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Abstract

Starting from a topological gauge theory in two dimensions with
symmetry groups [S0O(2,1), SO(2,1) and SO(1,2) we construct a
model for gravity with non-trivial coupling to matter. We discuss the
equations of motion which are connected to those of previous related
models but incorporate matter content. We also discuss the resulting
quantum theory and finally present explicit formulae for topological

invariants.



1 INTRODUCTION

Lower dimensional theories of gravity have recently attracted much attention
M-[1). In particular, considerable progress has been achieved by exploit-
ing the connection between two and three dimensional gravity models and
Topological Quantum Field Theories (TQFTs) [{]-[[0]. In this way, it has
been proven that general relativity in three dimensions is equivalent to the
Chern-Simons theory (with gauge groups 150(2,1), SO(3,1) or SO(2,2)
depending on the value of the cosmological constant). Using this connec-
tion, it has been shown that the theory is renormalizable and finite, and
that it can be solved exactly [f].

Since there is no Chern-Simons like term in two dimensions, other types
of TQFTs have to be employed in an attempt to construct two-dimensional
gravity models starting from gauge theories [[JJ-[[[q]. It is the purpose of this
work to present one of such models based on a two-dimensional TQFT which
not only includes gauge fields (with symmetry groups IS0O(1,1), SO(2,1) or
SO(1,2)) but also scalar fields, naturally leading to a description of gravity
coupled to matter.

One way in which topological theories (of the Witten type [[J]) can
be obtained is by quantizing a classical action S, that corresponds to a
topological invariant [[J]. In a sense, these classical actions are trivial since,
being by essence invariant under arbitrary transformations, all fields can be
gauged away at the classical level. At the quantum level, this reflects in
the reduction of the solution space from an infinite dimensional to a finite
dimensional one. The resulting quantum action is intimately related to

instanton configurations carrying the topological charge. In order to have



instantons in two-dimensional gauge theories, one necessarily has to add
Higgs fields. In the Abelian case these instantons are the time-honoured
Nielsen-Olesen vortices carrying a topological charge @) € Z related to the
vortex magnetic flux [[4]. Non-Abelian extensions can be constructed and
the resulting instantons are again vortex-like configurations. The topological

charge is again associated to the magnetic flux and takes the form [[L]:

1
Q=5 /de\/gE’“’ <UF, > . (1.1)

Here W is one of the scalar fields in the adjoint representation of the gauge
group, F),, is the gauge field curvature and “ < > ” represents an adequate
inner product.

Starting from an action of the form ([[.])) and identifying the gauge field
with Zweibein and spin connection fields, a highly non-trivial model for
two-dimensional gravity has been constructed by Chamseddine and Wyler
[l (see also [§I-[[0). In this model, there is a scalar field which just plays
the role of a Lagrange multiplier. Any attempt to add to this topological
action kinetic energy terms for W either breaks the covariance of the model or
implies the appearence of rather complicated self-interactions which obscure
the resulting theory.

There is another possibility for constructing TQFTs put forward by La-
bastida and Pernici [l (see also [[]]). In their approach, instead of starting
from a S, which is a topological charge, one constructs a gaussian action
in which instanton defining equations (Bogomol'nyi equations in the two-
dimensional case) have a relevant role. All fields enter in this action in a
self-dual way (in a sense to be precised in next sections) and hence kinetic

terms for scalars appear naturally in a way that does not imply a metric



dependence at the quantum level. It is this approach the one we follow in
the present work. We think it is the most natural one, especially if one takes
into account the central réle that instanton moduli space plays in TQFTs
and the fact that in two-dimensional gauge theories instanton equations have
non-trivial solutions only when an appropriate number of scalar fields, with
their corresponding kinetic terms, are included.

In this way, we arrive at a model for two-dimensional gravity non-trivially
coupled to matter. After reviewing the two-dimensional topological gauge
theory in Section 2, we establish the connection with the gravity model in
Section 3. We there identify Zweibein and spin connection fields and discuss
the resulting classical equations of motion. These equations reduce to the
Jackiw-Teitelboim equations [f[] when scalars are absent and also include as
a particular case Chamseddine-Wyler ones []. In Section 4 we discuss the
quantum action and its symmetries leaving for Section 5 the evaluation of
topological invariants. Finally we present a discussion of the model and the

conclusions to our work in Section 6.

2 THE GAUGE MODEL

In this Section we briefly review the non-Abelian two-dimensional topologi-
cal field theory constructed in ref.[[§], which is at the basis of the model for
two-dimensional gravity to be presented in Section J.

The model for a non-Abelian two-dimensional gauge field theory that
we consider has been constructed, in the manner of Labastida-Pernici [Ld],

starting from a classical action defined on a general two-dimensional mani-



fold M, in which Bogomol’'nyi equations play a central role,
Su[M] = / 2\/G < (Hu — Bu)? + |Hy — Bul? + |H, — By > . (2.1)
M

In this expression, H,,, H, and H , are auxiliary fields belonging to the
algebra of the gauge group G; H,, = HfVTA, H, = H{}TA and I;TM = ﬁfTA,
where T4, A = 1,...,dimG, are the group generators. They are self-dual
fields in the sense that [[[§]

H" = B H (2.2)

with H the dual of H*” and *H* the dual of H, satisfying

*HH =¢E"H, = H* (2.3)
(E" is the contravariant two-dimensional Levi-Civita tensor, E* = %,
Ol = €10 =1), B,,, B, and Bu stand for the following expressions
By = Fu—ecE,¥ <d®— 0§ >, (2.4)
B, = Df®+E}, [¥,D"9], (2.5)
B, = D}, (2.6)
so that
B, = 0, (2.7)
B, = 0, (2.8)
B, = 0 (2.9)

represent the Bogomol’'nyi equations corresponding to a two-dimensional

non-Abelian gauge theory [[[9]. These equations have to be supplemented



with the constraints

<¥?> = 1, (2.10)

<Ud> = 0. (2.11)

(see ref.[Id] for details). The dynamical fields of the theory defined by S
are, then, a gauge field A, taking values in the algebra of the gauge group
g, A, = AﬁT "4, and two scalar fields ¥ and ® in the adjoint representation
of the group G, ¥ = 4T and ® = $AT4. The field strength F, v is defined
as

