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Abstract

Starting from a topological gauge theory in two dimensions with

symmetry groups ISO(2, 1), SO(2, 1) and SO(1, 2) we construct a

model for gravity with non-trivial coupling to matter. We discuss the

equations of motion which are connected to those of previous related

models but incorporate matter content. We also discuss the resulting

quantum theory and finally present explicit formulæ for topological

invariants.
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1 INTRODUCTION

Lower dimensional theories of gravity have recently attracted much attention

[1]-[11]. In particular, considerable progress has been achieved by exploit-

ing the connection between two and three dimensional gravity models and

Topological Quantum Field Theories (TQFTs) [3]-[10]. In this way, it has

been proven that general relativity in three dimensions is equivalent to the

Chern-Simons theory (with gauge groups ISO(2, 1), SO(3, 1) or SO(2, 2)

depending on the value of the cosmological constant). Using this connec-

tion, it has been shown that the theory is renormalizable and finite, and

that it can be solved exactly [3].

Since there is no Chern-Simons like term in two dimensions, other types

of TQFTs have to be employed in an attempt to construct two-dimensional

gravity models starting from gauge theories [7]-[10]. It is the purpose of this

work to present one of such models based on a two-dimensional TQFT which

not only includes gauge fields (with symmetry groups ISO(1, 1), SO(2, 1) or

SO(1, 2)) but also scalar fields, naturally leading to a description of gravity

coupled to matter.

One way in which topological theories (of the Witten type [12]) can

be obtained is by quantizing a classical action Scl that corresponds to a

topological invariant [13]. In a sense, these classical actions are trivial since,

being by essence invariant under arbitrary transformations, all fields can be

gauged away at the classical level. At the quantum level, this reflects in

the reduction of the solution space from an infinite dimensional to a finite

dimensional one. The resulting quantum action is intimately related to

instanton configurations carrying the topological charge. In order to have
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instantons in two-dimensional gauge theories, one necessarily has to add

Higgs fields. In the Abelian case these instantons are the time-honoured

Nielsen-Olesen vortices carrying a topological charge Q ∈ Z related to the

vortex magnetic flux [14]. Non-Abelian extensions can be constructed and

the resulting instantons are again vortex-like configurations. The topological

charge is again associated to the magnetic flux and takes the form [15]:

Q =
1

2π

Z

d2x
√
gEµν < ΨFµν > . (1.1)

Here Ψ is one of the scalar fields in the adjoint representation of the gauge

group, Fµν is the gauge field curvature and “ < > ” represents an adequate

inner product.

Starting from an action of the form (1.1) and identifying the gauge field

with Zweibein and spin connection fields, a highly non-trivial model for

two-dimensional gravity has been constructed by Chamseddine and Wyler

[7] (see also [8]-[10]). In this model, there is a scalar field which just plays

the rôle of a Lagrange multiplier. Any attempt to add to this topological

action kinetic energy terms for Ψ either breaks the covariance of the model or

implies the appearence of rather complicated self-interactions which obscure

the resulting theory.

There is another possibility for constructing TQFTs put forward by La-

bastida and Pernici [16] (see also [17]). In their approach, instead of starting

from a Scl which is a topological charge, one constructs a gaussian action

in which instanton defining equations (Bogomol’nyi equations in the two-

dimensional case) have a relevant rôle. All fields enter in this action in a

self-dual way (in a sense to be precised in next sections) and hence kinetic

terms for scalars appear naturally in a way that does not imply a metric
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dependence at the quantum level. It is this approach the one we follow in

the present work. We think it is the most natural one, especially if one takes

into account the central rôle that instanton moduli space plays in TQFTs

and the fact that in two-dimensional gauge theories instanton equations have

non-trivial solutions only when an appropriate number of scalar fields, with

their corresponding kinetic terms, are included.

In this way, we arrive at a model for two-dimensional gravity non-trivially

coupled to matter. After reviewing the two-dimensional topological gauge

theory in Section 2, we establish the connection with the gravity model in

Section 3. We there identify Zweibein and spin connection fields and discuss

the resulting classical equations of motion. These equations reduce to the

Jackiw-Teitelboim equations [1] when scalars are absent and also include as

a particular case Chamseddine-Wyler ones [7]. In Section 4 we discuss the

quantum action and its symmetries leaving for Section 5 the evaluation of

topological invariants. Finally we present a discussion of the model and the

conclusions to our work in Section 6.

2 THE GAUGE MODEL

In this Section we briefly review the non-Abelian two-dimensional topologi-

cal field theory constructed in ref.[18], which is at the basis of the model for

two-dimensional gravity to be presented in Section 3.

The model for a non-Abelian two-dimensional gauge field theory that

we consider has been constructed, in the manner of Labastida-Pernici [16],

starting from a classical action defined on a general two-dimensional mani-
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fold M , in which Bogomol’nyi equations play a central rôle,

Scl[M ] =

Z

M
d2x

√
g < (Hµν −Bµν)

2 + |Hµ −Bµ|2 + |H̃µ − B̃µ|2 > . (2.1)

In this expression, Hµν , Hµ and H̃µ are auxiliary fields belonging to the

algebra of the gauge group G; Hµν = HA
µνTA, Hµ = HA

µ TA and H̃µ = H̃A
µ TA,

where TA, A = 1, ..., dimG, are the group generators. They are self-dual

fields in the sense that [18]

Hµν = EµνH (2.2)

with H the dual of Hµν and ∗Hµ the dual of Hµ satisfying

∗Hµ ≡ iEµνHν = Hµ (2.3)

(Eµν is the contravariant two-dimensional Levi-Civita tensor, Eµν = ǫµν√
g
,

ǫ01 = −ǫ10 = 1). Bµν , Bµ and B̃µ stand for the following expressions

Bµν ≡ Fµν − eGEµνΨ < Φ2 − Φ2
0 > , (2.4)

Bµ ≡ D+
µΦ+ E+

µν [Ψ,DνΦ] , (2.5)

B̃µ ≡ D+
µΨ , (2.6)

so that

Bµν = 0 , (2.7)

Bµ = 0 , (2.8)

B̃µ = 0 (2.9)

represent the Bogomol’nyi equations corresponding to a two-dimensional

non-Abelian gauge theory [19]. These equations have to be supplemented
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with the constraints

< Ψ2 > = 1 , (2.10)

< ΨΦ > = 0 . (2.11)

(see ref.[19] for details). The dynamical fields of the theory defined by Scl

are, then, a gauge field Aµ taking values in the algebra of the gauge group

G, Aµ = AA
µTA, and two scalar fields Ψ and Φ in the adjoint representation

of the group G, Ψ = ψATA and Φ = φATA. The field strength Fµν is defined

as

Fµν = FA
µνTA ≡ ∂µAν − ∂νAµ + eG[Aµ, Aν ] , (2.12)

accordingly, the covariant derivative Dµ is defined as

Dµ ≡ ∂µ + eG[Aµ, ] . (2.13)

The “+” symbol appearing in covariant derivatives of expressions (2.5)

and (2.6) is defined as follows. Given a vector Cµ,

C+
µ ≡ 1

2
(Cµ +∗ Cµ) =

1

2
(Cµ + iEµνC

ν) . (2.14)

It is easy to prove that C+
µ is a self-dual vector (cf. eq.(2.3)); this property

implies the self-duality of the expressions (2.5) and (2.6) and, furthermore,

as we shall see, the independence of the quantum action on the metric gµν .

