]

Φ
(

k2
j1 p

′

)

(z2)Φ
(

k1
p′ j2

)

(z1) .

(40)
From this we can conclude that the GIF’s can be considered as quasipar-

ticle operators with non-Abelian braiding in the sense of [3, 4]. Correlators
of these operators can be computed following the same steps as in [20].

v) Conclusions

11



We have shown in this paper that the fermionic coset representation of
the SU(N)k WZW theory allows for the explicit construction of the vertex
operators [11], fundamental physical fields that can be used to build up the
WZW primaries. These gauge invariant fermion fields are holomorphic and
transform as the holomorphic part of the primaries under the action of the
full chiral algebra.

Moreover, they create physical excitations and their modes can then be
used to construct the physical Hilbert space, which will consist of states of
left and right moving quasiparticles. Due to the braiding relations satisfied
by the GIF’s, they can be interpreted as quasiparticle operators with non-
Abelian statistics according to [3, 4].

The connection between the Fock space obtained through this procedure
could be compared with the spinon Fock space constructed in [13], to under-
stand the relation of the quasiparticles created with the modes of the GIF’s
and the non-Abelian spinons.
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