Fu = FiTa = 0,A, — 0,A, + eclAu, A, (2.12)
accordingly, the covariant derivative D), is defined as
D,=0,+eclA,, ]. (2.13)

The “T” symbol appearing in covariant derivatives of expressions (@)

and (2.4) is defined as follows. Given a vector C},,

Ccr =

* 1 ; v
= 5(Cu 7 Cu) = 5(Cu+iEuwC") | (2.14)

DO | =

It is easy to prove that C’J is a self-dual vector (cf. eq.(R.3)); this property
implies the self-duality of the expressions (R.J) and (R.§) and, furthermore,
as we shall see, the independence of the quantum action on the metric g, .
This quality is at the root of the topological character of the quantum theory
constructed from S, [1J]; it means that the partition function constructed
from S, does not depend on the choice of any particular metric, it can only
depend on the topology of M.

The “< >” symbol denotes the appropriate invariant, non-degenerate

and associative inner product. Its explicit definition depends on the choice



of the group G and will be presented, in the cases of interest, in the next
Section.

Bogomol'nyi equations (R.7)-(R.9) are first order differential equations
whose solutions solve the (second order) Euler-Lagrange equations for a
non-Abelian gauge theory coupled to two Higgs fields defined on the two
dimensional manifold M [[[9]. The number of Higgs fields introduced is
such that complete symmetry breaking is achieved so as to ensure non-
trivial topology for the gauge field A,. In general, Bogomol'nyi equations
exist whenever a particular relation between coupling constants hold. For
instance, for the model to be considered, two scalar fields are necessary and

a potential ensuring complete symmetry breaking is
V(0,8) = g1 < (82— B2 > +g5 < (B2~ 1)2 > gy < (VD)2 > (2.15)

but, due to conditions (R.10) and (R.11]), only the first term plays a role in
the model. In this case, Bogomol'nyi condition relates the gauge coupling

constant eg and the potential strenght g1,
e = kg , (2.16)

the numerical constant k being determined by the inner product definition.

The peculiarity of an action like (R.I]) is its invariance under the most
general transformations of the dynamical fields (in this case A,, ¥ and ®),
provided one adequately choose the transformation laws for the auxiliary
fields (namely H,,, H, and H ). Indeed, if one transforms the gauge and

scalar fields in the most general form

0A, = €,— Dye, (2.17)

5O = 0—eq[®, €, (2.18)



SO = 6—eqlV, (2.19)

(we have distinguished usual gauge transformations for later convenience),

the classical action (R.1]) remains unchanged provided

5H/u/ = 5Buu + [Huu - B;,Ll/a 6] 5 (220)
0H, = O6B,+|H,— By, (2.21)
6H, = 0B, +[H,— B, (2.22)

where variations in the right hand side are to be computed in terms of the
variations of the dynamical fields (.17)-(R.19). It is important to note that
not all of the parameters are effective regarding these transformations: if
one chooses €, = D,§, € =&, 0 = eq[®,{] and 0 = eg[¥,£€] not only the
action remains invariant but also all fields do it (on shell).

Transformations (R.17)-(R.19) are enough to select a gauge in which H,,,
H, and H n vanish. This can be achieved with parameters ¢,, 6 and 6 and
leaving untouched parameter € [[§]. In this gauge, the equations of motion
of S, coincide with the Bogomol'nyi equations (R.7)-(R.9).

This symmetry of the classical action is called a “large” or “topological”
symmetry and has to be fixed in the process of quantization. The second
generation gauge invariance mentioned in a previous paragraph imposes a
refined BRST quantization, for instance by using Batalin-Vilkovisky method
[BOJ. This has been done in detail in ref.[[§]. Just for completeness let us
indicate the main lines of the quantization procedure. A generic term of the

classical action (R.I)) takes the form

Sl = / d*x\/g < |H — B[®]* >, (2.23)
M



where ® is a collection of dynamical fields, B[®] = 0 is the associated Bo-
gomol’'nyi equation and H is the corresponding auxiliary field. Evidently,
each one of the terms in (R.1]) has this form. This action remains invariant

under the large transformations

O = B+60, (2.24)

5B
H = H+ 0. (2.25)

Associated with transformations (2:24)-(R-29), we can define BRST commu-

tators

{Q.2} = x, (2.26)
{Q.H} = %x- (2.27)

The linear transformation {@, } is defined by stating that the BRST trans-

formation of a functional F' is
§BEST P — \(Q,F} , (2.28)

with A a Grassmann odd constant parameter. Y represents the ghost re-
lated to the symmetry (P-24)-(R-2§). Proceeding & la Batalin-Vilkovisky,

the quantum action is constructed from S, as follows
St = Su+{Q, F} (2.29)

where F' is a “gauge fermion” [R{] introduced to fix the large symmetry. It
is evident from (R.2§) that H can be gauged away; to this end, one chooses

F = / dPryg < XH >, (2.30)
M

10



being X an antighost field. We impose the following BRST transformation
laws on the antighost field X and Lagrange multiplier D

, Xy = D,
0.x) (2.31)
{Q,D} = 0,
with this S; becomes
1 1 2 0B
s :scl+/ PG < X2+ DH > . (2.32)
4 M 0P

The second term in (R.33) corresponds to the ghost action and the third

one to a gauge fixing action. Thus, the partition function Z for a classical

action of the kind (P-23) with a large symmetry (R.24)-(R.29) is
Zz = /'D(I)'DH'DX'DX'DD

5B
— | &2 H—- B>+ X—y+ DH
exp| /M z\/g < | |“ + s X T >]

= /Dcp Dx DX eXp[—/ d*z/g < B+ X%X >l (2.33)
M

The quantization of the classical action under consideration, eq.(R.1)),
follows the same steps. However, the actual transformations (R.17)-(R.22) are
slightly more complicated and hence our arguments have to be generalized
to also include, appart from ghosts of the y-type associated with the large
symmetry, ghosts associated with the usual gauge and second generation
invariances. In any case, the final form of S; can be written in the form
(B-29) where F' is some functional of the original fields (gauge, scalar and
auxiliary fields) and new fields (ghosts and Lagrange multipliers) introduced
in the gauge fixing procedure. Moreover, it can be shown that there exists

a functional V' such that S, can be written as a BRST commutator
Se=1{Q,V}. (2.34)

11



From this equation it is easy to show that

0Z
09w

=0, (2.35)

the defining equation for TQFTs. Furthermore, the partition function is, for
similar reasons, independent of the gauge coupling constant eq, as long as
eq is different from zero. This can be easily demonstrated by going through
new field variables in such a way that glg is factorized from the quantum
action, which remains gauge coupling independent. This property permits
to exactly evaluate Z by going to the small 62G limit where it is dominated
by the classical minima, that is, the solutions to Bogomol’'nyi equations. In

the next Section we shall give an explicit form for S, [Ig].