This quality is at the root of the topological character of the quantum theory

constructed from Scl [12]; it means that the partition function constructed

from Scl does not depend on the choice of any particular metric, it can only

depend on the topology of M .

The “< >” symbol denotes the appropriate invariant, non-degenerate

and associative inner product. Its explicit definition depends on the choice
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of the group G and will be presented, in the cases of interest, in the next

Section.

Bogomol’nyi equations (2.7)-(2.9) are first order differential equations

whose solutions solve the (second order) Euler-Lagrange equations for a

non-Abelian gauge theory coupled to two Higgs fields defined on the two

dimensional manifold M [19]. The number of Higgs fields introduced is

such that complete symmetry breaking is achieved so as to ensure non-

trivial topology for the gauge field Aµ. In general, Bogomol’nyi equations

exist whenever a particular relation between coupling constants hold. For

instance, for the model to be considered, two scalar fields are necessary and

a potential ensuring complete symmetry breaking is

V (Ψ,Φ) = g1 < (Φ2 − Φ2
0)

2 > +g2 < (Ψ2 − 1)2 > +g3 < (ΨΦ)2 > (2.15)

but, due to conditions (2.10) and (2.11), only the first term plays a rôle in

the model. In this case, Bogomol’nyi condition relates the gauge coupling

constant eG and the potential strenght g1,

e2G = kg1 , (2.16)

the numerical constant k being determined by the inner product definition.

The peculiarity of an action like (2.1) is its invariance under the most

general transformations of the dynamical fields (in this case Aµ, Ψ and Φ),

provided one adequately choose the transformation laws for the auxiliary

fields (namely Hµν , Hµ and H̃µ). Indeed, if one transforms the gauge and

scalar fields in the most general form

δAµ = ǫµ −Dµǫ , (2.17)

δΦ = θ − eG[Φ, ǫ] , (2.18)
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δΨ = θ̃ − eG[Ψ, ǫ] (2.19)

(we have distinguished usual gauge transformations for later convenience),

the classical action (2.1) remains unchanged provided

δHµν = δBµν + [Hµν −Bµν , ǫ] , (2.20)

δHµ = δBµ + [Hµ −Bµ, ǫ] , (2.21)

δH̃µ = δB̃µ + [H̃µ − B̃µ, ǫ] , (2.22)

where variations in the right hand side are to be computed in terms of the

variations of the dynamical fields (2.17)-(2.19). It is important to note that

not all of the parameters are effective regarding these transformations: if

one chooses ǫµ = Dµξ, ǫ = ξ, θ = eG[Φ, ξ] and θ̃ = eG[Ψ, ξ] not only the

action remains invariant but also all fields do it (on shell).

Transformations (2.17)-(2.19) are enough to select a gauge in which Hµν ,

Hµ and H̃µ vanish. This can be achieved with parameters ǫµ, θ and θ̃ and

leaving untouched parameter ǫ [18]. In this gauge, the equations of motion

of Scl coincide with the Bogomol’nyi equations (2.7)-(2.9).

This symmetry of the classical action is called a “large” or “topological”

symmetry and has to be fixed in the process of quantization. The second

generation gauge invariance mentioned in a previous paragraph imposes a

refined BRST quantization, for instance by using Batalin-Vilkovisky method

[20]. This has been done in detail in ref.[18]. Just for completeness let us

indicate the main lines of the quantization procedure. A generic term of the

classical action (2.1) takes the form

S1
cl =

Z

M
d2x

√
g < |H −B[Φ]|2 > , (2.23)
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where Φ is a collection of dynamical fields, B[Φ] = 0 is the associated Bo-

gomol’nyi equation and H is the corresponding auxiliary field. Evidently,

each one of the terms in (2.1) has this form. This action remains invariant

under the large transformations

Φ → Φ+ δΦ , (2.24)

H → H +
δB

δΦ
δΦ . (2.25)

Associated with transformations (2.24)-(2.25), we can define BRST commu-

tators

{Q,Φ} = χ , (2.26)

{Q,H} =
δB

δΦ
χ . (2.27)

The linear transformation {Q, } is defined by stating that the BRST trans-

formation of a functional F is

δBRSTF = λ{Q,F} , (2.28)

with λ a Grassmann odd constant parameter. χ represents the ghost re-

lated to the symmetry (2.24)-(2.25). Proceeding à la Batalin-Vilkovisky,

the quantum action is constructed from Scl as follows

S1
q = Scl + {Q,F} (2.29)

where F is a “gauge fermion” [20] introduced to fix the large symmetry. It

is evident from (2.25) that H can be gauged away; to this end, one chooses

F =

Z

M
d2x

√
g < XH > , (2.30)

10



being X an antighost field. We impose the following BRST transformation

laws on the antighost field X and Lagrange multiplier D

{Q,X} = D ,

{Q,D} = 0 ,
(2.31)

with this S1
q becomes

S1
q = S1

cl +

Z

M
d2x

√
g < X

δB

δΦ
χ+DH > . (2.32)

The second term in (2.32) corresponds to the ghost action and the third

one to a gauge fixing action. Thus, the partition function Z for a classical

action of the kind (2.23) with a large symmetry (2.24)-(2.25) is

Z =

Z

DΦ DH Dχ DX DD

exp[−
Z

M
d2x

√
g < |H −B|2 +X

δB

δΦ
χ+DH >]

=

Z

DΦ Dχ DX exp[−
Z

M
d2x

√
g < B2 +X

δB

δΦ
χ >] . (2.33)

The quantization of the classical action under consideration, eq.(2.1),

follows the same steps. However, the actual transformations (2.17)-(2.22) are

slightly more complicated and hence our arguments have to be generalized

to also include, appart from ghosts of the χ-type associated with the large

symmetry, ghosts associated with the usual gauge and second generation

invariances. In any case, the final form of Sq can be written in the form

(2.29) where F is some functional of the original fields (gauge, scalar and

auxiliary fields) and new fields (ghosts and Lagrange multipliers) introduced

in the gauge fixing procedure. Moreover, it can be shown that there exists

a functional V such that Sq can be written as a BRST commutator

Sq = {Q,V } . (2.34)
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From this equation it is easy to show that

δZ
δgµν

= 0 , (2.35)

the defining equation for TQFTs. Furthermore, the partition function is, for

similar reasons, independent of the gauge coupling constant eG, as long as

eG is different from zero. This can be easily demonstrated by going through

new field variables in such a way that 1
e2
G

is factorized from the quantum

action, which remains gauge coupling independent. This property permits

to exactly evaluate Z by going to the small e2G limit where it is dominated

by the classical minima, that is, the solutions to Bogomol’nyi equations. In

the next Section we shall give an explicit form for Sq [18].

