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We present bounds for the sparseness in the Nullstellensatz. These bounds can
give a much sharper characterization than degree bounds of the monomial struc-
ture of the polynomials in the Nullstellensatz in case that the input system is
sparse. As a consequence we derive a degree bound which can substantially
improve the known ones in case of a sparse system.

In addition we introduce the notion of algebraic degree associated to a polyno-
mial system of equations. We obtain a new degree bound which is sharper than the
known ones when this parameter is small. We also improve the previous effective
Nullstellensatze in case the input polynomials are quadratic.¨

Our approach is completely algebraic, and the obtained results are independent
of the characteristic of the base field. Q 1999 Academic Press

Key Words: Cohen]Macaulay ring; effective Nullstellensatz; Newton polytope;
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INTRODUCTION

nLet k be a field and k be its algebraic closure. We denote by A the
affine n-space over k. For a given polynomial system f , . . . , f g1 s

w x nk x , . . . , x without common zeros in A , classical Hilbert’s Nullstellen-1 n
w xsatz states that there exist g , . . . , g g k x , . . . , x satisfying the Bezout´1 s 1 n

equation

1 s g f q ??? qg f . 1Ž .1 1 s s

Let d denote the maximum degree of the polynomials f , . . . , f and1 s
assume that n G 2. Then there exist polynomials g , . . . , g satisfying the1 s
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degree bound

n� 4deg g f F max 3, d .i i

w xThis result is due to Kollar 21 . This bound is optimal for d G 3 because´
of the well-known example due to Mora, Lazard, Masser, Philippon and
Kollar:´

f [ x d , f [ x x dy1 y x d , . . . ,1 1 2 1 n 2

f [ x x dy1 y x d , f [ x x dy1 y 1.ny1 ny2 n ny1 n ny1 n

It is easy to verify that in this case, deg g f G dn for any solution system1 1
g , . . . , g of the Bezout equation.´1 n

We note that such a degree bound allows us, given polynomials f , . . . ,1
w x Ž .f g k x , . . . , x , to determine whether Eq. 1 is solvable or not. If it iss 1 n

solvable, we can then actually find a solution, as it reduces the original
problem to solving a k-linear system of equations.

The study of this Bezout identity is the object of much research, due to´
both its theoretical and practical importance, mainly in the context of
computational algebraic geometry and diophantine approximation. Thus it
has been approached from many points of view and with different objec-

wtives. In this respect, we refer to the research papers 2, 4, 6, 8, 13, 15, 17,
x w x22, 27, 30]32 . We also refer to the surveys 3, 26, 36 for a broad

introduction to the history of this problem, main results, and open
questions.

i w y1 y1 xnFor a Laurent polynomial f s Ý a x g k x , . . . , x , x , . . . , x ,ig Z i 1 n 1 n
� 4the support of f is defined as the set i: a / 0 and more generally, thei

support of a family of Laurent polynomials f , . . . , f is defined as the set1 s
of exponents of all the nonzero monomials of all the f . The Newtoni

Ž .polytope NN f , . . . , f is defined as the convex hull of the support of1 s
Ž .f , . . . , f . The unmixed ¤olume UU f , . . . , f of the family of Laurent1 s 1 s

Ž .polynomials f , . . . , f is defined as r! times the volume of NN f , . . . , f ,1 s 1 s
where r denotes the dimension of this polytope.

The degree of a polynomial is bounded by a nonnegative integer d if
and only if its Newton polytope is contained in dD, where D denotes the

Ž . nstandard simplex conv 0, e , . . . , e in R . Thus the notion of Newton1 n
polytope gives a sharper characterization of the monomial structure of a
polynomial than just degree. This concept was introduced in the context of

w x w xroot counting by Bernshtein 5 and Kushnirenko 24 , and is now in the
basis of sparse elimination theory. Within this theory, algorithms for
elimination problems are designed to try to exploit the sparseness of the
involved polynomials, and sparseness is then usually measured in terms of
the Newton polytope of these polynomials. This is the point of view
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w xintroduced by Sturmfels in his foundational work 34 and further explored
w xin 9, 20, 28, 29, 37 , to name a few references.
The sparse aspect in the Nullstellensatz has also been considered by

Canny and Emiris, who obtained a sparse effective Nullstellensatz but
w xonly for the case of n q 1 generic n-variate Laurent polynomials 9 .

Here, generic can be interpreted in the following sense: If one restricts
the support of each f to lie in a fixed set AA }thus restricting whichi i
monomials are allowed to appear}the coefficient values for which the
Canny]Emiris Nullstellensatz fails lies in a codimension G 1 subvariety
of the coefficient space. This follows easily from recognizing that the
failure of their sparse resultant-based derivation depends on the existence
of roots at toric infinity. It should also be pointed out that when its
genericity assumptions hold, the Canny]Emiris Nullstellensatz gives
bounds at least as good as any result stated in the present paper.