3 THE GRAVITATIONAL MODEL

Let us now construct a model for two-dimensional gravity based on the
topological model presented in Section f|. We consider the symmetry groups
ISO(1,1), SO(2,1) and SO(1,2), with generators which will be identified
with the T4’s introduced in the previous Section. In order to describe the

three cases with a sole algebra, we write (T4) = (P,,J), a =0, 1,

[Pa,Pb] — AEabJ7
[P,,J] = —€’Py,
[J,J] = 0.

In this context, P, and J will play the role of the generators of the two trans-
lations and Lorentz rotation, respectively, on the two-dimensional manifold

M. Latin indices are raised and lowered with an internal metric 7,. We

12



shall see that a choice of signature for the 7., will fix the corresponding
signature for the metric in our gravity model. With our conventions € is
such that €' = —¢l9 =1,

The constant A behaves as a dimensionless cosmological constantﬂ; the
values A = 0, A > 0 and A < 0 give rise to the ISO(1,1) group (the
isometry group of two-dimensional flat Minkowski space-time), the SO(2,1)
group (the isometry group of two-dimensional de Sitter space-times) and
the SO(1,2) group (the isometry group of two-dimensional anti-de Sitter
space-times), respectively.

For the SO(2,1) and SO(1,2) groups we define the inner product by

using the Killing metric arising from their algebras; thus,

<Py, Py> = A"?aby
<P,J> = 0,
<JJ> = 1. (3.1)
We cannot proceed in an analogous way in the case of the ISO(1,1) group

because of the degeneracy of its Killing metric. We can, however, overcome

this difficulty by defining the following inner product [f]

< Pa,Pb > = MNab (32)
<PJ> = 0, (3.3)
<J,J> = 1. (3.4)

It is not possible, though, to avoid the degeneracy of the Casimir operator

which is still taken in the form W = P%P,.

! Dimensionfull magnitudes should be constructed by using the gauge coupling constant

e which has dimensions of mass.

13



Since our aim is to make contact with two-dimensional gravity, we in-

troduce the following notation

AL = e, (3.5)
A = fu, (3.6)

attempting to identify two of the vector potential components (those along
the “translation directions” P,) as a Zweibein and to relate the remaining
vector potential component (the one along the “Lorentz rotation” direction
J) to the spin connection. Then, the covariant derivative D, (eq.(R.13))

acting on an algebra valued field C' = (¢%, ¢) becomes
D,C = D,le, f]C = Dzb[f]cha + (Ouc +egA eabeZcb)J , (3.7)
where ijb [f] is given by
DIf] =60, — eqe™ fu . (3.8)
Concerning the Higgs fields, we denote them

o= (@%Y), (3.9)
o = (¢%9), (3.10)

while for auxiliary fields H,,, H, and H , and expressions B,,,, B, and Bu

we write

H, = (&, hw) Bu = (b%,buw),

227 pvo
H, = (hf,hy)  B. = (05,0, (3.11)
H, = (hjhy) By = (b

14



Then,
b = Dylflews = D [flew — e By v v(2) |
by = Oufv —0ufu+ecAE,, —egE,, u(®),
by = ALUf e d) = Ef e AL (f, P, d) +
E}e® iy 8¢,
by = Ofd+echemet™’ +AE e vy AY(f, be,d)
by = A ),
by = Of+echewe® P .
where
v(®) =< B? — B > |

and A% (f, ¢p, ¢) stands for

A%(f, ¢v, 0) = DL[fldn + eae™ e & -

With this notation, the equations of motion of the theory become

he, = b8

w
hw = b
e = b,
hy = by,
he o= b
hy = by

Similarly, the constraints (R.10) and (P.11]) are

A¢a¢a+¢2 =1,
AYoa +9¢o = 0,

15



in the cases of the SO(2,1) and SO(1,2) groups and

Vg + 1 = 1, (3.28)
Vio +1pp = 0, (3.29)

in the case of the ISO(1,1) group.

In order to confirm the identification between the gauge field components
Afj and the Zweibein e} (so as to interpret the topological model presented
in Section f] as a model for two-dimensional gravity) it is convenient at this
point to analyse Bogomol'nyi equations which are, in fact, the equations of
motion for the topological model with quantum action S, (R.34) in the small
e limit. As we stated above, the gauge freedom (see egs.(R17)-(B-29)) al-
lows us to gauge away auxiliary fields H,,,, H, and H . so that the equations
of motion (B.20))-(B.25) become the Bogomol'nyi equations. Furthermore, as
we explained at the end of the previous Section, Z is independent of e and
can be evaluated by taking the limit for which the path integral is dominated
by Bogomol’'nyi equations solutions.