3 THE GRAVITATIONAL MODEL

Let us now construct a model for two-dimensional gravity based on the

topological model presented in Section 2. We consider the symmetry groups

ISO(1, 1), SO(2, 1) and SO(1, 2), with generators which will be identified

with the TA’s introduced in the previous Section. In order to describe the

three cases with a sole algebra, we write (TA) = (Pa, J), a = 0, 1,

[Pa, Pb] = ΛǫabJ ,

[Pa, J ] = −ǫ baPb ,

[J, J ] = 0 .

In this context, Pa and J will play the rôle of the generators of the two trans-

lations and Lorentz rotation, respectively, on the two-dimensional manifold

M . Latin indices are raised and lowered with an internal metric ηab. We
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shall see that a choice of signature for the ηab will fix the corresponding

signature for the metric in our gravity model. With our conventions ǫab is

such that ǫ01 = −ǫ10 = 1.

The constant Λ behaves as a dimensionless cosmological constant1; the

values Λ = 0, Λ > 0 and Λ < 0 give rise to the ISO(1, 1) group (the

isometry group of two-dimensional flat Minkowski space-time), the SO(2, 1)

group (the isometry group of two-dimensional de Sitter space-times) and

the SO(1, 2) group (the isometry group of two-dimensional anti-de Sitter

space-times), respectively.

For the SO(2, 1) and SO(1, 2) groups we define the inner product by

using the Killing metric arising from their algebras; thus,

< Pa, Pb > = Ληab ,

< Pa, J > = 0 ,

< J, J > = 1 . (3.1)

We cannot proceed in an analogous way in the case of the ISO(1, 1) group

because of the degeneracy of its Killing metric. We can, however, overcome

this difficulty by defining the following inner product [8]

< Pa, Pb > = ηab , (3.2)

< Pa, J > = 0 , (3.3)

< J, J > = 1 . (3.4)

It is not possible, though, to avoid the degeneracy of the Casimir operator

which is still taken in the form W = P aPa.

1Dimensionfull magnitudes should be constructed by using the gauge coupling constant

eG which has dimensions of mass.
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Since our aim is to make contact with two-dimensional gravity, we in-

troduce the following notation

Aa
µ = eaµ , (3.5)

A3
µ = fµ , (3.6)

attempting to identify two of the vector potential components (those along

the “translation directions” Pa) as a Zweibein and to relate the remaining

vector potential component (the one along the “Lorentz rotation” direction

J) to the spin connection. Then, the covariant derivative Dµ (eq.(2.13))

acting on an algebra valued field C = (ca, c) becomes

DµC = Dµ[e, f ]C = Dab
µ [f ]cbPa + (∂µc+ eGΛ ǫabe

a
µc

b)J , (3.7)

where Dab
µ [f ] is given by

Dab
µ [f ] ≡ δab∂µ − eGǫ

abfµ . (3.8)

Concerning the Higgs fields, we denote them

Ψ = (ψa, ψ) , (3.9)

Φ = (φa, φ) , (3.10)

while for auxiliary fields Hµν , Hµ and H̃µ and expressions Bµν , Bµ and B̃µ

we write

Hµν = (haµν , hµν) Bµν = (baµν , bµν) ,

Hµ = (haµ, hµ) Bµ = (baµ, bµ) ,

H̃µ = (h̃aµ, h̃µ) B̃µ = (b̃aµ, b̃µ) .

(3.11)
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Then,

baµν = Dab
µ [f ]eνb −Dab

ν [f ]eµb − eGEµν ψ
a v(Φ) , (3.12)

bµν = ∂µfν − ∂νfµ + eGΛEµν − eGEµν ψ v(Φ) , (3.13)

baµ = ∆+a
µ (f, φc, φ)− E+

µνǫ
abψ∆ν

b (f, φc, φ) +

E+
µνǫ

ab ψb ∂
νφ , (3.14)

bµ = ∂+µ φ+ eGΛ ǫab e
+a
µ ψb + ΛE+

µνǫ
ab ψa∆

ν
b (f, φc, φ) , (3.15)

b̃aµ = ∆+a
µ (f, ψb, ψ) , (3.16)

b̃µ = ∂+µ ψ + eGΛ ǫab e
+a
µ ψb . (3.17)

where

v(Φ) ≡< Φ2 − Φ2
0 > , (3.18)

and ∆a
µ(f, φb, φ) stands for

∆a
µ(f, φb, φ) ≡ Dab

µ [f ]φb + eGǫ
ab eµb φ . (3.19)

With this notation, the equations of motion of the theory become

haµν = baµν , (3.20)

hµν = bµν , (3.21)

haµ = baµ , (3.22)

hµ = bµ , (3.23)

h̃aµ = b̃aµ (3.24)

h̃µ = b̃µ . (3.25)

Similarly, the constraints (2.10) and (2.11) are

Λψaψa + ψ2 = 1 , (3.26)

Λψaφa + ψφ = 0 , (3.27)
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in the cases of the SO(2, 1) and SO(1, 2) groups and

ψaψa + ψ2 = 1 , (3.28)

ψaφa + ψφ = 0 , (3.29)

in the case of the ISO(1, 1) group.

In order to confirm the identification between the gauge field components

Aa
µ and the Zweibein eaµ (so as to interpret the topological model presented

in Section 2 as a model for two-dimensional gravity) it is convenient at this

point to analyse Bogomol’nyi equations which are, in fact, the equations of

motion for the topological model with quantum action Sq (2.34) in the small

eG limit. As we stated above, the gauge freedom (see eqs.(2.17)-(2.22)) al-

lows us to gauge away auxiliary fields Hµν , Hµ and H̃µ so that the equations

of motion (3.20)-(3.25) become the Bogomol’nyi equations. Furthermore, as

we explained at the end of the previous Section, Z is independent of eG and

can be evaluated by taking the limit for which the path integral is dominated

by Bogomol’nyi equations solutions.