We obtain the following result, which in this context can be seen as a
bound for the sparseness of the output polynomials in terms of the
sparseness of the input system.

w xTHEOREM 1. Let f , . . . , f g k x , . . . , x be polynomials without com-1 s 1 n
mon zeros in An. Let NN denote the Newton polytope of the polynomials
x , . . . , x , f , . . . , f , and let UU denote the unmixed ¤olume of this polytope.1 n 1 s

w xThen there exist g , . . . , g g k x , . . . , x satisfying1 s 1 n

1 s g f q ??? qg f ,1 1 s s

Ž . Ž nq3 .with NN g f : n UU ? NN for i s 1, . . . , s.i i

Let d [ max deg f . We readily derive from the previous result thei i
degree bound

deg g f F nnq3dUU .i i

We obtain from this the worst-case bound deg g f F nnq2dnq1, as thei i
unmixed volume of the polynomials x , . . . , x , f , . . . , f is always bounded1 n 1 n
by dn. We show, however, that our degree bound can considerably improve

Žthe usual one in case that the input system is sparse and d G n Exam-
.ple 2.12 .

We also obtain an analogous result for the case of Laurent polynomials.

w y1 y1 xTHEOREM 2. Let f , . . . , f g k x , . . . , x , x , . . . , x be Laurent1 s 1 n 1 n
nŽ .polynomials without common zeros in k* . Let NN denote the Newton

polytope of f , . . . , f , and let UU denote the unmixed ¤olume of this poly-1 s
n w y1 y1 xtope. Then there exist a g Z and g , . . . , g g k x , . . . , x , x , . . . , x1 s 1 n 1 n

satisfying
1 s g f q ??? qg f ,1 1 s s

Ž 2 nq3 2 . Ž . Ž 2 nq3 2 .with a g n UU ? NN and NN g f : n UU ? NN y a for i s 1, . . . , s.i i
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The proofs of both results are similar. They take as their first step the
translation of the original system of equations over the affine space or the
torus into a system of linear equations over an appropriate toric variety.
The resulting system is then solved by appealing to an effective Nullstel-
lensatz for linear forms in a Cohen]Macaulay graded ring. This key lemma

w xis proved following for the most part the lines of a previous paper 33 ,
w x w xwhich in turn is based on previous work of Dube 11 and Almeida 1 . We´

introduce at this time some simplifications into the proofs and techniques
involved. In particular, we eliminate the use of estimates for the Hilbert
function.

As a by-product, we obtain an effective Nullstellensatz which holds not
only for linear forms, but for arbitrary homogeneous elements in a

Ž .Cohen]Macaulay graded ring Theorem 1.8 .
In addition, we apply these arguments in two other situations. First, we

w xconsider the usual effective Nullstellensatz. Let f , . . . , f g k x , . . . , x1 s 1 n
be polynomials without common zeros in An. Let d [ deg f and assumei i
that d G ??? G d holds. We obtain the following improved degree bound:1 s

� 4min n , s y1

deg g f F 2d dŁi i s j
js1

for the polynomials g , . . . , g satisfying the Bezout equation.´1 s
For the case when the polynomials f , . . . , f are quadratic, the best1 s

previous known bound is deg g f F n2 nq2, which is due to Sabia andi i
w x nq1Solerno 30 . Our estimate improves this bound to deg g f F 2 , which´ i i

is very close to the expected 2 n.
Finally, we obtain another bound for the degrees in the Nullstellensatz.

We introduce the notion of algebraic degree of a polynomial system.
Roughly speaking, it measures the degree of the ideals successively cut out
by the equations f , . . . , f . It is the algebraic analogue of the notion of1 s

w xgeometric degree of a system of equations of Giusti et al. 16 , Krick,
w x w xSabia, and Solerno 23 , and Sombra 33 . We refer to Section 3 for the´

precise description and comparison between both notions.
Degree bounds have been obtained for the polynomials in the Nullstel-

w xlensatz which mainly depend on the geometric degree 15, 23, 33 . We
show that a similar bound holds by replacing the geometric degree of the
input polynomial system by the algebraic degree.

w xTHEOREM 3. Let f , . . . , f g k x , . . . , x be polynomials without1 s 1 n
common zeros in An. Let d [ max deg f and let d denote the algebraici i

w xdegree of this polynomial system. Then there exist g , . . . , g g k x , . . . , x1 s 1 n
satisfying

1 s g f q ??? qg f ,1 1 s s

� 42with deg g f F min n, s dd for i s 1, . . . , s.i i
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Let d [ deg f and assume that d G ??? G d holds. Then the Bezout´i i 1 s
Ž . min�n, s4y2bound d f , . . . , f F d Ł d holds, and therefore we essentially1 s s is1 i

recover from this result the known bounds for the degrees in the Nullstel-
lensatz. The algebraic degree is bounded by the geometric degree, and so
we also recover the known degree bounds in the Nullstellensatz which
depend on the geometric degree. We show, however, that the algebraic
degree is much smaller than the geometric degree in some particular

ny1 Ž .instances, and by force, than the Bezout bound d Example 3.20 . We´
conclude that the obtained degree bound is much sharper in these cases
than the known ones.