As we shall show below, the first two equations of our gravity model
become equations for torsion and curvature similar to those presented in
ref. [l but with extra terms added to the cosmological constant. The rest of
the equations are directly related to the matter content of the system. To
see this, let us obtain from eq.(.20) an explicit expression for f, in terms
of e, 1 and ® under the assumption that e}, is invertible (i.e. there exists
ey, such that, efey’ = 0f and efey = d},). The expression is

1 [6% a a
fu= %E 5(8,165)6“@ — enav(®) . (3.30)

16



Using it, eq.(B.21) transforms into

;E‘“’auw,, 2B, (Mpav(®)) — 2eq bu(®) + 2e6A =0 (3.31)
G

where w,, is defined as follows
wy, = Eaﬁ((‘)ae‘é)ew . (3.32)

From eqgs.(B.31) and (B.33), one can see that it is consistent to identify e,
with a Zweibein so that the two-dimensional metric g, be given by
b
Juv = ezeynab . (333)

Indeed, in two dimensions the affine spin connection (under the condition of

metricity) can be written in the form

wil = eQ, . (3.34)

If we identify the connection 2, with w,, as given by eq.(B.33),

ab

W=, (3.35)

w

the first term in the left hand side of eq.(B.31]) becomes proportional to the
curvature scalar R,

R =2E" 8w, (3.36)

and the complete equation of motion (B.3])) takes the form
R+ 2e2A = 2eq B0, (e24,0(®)) — 2e8 v (®) = eqT . (3.37)
Were the scalar field ® absent, this equation would reduce to
R+2e2A=0. (3.38)

17



This is precisely one of the equations of motion for the Jackiw-Teitelboim
model [f[] for two-dimensional gravity (also discussed in refs.[fj-[]). More-
over, the second equation of motion for the Jackiw-Teitelboim model, which
gives the vanishing torsion condition, follows immediately from eqgs. (B.20)
and (B.33):

1
BTy, = "D, [—uwle} = 0. (3.39)
G

Concerning the new terms induced by scalar fields, they act as an effective
energy momentum tensor trace 7. Hence, our topological model can be
interpreted as a theory for two-dimensional gravity non-trivially coupled
to matter. This has been achieved by using a two-dimensional topological
model defined through a classical action given by eq.(R.l]). The fact that
S. 18 constructed from self-dual auxiliary fields allows terms such as <
E*B,,B > or < EF H,B,, > to be present; they induce matter interactions
in the sense that there is no dependence on the metric at the quantum
level, as it will be demonstrated in the next Section. Had we started from
a topological action & la Baulieu-Singer [LJ] (as in refs.[{]-[H]), we would
have faced the problem mentioned by Chamseddine and Wyler []: matter
interactions would require the introduction of a metric in a non-trivial way
(thus imposing non-covariant couplings of the gauge field once it has been
identified with the Zweibein) or rather complicated terms.

Let us now study the equations for matter, namely eqgs.(B.29)-(B.2q). For
the sake of clarity we shall distinguish between the A = 0 and the A # 0

cases.

A) A =0.

18



In this case, from eq.(B.25) we have that ¢ is constant

Y=n (3.40)

and, from eq.(B.24) we can in principle determine the other components of

the W field in terms of the Zweibein and the other scalar field ®:
Al (w, e, n) — ea € en Yetbpv(®) =0 . (3.41)
Concerning the ® field, eq.(B.29) implies that also ¢ is constant
p=A. (3.42)

After some calculations, it can be shown that eq.(B.2J) reduces to the fol-

lowing pair of equations

(n* = 1) [e”Pad, (f, 00, A)] = 0, (3.43)
(" = 1) WOAE(f, ¢, A)] = 0. (3.44)

These equations have as one obvious possible solution n = +1. If this
were the case, the constraints reduce to ¥*, = 0 and ¢%, = A = 0. If the
flat metric n? is Euclidean, the unique solution to the former constraint is

@ = (, but this implies, through eq.(B.41]), the vanishing of the Zweibein.
Then, 41 is not a sensible solution in Euclidean space-time. If, on the other
hand, the flat metric n® is Minkowskian, the first constraint has solutions
different from zero and further analysis of the complete system is required
to find explicit solutions.

For n # £1, the matter system reduces to eq.(B.4]]) and the two equations
stemming from egs.(B.4J) and (B.44), supplemented with the constraints
%y +n? = 1 and ¢%¢p, +nA = 0, coupling 1%, ¢* and e, This is a coupled

19



non linear system which has to be studied together with the equation (B.37)

for the curvature scalar.

B) A#O0.
In this case, we can solve ¥® in terms of ¢ and the Zweibein from

eq.(B.25)

1
P = @e“beg ORTE (3.45)

Using this result and the constraint (B.26]) we obtain the following equation
for ¢
Oy + 4e (1 — ) v(®) + 4e5A ) =0 . (3.46)

Once again, were the scalar field ® absent we would recover the Klein-
Gordon equation in de Sitter space for the model of ref.[f]l. The additional
term we have corresponds to a self-interaction, highly non-linear and typical
of theories with a Higgs potential.

It is still pending the study of the equations (B.23) and (B.23). The

analysis of the former is similar to the case A = 0; it just appears one extra

term in each of the equations (B.43) and (B.44)

(V% — 1) [P A (fo b, 0)] — EF 0,0 = 0, (3.47)
(V% — 1) [P AL(f, by, ) + '] = 0. (3.48)

(]

Though 2 = 1 is a solution to these equations, recalling eq.(B.4§) we see
that it solves the complete system only if A equals zero. Hence, we have
to leave aside 1) = £1 and study the vanishing of the brackets in eqs.(B.47)
and (B.49), together with eq.(B.4q). We arrive at the following equation

01— A) — 50,0 =0 (3.49)

20



which distinguishes between A equal or different from one. In the former
case, 1 must be a constant which implies (through eq.(B.45)) that 1* van-
ishes and then that n must be equal to +1, leaving no solutions to the
system. In the latter case, one has to select a given manifold M in order to
go further. For example, if we take M to be a manifold with boundary, the

solution to (B.49) can be written in the form

1 Yo

aa—n’ T ga gy (3.:50)

o=

where we have imposed 1 — 19 and ¢ — ¢g at the boundary.

In general, the complete resolution of the full system (B.20)-(B-25) both
in the A = 0 and A # 0 cases, depends on the topological structure of the
two-dimensional manifold M. Two different situation can be envisaged:

1. M is such that there exists a finite number of isolated classical so-
lutions, that is, the “moduli space” M contains a finite number of points.
The dimension of M is then d(M) = 0.

2. M is such that the moduli space has dimension different from zero,
d(M) # 0.

We shall come back to this point, in connection with the evaluation of topo-
logical invariants, in the next Section.

We summarize in table [[] what we have learnt about the equations of

motion and their solutions.