As we shall show below, the first two equations of our gravity model

become equations for torsion and curvature similar to those presented in

ref.[1] but with extra terms added to the cosmological constant. The rest of

the equations are directly related to the matter content of the system. To

see this, let us obtain from eq.(3.20) an explicit expression for fµ in terms

of eaµ, ψ
a and Φ under the assumption that eaµ is invertible (i.e. there exists

eµb such that, eaµe
µ
b = δab and eaµe

ν
a = δνµ). The expression is

fµ =
1

eG
Eαβ(∂αe

a
β)eµa − eaµψav(Φ) . (3.30)
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Using it, eq.(3.21) transforms into

2

eG
Eµν∂µwν − 2Eµν∂µ(e

a
νψav(Φ)) − 2eG ψv(Φ) + 2eGΛ = 0 (3.31)

where wµ is defined as follows

wµ ≡ Eαβ(∂αe
a
β)eµa . (3.32)

From eqs.(3.31) and (3.32), one can see that it is consistent to identify eaµ

with a Zweibein so that the two-dimensional metric gµν be given by

gµν = eaµe
b
νηab . (3.33)

Indeed, in two dimensions the affine spin connection (under the condition of

metricity) can be written in the form

wab
µ = ǫabΩµ . (3.34)

If we identify the connection Ωµ with wµ as given by eq.(3.32),

wab
µ = ǫabwµ , (3.35)

the first term in the left hand side of eq.(3.31) becomes proportional to the

curvature scalar R,

R = 2Eµν∂µwν (3.36)

and the complete equation of motion (3.31) takes the form

R+ 2e2GΛ = 2eG E
µν∂µ(e

a
νψav(Φ))− 2e2G ψv(Φ) ≡ eGτ . (3.37)

Were the scalar field Φ absent, this equation would reduce to

R+ 2e2GΛ = 0 . (3.38)
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This is precisely one of the equations of motion for the Jackiw-Teitelboim

model [1] for two-dimensional gravity (also discussed in refs.[7]-[9]). More-

over, the second equation of motion for the Jackiw-Teitelboim model, which

gives the vanishing torsion condition, follows immediately from eqs. (3.20)

and (3.32):

EµνT a
µν ≡ EµνDµ[

1

eG
w]eaν = 0 . (3.39)

Concerning the new terms induced by scalar fields, they act as an effective

energy momentum tensor trace τ . Hence, our topological model can be

interpreted as a theory for two-dimensional gravity non-trivially coupled

to matter. This has been achieved by using a two-dimensional topological

model defined through a classical action given by eq.(2.1). The fact that

Scl is constructed from self-dual auxiliary fields allows terms such as <

EµνBµνB > or < EµνHνBµ > to be present; they induce matter interactions

in the sense that there is no dependence on the metric at the quantum

level, as it will be demonstrated in the next Section. Had we started from

a topological action à la Baulieu-Singer [13] (as in refs.[7]-[9]), we would

have faced the problem mentioned by Chamseddine and Wyler [7]: matter

interactions would require the introduction of a metric in a non-trivial way

(thus imposing non-covariant couplings of the gauge field once it has been

identified with the Zweibein) or rather complicated terms.

Let us now study the equations for matter, namely eqs.(3.22)-(3.25). For

the sake of clarity we shall distinguish between the Λ = 0 and the Λ 6= 0

cases.

A) Λ = 0.
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In this case, from eq.(3.25) we have that ψ is constant

ψ = η (3.40)

and, from eq.(3.24) we can in principle determine the other components of

the Ψ field in terms of the Zweibein and the other scalar field Φ:

∆a
µ(w,ψb, η)− eG ǫ

ab ecµ ψcψb v(Φ) = 0 . (3.41)

Concerning the Φ field, eq.(3.23) implies that also φ is constant

φ = λ . (3.42)

After some calculations, it can be shown that eq.(3.22) reduces to the fol-

lowing pair of equations

(η2 − 1) [ǫabψa∆
µ
b (f, φb, λ)] = 0 , (3.43)

(η2 − 1) [ψa∆µ
a(f, φb, λ)] = 0 . (3.44)

These equations have as one obvious possible solution η = ±1. If this

were the case, the constraints reduce to ψaψa = 0 and φaψa ± λ = 0. If the

flat metric ηab is Euclidean, the unique solution to the former constraint is

ψa ≡ 0, but this implies, through eq.(3.41), the vanishing of the Zweibein.

Then, η±1 is not a sensible solution in Euclidean space-time. If, on the other

hand, the flat metric ηab is Minkowskian, the first constraint has solutions

different from zero and further analysis of the complete system is required

to find explicit solutions.

For η 6= ±1, the matter system reduces to eq.(3.41) and the two equations

stemming from eqs.(3.43) and (3.44), supplemented with the constraints

ψaψa+η
2 = 1 and ψaφa+ηλ = 0, coupling ψa, φa and eaµ. This is a coupled
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non linear system which has to be studied together with the equation (3.37)

for the curvature scalar.

B) Λ 6= 0.

In this case, we can solve ψa in terms of ψ and the Zweibein from

eq.(3.25)

ψa =
1

2eGΛ
ǫabeµb ∂µψ . (3.45)

Using this result and the constraint (3.26) we obtain the following equation

for ψ

✷ψ + 4e2G (1− ψ2) v(Φ) + 4e2GΛψ = 0 . (3.46)

Once again, were the scalar field Φ absent we would recover the Klein-

Gordon equation in de Sitter space for the model of ref.[7]. The additional

term we have corresponds to a self-interaction, highly non-linear and typical

of theories with a Higgs potential.

It is still pending the study of the equations (3.22) and (3.23). The

analysis of the former is similar to the case Λ = 0; it just appears one extra

term in each of the equations (3.43) and (3.44)

(ψ2 − 1) [ǫabψa∆
µ
b (f, φb, φ)]− Eµν∂νφ] = 0 , (3.47)

(ψ2 − 1) [ψa∆µ
a(f, φb, φ) + ψ∂µφ] = 0 . (3.48)

Though ψ2 = 1 is a solution to these equations, recalling eq.(3.46) we see

that it solves the complete system only if Λ equals zero. Hence, we have

to leave aside ψ = ±1 and study the vanishing of the brackets in eqs.(3.47)

and (3.48), together with eq.(3.46). We arrive at the following equation

∂µφ(1− Λ)− 1

2
∂µψ = 0 (3.49)
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which distinguishes between Λ equal or different from one. In the former

case, ψ must be a constant which implies (through eq.(3.45)) that ψa van-

ishes and then that η must be equal to ±1, leaving no solutions to the

system. In the latter case, one has to select a given manifold M in order to

go further. For example, if we take M to be a manifold with boundary, the

solution to (3.49) can be written in the form

φ =
1

2(1 − Λ)
ψ + (φ0 −

ψ0

2(1− Λ)
) (3.50)

where we have imposed ψ → ψ0 and φ→ φ0 at the boundary.

In general, the complete resolution of the full system (3.20)-(3.25) both

in the Λ = 0 and Λ 6= 0 cases, depends on the topological structure of the

two-dimensional manifold M . Two different situation can be envisaged:

1. M is such that there exists a finite number of isolated classical so-

lutions, that is, the “moduli space” M contains a finite number of points.

The dimension of M is then d(M) = 0.

2. M is such that the moduli space has dimension different from zero,

d(M) 6= 0.

We shall come back to this point, in connection with the evaluation of topo-

logical invariants, in the next Section.

We summarize in table 1 what we have learnt about the equations of

motion and their solutions.

4 SYMMETRIES AND QUANTUM ACTION
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4.1 Symmetries of the gravitational model

It is interesting to recover from topological transformation laws (2.17)-(2.19)

the usual transformation laws of two-dimensional gravity, viz. diffeomor-

phism and Lorentz transformations.

Let us start by writing the parameters ǫµ, ǫ, θ and θ̃ appearing in (2.17)-

(2.19) in the form

ǫµ = εaµPa + εJ ,

ǫ = εaPa + εJ ,

θ = ϑaPa + ϑJ ,

θ̃ = ϑ̃aPa + ϑ̃J .

(4.1)

With this, the transformation laws for eaµ, fµ, φ
a, φ, ψa and ψ can be readily

recognized to be

δeaµ = εaµ − ∂µε
a − eG ǫ

ab(εeµb − fµεb) , (4.2)

δfµ = εµ − ∂µε+ eG Λǫab ε
aebµ , (4.3)

δφa = ϑa + eG ǫ
ab (φεb − εφb) , (4.4)

δφ = ϑ− eG Λǫabφ
aεb , (4.5)

δψa = ϑ̃a + eG ǫ
ab(ψεb − εψb) , (4.6)

δψ = ϑ̃− eGΛǫab ψ
aεb . (4.7)

Our first purpose is to compare these transformations with diffeomor-

phism transformations δD

δDe
a
µ = vα(∂αe

a
µ − ∂µe

a
α) + ∂µ(v

αeaα) , (4.8)

δDfµ = vα(∂αfµ − ∂µfα) + ∂µ(v
αfα) , (4.9)

δDΦ = vα∂αΦ , (4.10)
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δDΨ = vα∂αΨ , (4.11)

where vα is the local parameter transforming xα, δDx
α = vα. In order to

find a connection between topological and diffeomorphism transformations,

let us consider the following subset of parameters

εa = − 1
eG
vαeaα ,

ε = − 1
eG
vαfα ,

εaµ = vαEαµψ
av(Φ) ,

εµ = vαEαµψv(Φ) .

(4.12)

With this we find, from (4.2) and (4.8),

δeaµ − δDe
a
µ =

1

eG
vα[Dab

µ [f ]eαb −Dab
α [f ]eµb − eGEµαψ

av(Φ)] (4.13)

or, using the equation of motion (3.20) 2

δeaµ − δDe
a
µ|o.s. = − 1

eG
vαhaαµ . (4.14)

Concerning fµ, a similar procedure shows that the difference between large

and diffeomorphism transformations is, using equation (3.21),

δfµ − δDfµ|o.s. = − 1

eG
vαhαµ . (4.15)

With respect to the scalar field Ψ, once the parameters ǫ and ǫµ have been

fixed, it is simple to prove from eqs.(4.6) and (4.11) the following identity

δψa − δDψ
a = ϑ̃a − 1

eG
vα∆a

α(f, ψb, ψ) (4.16)

then, choosing ϑ̃a = 0 and using the equation of motion (3.24) we have

δψa − δDψ
a|o.s. = − 1

eG
vαh̃aα . (4.17)

2We represent the use of the equations of motion by |o.s.
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The analysis for ψ is analogous: choosing ϑ̃ = 0 and using eq.(3.25)

δψ − δDψ|o.s. = − 1

eG
vαh̃α . (4.18)

Finally, the difference between variations of the components of the field Φ

are

δφa − δDφ
a = ϑa − 1

eG
vα∆a

α(f, φb, φ) , (4.19)

δφ − δDφ = ϑ− 1

eG
vα(∂αφ+ eGΛ ǫabφ

aebα) . (4.20)

Now, we can select ϑa and ϑ in the following way

ϑa =
1

eG
vα∆a

α(f, φb, φ) , (4.21)

ϑ =
1

eG
vα(∂αφ+ eGΛ ǫabφ

aebα) , (4.22)

which implies

δφa − δDφ
a = 0 , (4.23)

δφ− δDφ = 0 . (4.24)

Similarly, we can show that the difference between a topological transforma-

tion ((2.20)-(2.22)) and a diffeomorphism transformation for each auxiliary

field is proportional to the corresponding auxiliary field.

In summary, working in the gauge in which all auxiliary fields vanish,

δHµν = δDHµν = 0, δHµ = δDHµ = 0, δH̃µ = δDH̃µ = 0, we have

δeaµ − δDe
a
µ|o.s = 0 ,

δfµ − δDfµ|o.s = 0 ,

δΦ − δDΦ|o.s = 0 ,

δΨ − δDΨ|o.s = 0 .

(4.25)
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Concerning Lorentz transformations δL, again an appropriate choice of

parameters allows their identification with transformations (4.2)-(4.7). In-

deed, if we choose

εaµ = εµ = εa = ϑa = ϑ = ϑ̃a = ϑ̃ = 0 (4.26)

and

ε = − κ

eG
(4.27)

we have

δeaµ = κǫabeµb ,

δfµ = ∂µκ ,

δφa = κǫabφb ,

δψa = κǫabψb ,

δφ = 0 ,

δψ = 0 .

(4.28)

The right hand side of eqs.(4.28) precisely corresponds to Lorentz transfor-

mations δL with parameter κ and then,

δeaµ = δLe
a
µ ,

δfµ = δLfµ ,

δΦ = δLΦ ,

δΨ = δLΨ

(4.29)

and Hµν = δLHµν = 0, δHµ = δLHµ = 0, δH̃µ = δLH̃µ = 0 in the gauge in

which all auxiliary fields vanish.