4 SYMMETRIES AND QUANTUM ACTION

21



4.1 Symmetries of the gravitational model

It is interesting to recover from topological transformation laws (B.17)-([2.19)
the usual transformation laws of two-dimensional gravity, viz. diffeomor-
phism and Lorentz transformations.

Let us start by writing the parameters €, €, # and 0 appearing in (R.17)-
(R.19) in the form

€y = EZPQ +ed,
e = e"P,+¢ed,
0 = VP, +9J,
§ = 9P, +9J.

(4.1)

With this, the transformation laws for e}, f,, ¢, ¢, ¢* and ¢ can be readily

recognized to be

5€Z = 5Z — 0ue” — eq e“b(seub — fucs) , (4.2)
0fn = €u— 0ue+eqeq 5“62 , (4.3)
5" = 0" +eqe (e —edy) (4.4)
6p = U —eqAeqd?e’, (4.5)
ST = 0+ eq e (e, —evy) (4.6)
S = 9 —eqleg el . (4.7)

Our first purpose is to compare these transformations with diffeomor-

phism transformations dp

5D€Z — Ua(aaez — Oueq) + 0u(vey) , (4.8)
5Dfu = Ua(aafu - aufa) + au(vafa) ’ (4'9)
op® = v99,P, (4.10)

22



Sp¥ = 10,0, (4.11)

where v is the local parameter transforming z¢, dpz® = v®.

In order to
find a connection between topological and diffeomorphism transformations,

let us consider the following subset of parameters

a 1 a,a
e = —%’U €a s
e = _Lvaf

- e a

(4.12)
€l = v Ea%(®),

ey = VYEqupu(P) .
With this we find, from ([£.3) and ([£3),
a a 1 (0% a a a
dey, — Opey, = %v [Dub[f]eab — Dab[f]eub —eaE o v(P)] (4.13)
or, using the equation of motion (B.20) ﬂ

1
5eZ — 5D€Z|o.s. = —%vah‘;u . (4.14)
Concerning f,, a similar procedure shows that the difference between large

and diffeomorphism transformations is, using equation (B.21]),

1

6fu - 6Dfu’o.s. = _avahau . (415)

With respect to the scalar field ¥, once the parameters € and ¢, have been

fixed, it is simple to prove from eqgs.([£§) and (fE11)) the following identity
~ 1
0 — opyp® = 9% — %vaAg(f, Uy, 1) (4.16)

then, choosing 9% = 0 and using the equation of motion (B:24) we have

5 — Sps = _%mg . (4.17)

2We represent the use of the equations of motion by lo.s-
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The analysis for ¢ is analogous: choosing ¥ =0 and using eq.(B.29)

57;Z) - 5D7;Z)|o.s. = _%Uaﬁa . (418)

Finally, the difference between variations of the components of the field ®

are

56 — bpdt = ﬁ“—év%w,%@, (4.19)

0¢ —dp¢

1
= —v*(Bat + ecA €apdel) . (4.20)
G

Now, we can select 9% and ¢ in the following way

1
v = _UaAg(fu ¢b7¢) ) (421)

e
9 = eivo‘(ﬁaqb +eqA eabgb“eg) , (4.22)

G

which implies

0p* —dpep* = 0, (4.23)
6p—dbpp = 0. (4.24)

Similarly, we can show that the difference between a topological transforma-
tion ((R.2()-(R.29)) and a diffeomorphism transformation for each auxiliary
field is proportional to the corresponding auxiliary field.

In summary, working in the gauge in which all auxiliary fields vanish,

6H,, = dpH,, =0,8H, =épH, =0, §H, = dpH, = 0, we have

dej, —0pejlos = 0,

5fu_5Dfu’o.s = 0, (4 25)
00 —op®l,s = 0,
oV —6p¥l,s = 0.
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Concerning Lorentz transformations dr,, again an appropriate choice of
parameters allows their identification with transformations (f.2)-(E7). In-

deed, if we choose

&?Zzsuzsazﬁazﬂ:@“:@: (4.26)
and
K
=—— 4.2
= (127)
we have
dej, = /ie“beub ,
O0fu = Ouk,
8¢ = ke,
¢ b (4.28)
S = ke,
ép = 0,
oy = 0.

The right hand side of eqgs.([.2) precisely corresponds to Lorentz transfor-

mations d;, with parameter x and then,

dej, = drey,
M = Ortu, (4.29)
5O = 6.9,
o = 6L ¥

and H,, =6 H,, =0,0H, =6,H, =0, 513“ = 5Lﬁu = 0 in the gauge in
which all auxiliary fields vanish.

We then see from egs.(f£25) and (E29) that, as expected, the topolog-

ical model defined from the classical action (R.1]) can be used as a model

for two-dimensional gravity with its topological transformations interpreted
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as diffeomorphism and Lorentz transformations. In order to make such an

identification we have restricted the parameter space to a subspace satisfy-

ing ({.19), (K.26) and (4.27) relations. In this sense, the whole topological

invariance is larger than the usual invariances for gravity.

4.2 The Quantum Action

As explained in Section [], because of the large topological symmetry (egs.
(BT7)-(R23)) of the classical action (R.I)), one has to proceed to a careful
BRST quantization in which ghosts and ghosts for ghosts appear through
the process of gauge fixing. We shall skip the details (given in ref.[Lg] for
the gauge theory and sketched in Section P]) and just quote the result for

the quantum action

1
SyM] = /M d*x\/g < By, D" — 1 D DM + B, D" +
B,D" > +S,¢[M] + Syn[M] . (4.30)

The explicit expression for the classical part of S, in gravity language is
straightforwardly obtained calculating the adequate inner product and ex-
pressing B,,,, B, and Bu components as in eqs.(B.19)-(B-17). In ({30) aux-
iliary fields H,,, H, and ﬁ“ have been traded for Lagrange multipliers
Dy = (df,,,duw), Dy = (d},,d,,) and D, = (dg,du) Of course, the equa-
tions of motion arising from this classical part coincide with those gotten
from eq.(P) in the H,, = 0, H, = 0 and H, = 0 gauge, and also the
metric and coupling constant independence is maintained. From the ex-
plicit expression of S, one also sees that eé can be identified with Newton’s
gravitational constant.