We then see from eqs.(4.25) and (4.29) that, as expected, the topolog-

ical model defined from the classical action (2.1) can be used as a model

for two-dimensional gravity with its topological transformations interpreted
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as diffeomorphism and Lorentz transformations. In order to make such an

identification we have restricted the parameter space to a subspace satisfy-

ing (4.12), (4.26) and (4.27) relations. In this sense, the whole topological

invariance is larger than the usual invariances for gravity.

4.2 The Quantum Action

As explained in Section 2, because of the large topological symmetry (eqs.

(2.17)-(2.22)) of the classical action (2.1), one has to proceed to a careful

BRST quantization in which ghosts and ghosts for ghosts appear through

the process of gauge fixing. We shall skip the details (given in ref.[18] for

the gauge theory and sketched in Section 2) and just quote the result for

the quantum action

Sq[M ] =

Z

M
d2x

√
g < BµνD

µν − 1

4
DµνD

µν +BµD
µ +

B̃µD̃
µ > +Sgf [M ] + Sgh[M ] . (4.30)

The explicit expression for the classical part of Sq in gravity language is

straightforwardly obtained calculating the adequate inner product and ex-

pressing Bµν , Bµ and B̃µ components as in eqs.(3.12)-(3.17). In (4.30) aux-

iliary fields Hµν , Hµ and H̃µ have been traded for Lagrange multipliers

Dµν = (daµν , dµν), Dµ = (daµ, dµ) and D̃µ = (d̃aµ, d̃µ). Of course, the equa-

tions of motion arising from this classical part coincide with those gotten

from eq.(2.1) in the Hµν = 0, Hµ = 0 and H̃µ = 0 gauge, and also the

metric and coupling constant independence is maintained. From the ex-

plicit expression of Sq one also sees that e2G can be identified with Newton’s

gravitational constant.

Concerning the gauge fixing action Sgf , it cannot be expressed in a co-
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variant way and the introduction of a metric is unavoidable. The metric gαβ

on M selected to incorporate matter couplings is here again used; evidently,

physical results should be independent of this choice. A particularly advan-

tageous gauge is the Landau gauge. In order to appropriately introduce it

we define a covariant derivative Dα[ecl, wcl] which acts on a vector Cβ taking

values in the algebra of the gauge group in the following way

Dα[ecl, wcl]Cβ = (∂αc
a
β − Γσ

αβ [g] c
a
σ − eG ǫ

abwclαcβb)Pa + (4.31)

(∂αcβ − Γσ
αβ [g] cσ + eGΛ ǫbcecl

b
αc

c
β)J . (4.32)

Here, we have used the gravitational covariant derivative plus a term con-

taining background Zweibein and spin connection fields ecl and wcl which

are solutions to the equations of motion (these last have been introduced

to handle with zero mode problems). With this notation the Landau gauge

condition reads

Dα[ecl, wcl](eβ , fβ) = 0 (4.33)

Dα[ecl, wcl]χβ = 0 (4.34)

and Sgf is

Sgf [M ] =

Z

M
d2x

√
g < YDµ[ecl, wcl](e

µ, fµ) +

ỸDµ[ecl, wcl]χ
µ > (4.35)

where Y = (ya, y) and Ỹ = (ỹa, ỹ) are Lagrange multipliers enforcing the

gauge conditions. The corresponding ghost action takes the form

Sgh[M ] =

Z

M
d2x

√
g < X(EµνDµ[e, f ]χν − 2eG Ψ < Φρ > −

eG < (Φ2 − Φ2
0)ρ̃ >) +

1

4
eG [X,X]σ +X+

µ (−eG[Φ, χµ] +
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Dµ[e, f ]ρ− Eµν [Ψ, [Φ, χν ]] + Eµν [Ψ,Dν [e, f ]ρ]−

eGE
µν [Dν [e, f ]Φ, ρ̃]) +

1

4
eG [Xµ,X

µ]σ +

X̃+
µ (−eG[Ψ, χµ] +Dµ[e, f ]ρ̃) +

1

4
eG [X̃µ, X̃

µ]σ +

(−Dµ[ecl, wcl]C + eG[χµ, σ])(χ
µ −Dµ[e, f ]C) +

σDµ[ecl, wcl](D
µ[e, f ]σ + eG[C,χ

µ]) > . (4.36)

Fields C = (χµ, C, ρ, ρ̃, σ) with ghost numbers (1, 1, 1, 1, 2) are the ghosts

associated with each of the symmetries of the classical action. To be more

precise, they are related as follows

ǫµ → χµ , (4.37)

ǫ → C (4.38)

θ → ρ (4.39)

θ̃ → ρ̃ (4.40)

ξ → σ . (4.41)

The corresponding antighosts are written as C = (σ,C,Xµ, X̃µ,X) with

ghost numbers (−2,−1,−1,−1,−1). Xµ, X̃µ and X are self-dual fields

in the sense of eqs.(2.3) and (2.2), respectively. The covariant derivative

Dµ[e, f ] has been introduced in eq.(3.7).

The partition function for our model, when written in gravity language

is, then,

Z[M ] =

Z

Dfields e−Sq[M ] . (4.42)

The fields of the theory and their corresponding ghost numbers are summa-

rized in table 2.

Given the topological invariance of the action Scl (eqs.(4.2)-(4.7)), it is

easy to find the associated BRST commutators (2.28) for gravity and matter
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fields

{Q, eaµ} = χa
µ − ∂µc

a − eG ǫ
ab(ceµb − fµcb) ,

{Q, fµ} = χµ − ∂µc+ eGΛ ǫab c
aebµ ,

{Q,Φ} = ρ− eG[Φ, C] ,

{Q,Ψ} = ρ̃− eG[Ψ, C] ,

(4.43)

for ghosts and antighosts

{Q,χµ} = −Dµ[e, f ]σ + eG[C,χµ] , {Q,C} = −(σ + 1
2eG[C,C]) ,

{Q, ρ} = −eG ([Φ, σ] + [C, ρ]) , {Q,σ} = eG [σ,C] ,

{Q, ρ̃} = −eG ([Ψ, σ] + [C, ρ̃]) , {Q,C} = Y ,

{Q,σ} = Ỹ ,

and for Lagrange multipliers

{Q,Y } = 0 ,

{Q, Ỹ } = 0 ,

{Q,X} = 1
2E

µνDµν − eG[X,C] ,

{Q,Xµ} = Dµ − eG[Xµ, C] ,

{Q, X̃µ} = D̃µ − eG[X̃, C] ,

{Q,Dµν} = eG ([Dµν , C] + Eµν [X,σ]) ,

{Q,Dµ} = eG ([Dµ, C] + [Xµ, σ]) ,

{Q, D̃µ} = eG ([D̃µ, C] + [X̃µ, σ]) .

It is straightforward but tedious to corroborate the BRST invariance of Sq.

Moreover, it can be also proved that, as announced in the previous Section,

Sq = {Q,V } (4.44)

where the functional V is

V =

Z

M
d2x

√
g <

1

4
XEµνDµν −XEµνBµν +

1

4
XµDµ −
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XµBµ +
1

4
X̃µD̃µ − X̃µB̃µ −

CDµ[ecl, wcl](e
µ, fµ)− σDµ[ecl, wcl]χ

µ > . (4.45)

This property guarantees that Z[M ] only depends on the topology of M

and not on the choice of the selected metric. In fact,

δSq
δgµν

= {Q, δV
δgµν

} , (4.46)

which ensures that the metric dependence of the quantum action is trivial

in the sense that its variation with respect to the metric gives a BRST

commutator which has no effect at the physical level. More precisely, a

possible dependence of the partition function measure on the metric must be

taken into account to finally establish the independence of Z on the metric.

This has been done in ref.[21] for Witten type TQFTs and it has been there

confirmed that, or this kind of theories, Z is indeed metric independent.

Furthermore, (4.44) implies the independence of Z[M ] on the gauge coupling

constant eG.

5 TOPOLOGICAL INVARIANTS

In view of the independence of the partition function on the metric signaled

above, the simplest topological invariant to be considered is, precisely, the

partition function Z[M ].

In order to clarify our derivation of topological invariants, we shall again

first consider the simplified action S1
cl, eq.(2.23). It can be easily shown

that the zero mode equation associated with the ghost field χ appearing in

S1
q coincides with the equation describing the moduli space for Bogomol’nyi
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solutions. Indeed, given a solution Φcl to Bogomol’nyi equations,

B[Φcl] = 0 , (5.1)

a nearby configuration Φcl + δΦcl will also be a solution provided

δB

δΦ
|Φcl

δΦcl = 0 . (5.2)

Since the ghost action in S1
q is

S1
gh =

Z

M
d2x

√
g < X

δB

δΦ
χ > , (5.3)

the equation of motion for X, giving the zero mode equation for χ, coincides

with eq.(5.2) for δΦcl when Φ = Φcl. (For simplicity we shall suppose that

X has no zero modes.)

As for solutions to eq.(5.2), there are two possibilities; either no non-

trivial solution exists or there are solutions which span the moduli space;

d(M) is equal or different from zero, respectively.

Concerning the case d(M) = 0, Z[M ] can be exactly evaluated, a basic

property of topological models, related to the Q-symmetry of Sq. Indeed,

Z[M ] is independent of eG and then it can be computed in the eG going to

zero limit where the path integral is dominated by configurations (Φ, χ,X) =

(Φi
cl, 0, 0), with i = 1, 2, ...n labelling isolated Bogomol’nyi solutions. Calling

ϕ the fluctuations around Φ = Φi
cl we have

Z[M ] =
n
X

i=1

Z

Dϕ Dχ DX exp[−
Z

M
d2x

√
g < ϕ

δB

δΦ
|Φi

cl

δB

δΦ
|Φi

cl
ϕ+

X
δB

δΦ
|Φi

cl
χ >] (5.4)

or

Z[M ] =
n
X

i=1

Pfaff( δB
δΦ |Φi

cl
)

q

det( δB
δΦ |Φi

cl

δB
δΦ |Φi

cl
)
,
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Z[M ] =
n
X

i=1

(−1)ni (5.5)

where ni = 0, 1 according to the way one determines the sign of the Pfaffian

(see ref.[12]). Since in topological theories Z[M ] is metric independent, the

right hand side of eq.(5.5) gives the explicit way of computing a topological

invariant.

The derivation we have presented for this simple example can be straight-

forwardly extended to the model of interest with classical action (2.1). Sim-

ply, in view of the symmetry (2.17)-(2.22), the gauge fermion F has been

taken as

F =

Z

M
d2x

√
g < XH +XµH

µ + X̃µH̃
µ + CDµ[ecl, wcl](e

µ, fµ) +

σDµ[ẽ, wcl]χ
µ > , (5.6)

so that the quantum action, when written in terms of gravitational fields,

is given by eq.(4.30). Again, the bosonic and fermionic contributions to

Z[M ] cancel up to a sign around each classical solution. These signs have to

be computed from the quantum action for our gravity model, eq.(4.30). In

order to do so, one first performs an expansion around the classical solutions

discussed in Section 3 up to quadratic terms and then computes bosonic an

fermionic determinants once an assignment for the Pfaffian sign is adopted.

Each ni can then be determined and one can again conclude that Z[M ]

takes the form

Z[M ] =
n
X

i=1

(−1)ni , (5.7)

and is a topological invariant in the d(M) = 0 case.

Let us now discuss the evaluation of topological invariants in the d(M) 6=
0 case. In this case, the Pfaffian vanishes and, as explained in ref.[12],
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topological invariants have to be computed from vacuum expectation values

of BRST invariant and metric independent functionals containing a product

of an appropriate number of fields so as to absorb zero modes. In ref.[18] the

construction of such invariants was discussed for the gauge theory defined

by action (2.1). One starts by constructing functionals Wk satisfying

0 = {Q,W0} ,
dW0 = {Q,W1} ,
dW1 = {Q,W2} ,
dW2 = 0 .

(5.8)

and using the notation of Section 2 one easily finds

W0 = 1
2 < σ2 > ,

W1 = < σχµ > dxµ ,

W2 = < σFµν > dxµ ∧ dxν .

(5.9)

These functionals have ghost number 4 − k. Given a moduli dimension

d(M) 6= 0, a non-trivial topological invariant takes the form

Z(γ1, ..., γr) =

Z

Dfields
r
Y

i=1

I(γi) e−Sq [M ] , (5.10)

with γ1, ..., γr homology cycles of dimension k1, ..., kr such that

r
X

i=1

(4− ki) = d(M) (5.11)

and I(γi) defined as

I(γi) =

Z

γki

Wki . (5.12)

In order to obtain explicit formulæ for topological invariants, computed

as vacuum expectation values (vev’s) in the form (5.10), one proceeds as
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follows. As in the partition function case, the lowest order in the e2G ex-

pansion gives the exact result for the path integral defining the vev, then,

the dynamical fields can be replaced by their classical configurations solving

the Bogomol’nyi equations. In the present case, the only dynamical field

appearing in Wk’s is the gauge field Aµ which is replaced by Acl
µ . The ghost

χµ appearing in W1, whose zero modes probe the moduli space (together

with ρ and ρ̃ zero modes), have to be replaced by its zero mode configuration

χ0
µ. Concerning the ghost for ghost σ, one has to perform the corresponding

integration. For example, the vev of σA (σ = σATA) is computed as follows:

< σA >vev =

Z

Dσ Dσ σA(x) exp[−
Z

M
d2y

√
g < σDµD

µσ +

[χ0
µ, χ

µ0]σ + ... >] . (5.13)

The dots in the exponential represent irrelevant terms to lowest order in e2G.