Concerning the gauge fixing action Sy, it cannot be expressed in a co-
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variant way and the introduction of a metric is unavoidable. The metric g,
on M selected to incorporate matter couplings is here again used; evidently,
physical results should be independent of this choice. A particularly advan-
tageous gauge is the Landau gauge. In order to appropriately introduce it
we define a covariant derivative D, (e, wey] which acts on a vector C taking

values in the algebra of the gauge group in the following way

Da[ecla wcl]cﬁ = (8016% - Pgﬁ [g] Cg — €@ 6ab'wclacﬁb) Pa + (431)

(Oacs —Tplg) o + e epeealicd) J . (4.32)

Here, we have used the gravitational covariant derivative plus a term con-
taining background Zweibein and spin connection fields e, and w. which
are solutions to the equations of motion (these last have been introduced
to handle with zero mode problems). With this notation the Landau gauge

condition reads

Deq, wea)(es, f35) = 0 (4.33)
Do‘[ecl,wcl]xg = 0 (4.34)
and Sy is
Syl) = [ @5 < YD feawal(et ) +
YD, lea, walx* > (4.35)

where Y = (y%y) and Y = (§,7) are Lagrange multipliers enforcing the

gauge conditions. The corresponding ghost action takes the form

Sn[M] = /M 2e\/§ < X(E™Dyle, flxy — 2ec ¥ < dp > —

5 1
eq < (2 — ®F)5 >) + 766 X X]o + X7 (—ec[®, "] +
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DFle, flp — EM [V, [®, x,]] + E*[¥, Dyle, flp] —

G B[, e, /12,7) + gea [X,, X¥or +

X (el X + Dle, f17) + qea [Ko X0 +

(—Dylea, walC + eclx,, 7)) (x" — D"[e, f]C) +

7Dylect, wal(D"e, flo +eclC,x"]) > . (4.36)
Fields C = (x,,C, p,p,0) with ghost numbers (1,1,1,1,2) are the ghosts

associated with each of the symmetries of the classical action. To be more

precise, they are related as follows

€ = X (4.37)
e - C (4.38)
0 — p (4.39)
6 — p (4.40)
& = o. (4.41)

The corresponding antighosts are written as C = (7, C, Xu,f(u,X ) with
ghost numbers (—2,—-1,-1,—-1,-1). X, Xu and X are self-dual fields
in the sense of eqs.(B.d) and (B.2), respectively. The covariant derivative
D, e, f] has been introduced in eq.(B.7).

The partition function for our model, when written in gravity language
is, then,

Z[M] = / Dfields e%aM] | (4.42)

The fields of the theory and their corresponding ghost numbers are summa-
rized in table .

Given the topological invariance of the action S, (egs.({.9)-(fE7)), it is
easy to find the associated BRST commutators (2.2§) for gravity and matter

28



fields

{@Q, GZ} = XZ — Ouc” — eg eab(ceub - fucb) )
{Q7 fu} = Xp— 8uc +egAeqp Caez > (4.43)
{Q7q)} = p— eG[q)7O] 5
{Q7 \Il} = ﬁ - GG[\II,C] )
for ghosts and antighosts
{Q7X,u} = _Du[e7 f]O' + eG[Cv X,LL] 3 {Q7 C} = _(J + %GG[O7 O]) 5
{Qyp} = —¢G ([(1)70-] + [Ca p]) ) {Q,O'} = e@ [0-7 C] s
{Q715} = —€qg ([\:[ja U] + [C7 15]) 9 {Qué} = Y )
{Qoy = Y,
and for Lagrange multipliers
{QY} = 0,
Y} = o0,
{Q.X} = iE™D,, —eqlX,C],

{Q: Xy} = Du—eclXy,Cl,
{Q,Xu} = Du _EG[XaC] )
{Q: D} = ec([Dw,Cl+ EwlX,0]),
{Q Dy = eq([Du,Cl+ [Xy,0]),
{Q.Dy} = ec([Dy,C]+ (X, 0]) .
It is straightforward but tedious to corroborate the BRST invariance of 5.

Moreover, it can be also proved that, as announced in the previous Section,

Sy =1{Q,V} (4.44)
where the functional V is

1 1
v o= /M /G < g XE™ Dy = XE" By, + XDy,
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1~ - -
X!By, + 1 X"D, — X'B,, -

Upu[ecla wcl](e'ua fﬂ) - EDu[ecla wcl]X'u > . (4'45)

This property guarantees that Z[M] only depends on the topology of M

and not on the choice of the selected metric. In fact,

58, .. oV
(59/“/ - {Q? 69;’”/

+, (4.46)

which ensures that the metric dependence of the quantum action is trivial
in the sense that its variation with respect to the metric gives a BRST
commutator which has no effect at the physical level. More precisely, a
possible dependence of the partition function measure on the metric must be
taken into account to finally establish the independence of Z on the metric.
This has been done in ref.[21]] for Witten type TQFTs and it has been there
confirmed that, or this kind of theories, Z is indeed metric independent.
Furthermore, ({.44) implies the independence of Z[M] on the gauge coupling

constant eg.

5 TOPOLOGICAL INVARIANTS

In view of the independence of the partition function on the metric signaled
above, the simplest topological invariant to be considered is, precisely, the
partition function Z[M].

In order to clarify our derivation of topological invariants, we shall again
first consider the simplified action Scll, eq.(R-23). Tt can be easily shown

that the zero mode equation associated with the ghost field x appearing in

S; coincides with the equation describing the moduli space for Bogomol'nyi
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solutions. Indeed, given a solution ®. to Bogomol’nyi equations,
B[®,4] =0, (5.1)

a nearby configuration ®. 4+ 0P, will also be a solution provided

0B

E‘c}cléq)cl =0. (5.2)
Since the ghost action in S(} is
0B
1 2
Sk, = /Md G < X5ox > (5.3)

the equation of motion for X, giving the zero mode equation for y, coincides
with eq.(p.9) for §®, when ® = ®.. (For simplicity we shall suppose that
X has no zero modes.)

As for solutions to eq.(f.d), there are two possibilities; either no non-
trivial solution exists or there are solutions which span the moduli space;
d(M) is equal or different from zero, respectively.

Concerning the case d(M) = 0, Z[M] can be exactly evaluated, a basic
property of topological models, related to the Q-symmetry of S;. Indeed,
Z[M] is independent of e and then it can be computed in the e going to
zero limit where the path integral is dominated by configurations (®, x, X) =
(®%,,0,0), with i = 1,2,...n labelling isolated Bogomol'nyi solutions. Calling
© the fluctuations around ® = & ¢, we have

ZM] = ;/Dw Dx DX exp[— /M d*z\/g < w%!q>gl%\¢;ls@+

Xalas x> (5:4)
or
- Pfaff($3 lai, )

Z[M :
- ;\/det Blo: $2loi)
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ZM] = Z(—l)”i (5.5)

where n; = 0,1 according to the way one determines the sign of the Pfaffian
(see ref.[1J]). Since in topological theories Z[M] is metric independent, the
right hand side of eq.(f.5) gives the explicit way of computing a topological
invariant.

The derivation we have presented for this simple example can be straight-
forwardly extended to the model of interest with classical action (R.J). Sim-

ply, in view of the symmetry (R.17)-(B.23), the gauge fermion F has been

taken as

F - / de\/§ < XH + X, H" + X, 7P + TD,lew, wal (e, ) +
M

oD, e, walx" >, (5.6)

so that the quantum action, when written in terms of gravitational fields,
is given by eq.(.30)). Again, the bosonic and fermionic contributions to
Z[M] cancel up to a sign around each classical solution. These signs have to
be computed from the quantum action for our gravity model, eq.(§.30). In
order to do so, one first performs an expansion around the classical solutions
discussed in Section | up to quadratic terms and then computes bosonic an
fermionic determinants once an assignment for the Pfaffian sign is adopted.
Each n; can then be determined and one can again conclude that Z[M]

takes the form

ZM] = (-1)™, (5.7)

i=1
and is a topological invariant in the d(M) = 0 case.

Let us now discuss the evaluation of topological invariants in the d(M) #

0 case. In this case, the Pfaffian vanishes and, as explained in ref.[I7],
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topological invariants have to be computed from vacuum expectation values
of BRST invariant and metric independent functionals containing a product
of an appropriate number of fields so as to absorb zero modes. In ref.[[§] the
construction of such invariants was discussed for the gauge theory defined

by action (R.1]). One starts by constructing functionals W, satisfying

0 = {Q Wy},
dWy = Wit
0 {Q, W1} (5.8)
dWl = {Q7 W2} 5
dWs = 0.
and using the notation of Section [] one easily finds
Wy = L<o?>,
Wi = <oxu>dat, (5.9)
Wy = <oFy >d" Ndx” .

These functionals have ghost number 4 — k. Given a moduli dimension

d(M) # 0, a non-trivial topological invariant takes the form
Z(V1y ey V) = /Dﬁelds HI(W) e~ SalM] (5.10)
i=1

with =1, ..., homology cycles of dimension k1, ..., k. such that

T

> (4= ki) =dM) (5.11)

i=1
and I(%) defined as
104 :/ Wy, . (5.12)
Vi

%

In order to obtain explicit formulse for topological invariants, computed

as vacuum expectation values (vev’s) in the form (B.10), one proceeds as
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follows. As in the partition function case, the lowest order in the eé ex-
pansion gives the exact result for the path integral defining the vev, then,
the dynamical fields can be replaced by their classical configurations solving
the Bogomol’'nyi equations. In the present case, the only dynamical field
appearing in W}’s is the gauge field A, which is replaced by Aff. The ghost
X, appearing in Wj, whose zero modes probe the moduli space (together
with p and p zero modes), have to be replaced by its zero mode configuration
x?, Concerning the ghost for ghost ¢, one has to perform the corresponding

integration. For example, the vev of 04 (0 = 04T) is computed as follows:

<ot > = /DJ Do o () exp[—/ d*y\/g < D, D"c +
M
[Xg,x“o]ﬁ +...>]. (5.13)
The dots in the exponential represent irrelevant terms to lowest order in ezG.

Expanding the second term and performing the integration over o and @,

one has

<ot > 0= /M *yy/g < W), X W) Ts > APy —z),  (5.14)

where

(D, D*A)AB(2) = 64B5(z) . (5.15)

Replacing o by < ¢ >ue, whenever it appears in 104, one obtains the

following expressions for 1(%)’s

o

701 — / << O >pew Xﬁ > dazt | (5.17)
7

702 — / << O >pew Fﬁllj > dzt A dz” . (5.18)
Y2
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Of course, to go further into the evaluation of topological invariants one has

cl

to know the structure of the moduli space, the explicit form of A}

, X2> etc.
We just conclude by writing the results presented above in terms of the
fields appearing in our gravity model. The vev of o is still given by eq.(f.14)

with A4B(2) satisfying
(Dulect, walDMle, f1A) AP (2) = §°8(2) - (5.19)

Then, 100) and I are computed from eqs.(-19), (F-17) and (F-19) with

x2 the zero modes of the fermionic operator in (.30)). Concerning I (12) note
that
FiLda! A da” = eqU (%) d°x (5.20)

through the use of Bogomol'nyi equation (R.]) and then,

I = e | %0 << 0 >pep U > v(<I>Cl) . (5.21)
72

6 SUMMARY AND DISCUSSION

In this work, we have succeeded in constructing a two-dimensional model
for the gravitational field with a non-trivial coupling to matter. This has
been achieved starting from the topological gauge model presented in ref.[[[§]
and interpreting the gauge fields as a Zweibein and (effective) connection
fields. In this way, the original TQFT has been expressed in geometrical
terms so that its classical equations of motion become gravitational field
equations coupled to matter (see table [I). The basic property of (Witten
type) TQFTs, ie. the fact that S, = {Q,V} has been fundamental to
get a gravitational model with matter coupling. Indeed, since §5,/d¢g"" =

{Q, N}, the quantum theory does not depend on the background metric
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used to introduce matter couplings and to fix the gauge. The same property
ensures the model independence on all of the parameters, in particular on
¢, the minimum of the Higgs potential. Thus the small eq expansion
performed to calculate expectation values of interest is, in this case exact
and, furthermore, the model is scale invariant.