Expanding the second term and performing the integration over σ and σ,

one has

< σA >vev=

Z

M
d2y

√
g < [χ0

µ(y), χ
µ0(y)]TB > ∆AB(y − x) , (5.14)

where

(DµD
µ∆)AB(z) = δABδ(z) . (5.15)

Replacing σ by < σ >vev whenever it appears in I(γi), one obtains the

following expressions for I(γi)’s

I(γ0) =

Z

γ0

<< σ >2
vev> , (5.16)

I(γ1) =

Z

γ1

<< σ >vev χ
0
µ > dxµ , (5.17)

I(γ2) =

Z

γ2

<< σ >vev F
cl
µν > dxµ ∧ dxν . (5.18)
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Of course, to go further into the evaluation of topological invariants one has

to know the structure of the moduli space, the explicit form of Acl
µ , χ

0
µ, etc.

We just conclude by writing the results presented above in terms of the

fields appearing in our gravity model. The vev of σ is still given by eq.(5.14)

with ∆AB(z) satisfying

(Dµ[ecl, wcl]Dµ[e, f ]∆)AB(z) = δabδ(z) . (5.19)

Then, I(γ0) and I(γ1) are computed from eqs.(5.16), (5.17) and (5.19) with

χ0
µ the zero modes of the fermionic operator in (4.30). Concerning I(γ2) note

that

F cl
µνdx

µ ∧ dxν = eGΨ
cl v(Φcl) d2x , (5.20)

through the use of Bogomol’nyi equation (2.7) and then,

I(γ2) = eG

Z

γ2

d2x << σ >vev Ψcl > v(Φcl) . (5.21)

6 SUMMARY AND DISCUSSION

In this work, we have succeeded in constructing a two-dimensional model

for the gravitational field with a non-trivial coupling to matter. This has

been achieved starting from the topological gauge model presented in ref.[18]

and interpreting the gauge fields as a Zweibein and (effective) connection

fields. In this way, the original TQFT has been expressed in geometrical

terms so that its classical equations of motion become gravitational field

equations coupled to matter (see table 1). The basic property of (Witten

type) TQFTs, i.e. the fact that Sq = {Q,V } has been fundamental to

get a gravitational model with matter coupling. Indeed, since δSq/δg
µν =

{Q,λµν}, the quantum theory does not depend on the background metric
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used to introduce matter couplings and to fix the gauge. The same property

ensures the model independence on all of the parameters, in particular on

φ0, the minimum of the Higgs potential. Thus the small eG expansion

performed to calculate expectation values of interest is, in this case exact

and, furthermore, the model is scale invariant.

It is interesting to point that, if all scalar fields are put to zero (i.e. mat-

ter is absent) our equations of motion become those of the Jackiw-Teitelboim

model for two-dimensional gravity [1]. If only one scalar field (that appear-

ing with a symmetry breaking potential) is set to zero, then the model

becomes that constructed by Chamseddine and Wyler [7]. To be more pre-

cise, the classical equations of our model coincide with those of ref.[7] when

Φ is absent. At the quantum level, Chamseddine and Wyler quantized a

topological theory à la Baulieu-Singer [13], starting from a classical action

which is a topological invariant while we proceeded to quantization à la

Labastida-Pernici [16] starting from a quantum action where Bogomol’nyi

equations play a central rôle.

We have explicitely shown how the large symmetry, characteristic of

topological theories, corresponds to diffeomorphism and local Lorentz sym-

metries in a certain subspace of transformation parameter space. Thus, as

expected, the basic gravitational symmetries are incorporated in our model.

As stated above, the exact quantum description of our model can be

made in the limit of small gauge coupling constant (which can be here in-

terpreted as Newton’s gravitational constant). In particular, the partition

function can be computed exactly by performing a semiclassical expansion,

this leading to an explicit expression for a topological invariant (when the

moduli space dimension is zero). Other topological invariants have been
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discussed by exploiting the BRST invariance of the gauge theory.

Our results extend those of refs.[7]-[9], in which topological theories

of pure gravitational fields in two dimensions have been constructed, to a

gravity-matter theory. In all of these models, the large topological symme-

try of the action reduces the space of states to a finite dimensional one.

It would be worthwhile to investigate this issue following, for example,

Horowitz approach to the computation of state functions for TQFTs [6],

to probe whether there exists a unique solution as it is the case in several

cases. Finally, it should be stressed that if one takes our model as a toy

model for gravity, the large topological symmetry should be broken. These

and related problems should be studied more thoroughtfully.
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Λ = 0 Λ 6= 0

Scalar

curvature R = eGτ R+ 2e2GΛ = eGτ

equation

Vanishing

torsion Dab
µ [ w

eG
]ebν = 0 Dab

µ [ w
eG

]ebν = 0

equation

ψ = η ✷ψ + 4e2G (1 − ψ2) v(Φ) + 4e2GΛψ = 0

Ψ field

∆a
µ(f, ψb, η) = 0 ψa = 1

2eGΛǫ
abeµb ∂µψ

φ = λ
Λ 6= 1: φ = 1

2(1−Λ)ψ + (φ0 − ψ0

2(1−Λ) )

Λ = 1: no solutions

Φ field

η = ±1: φa to be determined

from the constraint

η 6= ±1: ǫabψa∆
µ
b (f, φ

a, λ) = 0

ψa∆µ
a(f, φ

a, λ) = 0

ǫabψa∆
µ
b (f, φb, φ)− Eµν∂νφ = 0

ψa∆µ
a(f, φb, φ) + ψ∂µφ = 0

Constraints
ψaψa + η2 = 1

ψaφa + ηλ = 0

Λψaψa + ψ2 = 1

Λψaφa + ψφ = 0

Table 1: Equations of motion and their solutions.



Field Ghost number

Zweibein eaµ 0

(related to the spin connection) fµ 0

Scalar field Φ 0

Scalar field Ψ 0

Lagrange multipliers

Dµν

Dµ

D̃µ

Y

Ỹ

0

0

0

0

0

Ghost fields

χµ

C

ρ

ρ̃

σ

1

1

1

1

2

Antighost fields

σ

C

Xµ

X̃µ

X

−2

−1

−1

−1

−1

Table 2: Fields of the theory, ghost numbers and Grassmann parities.