It is interesting to point that, if all scalar fields are put to zero (i.e. mat-
ter is absent) our equations of motion become those of the Jackiw-Teitelboim
model for two-dimensional gravity [i]. If only one scalar field (that appear-
ing with a symmetry breaking potential) is set to zero, then the model
becomes that constructed by Chamseddine and Wyler [[j]. To be more pre-
cise, the classical equations of our model coincide with those of ref.[fj] when
® is absent. At the quantum level, Chamseddine and Wyler quantized a
topological theory a la Baulieu-Singer [[J], starting from a classical action
which is a topological invariant while we proceeded to quantization a la
Labastida-Pernici [[[§] starting from a quantum action where Bogomol'nyi
equations play a central role.

We have explicitely shown how the large symmetry, characteristic of
topological theories, corresponds to diffeomorphism and local Lorentz sym-
metries in a certain subspace of transformation parameter space. Thus, as
expected, the basic gravitational symmetries are incorporated in our model.

As stated above, the exact quantum description of our model can be
made in the limit of small gauge coupling constant (which can be here in-
terpreted as Newton’s gravitational constant). In particular, the partition
function can be computed exactly by performing a semiclassical expansion,
this leading to an explicit expression for a topological invariant (when the

moduli space dimension is zero). Other topological invariants have been
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discussed by exploiting the BRST invariance of the gauge theory.

Our results extend those of refs.[-[f], in which topological theories
of pure gravitational fields in two dimensions have been constructed, to a
gravity-matter theory. In all of these models, the large topological symme-
try of the action reduces the space of states to a finite dimensional one.
It would be worthwhile to investigate this issue following, for example,
Horowitz approach to the computation of state functions for TQFTs [{],
to probe whether there exists a unique solution as it is the case in several
cases. Finally, it should be stressed that if one takes our model as a toy

model for gravity, the large topological symmetry should be broken. These

and related problems should be studied more thoroughtfully.

Acknowledgements:
One of the authors (L.F.C.) would like to thank Professor Abdus Salam,
the International Atomic Energy Agency and UNESCO for hospitality at

the International Centre for Theoretical Physics, Trieste.

References

[1] R.Jackiw; in Quantum Theory of Gravity, ed. by S.Christensen (Hilger,
Bristol, 1984);
C.Teitelboim; Phys.Lett. B126 (1983) 41; in Quantum Theory of Grav-
ity, ed. by S.Christensen (Hilger, Bristol, 1984).

[2] A.Achtcarro, P.K.Townsend; Phys.Lett. B180 (1986) 89.

3] E.Witten; Nucl.Phys. B311 (1988) 96; ibid B323 (1989) 113.

37



[4] J.M.F.Labastida, M.Pernici, E.Witten; Nucl.Phys. B310 (1989) 611.
[5] J.Horne, E.Witten; PUPT-1109 (1988).
[6] G.Horowitz; Comm.Math.Phys. 125 (1989) 417.

[7] A.H.Chamseddine, D.Wyler; Phys.Lett. B228 (1989) 75; Nucl.Phys.
B340 (1989) 595.

[8] D.Montano, J.Sonneschein; Nucl.Phys. B324 (1989) 348.
[9] K.Isler, C.Trugenberger; Phys.Rev.Lett. 63 (1989) 834.
[10] M.Blau, G.Thompson; Ann.Phys. (NY) 205 (1991) 130.
[11] A.Chamseddine; Nucl.PHys. B346 (1990) 213.
[12] E.Witten; Comm.Math.Phys. 117 (1988) 353.
[13] L.Baulieu, I.M.Singer; Nucl.Phys.Proc.Suppl. B15 (1988) 12.
[14] H.B.Nielsen, P.Olesen; Nucl.Phys. B61 (1973) 45.
[15] H.De Vega, F.A.Schaposnik; Phys.Rev. D14 (1976) 1100.
[16] J.M.F.Labastida, M.Pernici; Phys.Lett. B213 (1988) 319.

[17] D.Birmingham, M.Rakowski, G.Thompson; Phys.Lett.B214 (1988)
381; Nucl.Phys. B315 (1989) 577.

[18] L.F.Cugliandolo, G.Lozano, F.A.Schaposnik; Phys.Lett. B234 (1990)
52.

[19] L.F.Cugliandolo, G.Lozano, F.A.Schaposnik; Phys.Rev. D40 (1990)
3440.

38



[20] I.A.Batalin, G.A.Vilkovisky; Phys.Lett. B102 (1981) 27; Phys.Rev.
D28 (1983) 2567.

[21] L.F.Cugliandolo, G.Lozano, F.A.Schaposnik; Phys.Lett. B244 (1990)
249.

39



A=0 A#0
Scalar
curvature R=eqT R+2e2A = eqT
equation
Vanishing
torsion Dzb[%]eﬁ =0 Dﬁb[%]eg =0
equation
=1 09 + deg; (1 — %) (@) + deg Ay =0
¥ field
AZ(.fv ’l/)bv 77) =0 wa = 2€2A6abeéjaﬂdj
6= A#1L: ¢:ﬁ¢+(¢o—%)
A =1: no solutions
® field
n==1: ¢* to be determined
from the constraint PP AL(f, pp, ¢) — EF D¢ = 0
n#+l P AY(f,¢%N) =0 YIAL(f, by, 0) +pO"g = 0
AR, 0) = 0
. Vg + 772 =1 Awa% + 1/12 =1
Constraints
Ve +nA =0 Ay + 9 =0

Table 1: Equations of motion and their solutions.




Field Ghost number

Zweibein € 0
(related to the spin connection) fu 0
Scalar field ® 0
Scalar field Y 0

D, 0

D, 0

Lagrange multipliers Dﬂ 0
Y 0

Y 0

Xu 1

c 1

Ghost fields p 1

p 1

2
T -2

C -1

Antighost fields X, -1
X, ~1

X -1

Table 2: Fields of the theory, ghost numbers and Grassmann parities.