The outline of the paper is as follows. In Section 1 we obtain the
effective Nullstellensatz for linear forms in a Cohen]Macaulay graded
ring. In Section 2 we prove both Theorem 1 and 2 and we derive some of
their consequences. Section 3 is devoted to degree bounds in the usual
Nullstellensatz.

1. AN EFFECTIVE NULLSTELLENSATZ OVER
COHEN]MACAULAY GRADED RINGS

Throughout this paper we denote by k an infinite field and by k its
algebraic closure. All the rings to be considered are Noetherian commuta-
tive, and more precisely, finitely generated k-algebras. The polynomial ring

w xk x , . . . , x is alternatively denoted by S.0 n
w xFor a homogeneous ideal J in the polynomial ring k x , . . . , x , dim J0 n

w xdenotes the Krull dimension of k x , . . . , x rJ, and deg J denotes0 n
Ž .dim J y 1 ! times the leading coefficient of the Hilbert polynomial of the

w xgraded k-algebra k x , . . . , x rJ.0 n
A graded ring A is Cohen]Macaulay if it contains a regular sequence of

homogeneous elements of length equal to the dimension of A. In particu-
lar, A is unmixed, and its quotient with respect to any regular sequence of
homogeneous elements is Cohen]Macaulay.

Let I be a homogeneous Cohen]Macaulay ideal in the polynomial ring
w x w xk x , . . . , x , that is, the quotient ring k x , . . . , x rI is Cohen]Macaulay.0 n 0 n

Ž . nLet r [ dim I and let V I : P be the variety defined by I in the
projective n-space.

Let p g SrI be a homogeneous element which is not a zero-divisor. Let
h , . . . , h g SrI be homogeneous elements of degree one}or for short,1 s

� 4linear forms}which define the empty variety in the open set p / 0 of
Ž .V I . In this situation, Hilbert’s Nullstellensatz implies that p belongs to

Ž .the radical of the ideal h , . . . , h , that is, p g h , . . . , h . Equiva-'Ž .1 s 1 s
Ž .lently, we have that 1 lies in the ideal h , . . . , h spanned by h , . . . , h in1 s 1 s

Ž .the ring SrI .p
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We are going to give a bound for the minimal D g N such that p D falls
Ž .into the ideal h , . . . , h . We state here the main result of this section,1 s

and then we derive it from a series of lemmas.

w xMAIN LEMMA 1.1. Let I : k x , . . . , x be a homogeneous0 n
w xCohen]Macaulay ideal of dimension r. Let h , . . . , h g k x , . . . , x rI be1 s 0 n

w xlinear forms, and let p g k x , . . . , x rI be a non-zero di¤isor homogeneous0 n
Ž .element which lies in the radical of the ideal h , . . . , h . Then1 s

p D g h , . . . , hŽ .1 s

� 42holds, with D [ min r, s deg I.

Particular cases of this result were obtained by Caniglia, Galligo, and
w x w xHeintz 8, Proposition 10 and Smietanski 32, Lemma 1.44 . As a conse-

quence of this result we derive an effective Nullstellensatz for
Ž .Cohen]Macaulay graded rings Theorem 1.8 and Corollary 1.9 .

Let A be a ring and let a , . . . , a be elements of A. Then a , . . . , a is1 t 1 t
called a weak regular sequence if a is not a zero-divisor in the ringi

Ž .Ar a , . . . , a for i s 1, . . . , t. We note that this definition differs from1 iy1
usual notion of regular sequence only in one point, namely, that it allows

Ž .a to be a unit in Ar a , . . . , a .t 1 ty1
By considering generic k-linear combinations of the given linear forms,

Ž .we reduce to the case when h , . . . , h is a weak regular sequence in SrI1 s p
and s F r. We assume this from now on. Next we are going to show that
h , . . . , h can be replaced by polynomials of controlled degree which form1 s

Ž .a regular sequence in SrI Corollary 1.3 . The following lemma is a
w xgeneralization of 19, Remark 4 .

w xLEMMA 1.2. Let K : k x , . . . , x be a homogeneous unmixed ideal and0 n
n Ž .let j , . . . , j g P be points lying outside of V K . Then there exists a1 m

Ž .homogeneous polynomial g in K such that deg g F deg K and g j / 0 fori
all i.

Proof. For each associated prime ideal P of K, we take a homoge-
Ž .neous polynomial g such that deg g F deg P and g j / 0 for i sP P P i

1, . . . , m. This is clear from a generic projection. Let Q be the corre-P
Ž .sponding P-primary ideal in the decomposition of K. Let l Q denote theP

Ž .length of Q , that is, the length of SrQ as an SrP-module. LetP P P

g [ g lŽQP . ,Ł P
P

where the product is taken over all the associated prime ideals of K. Then
Ž .g j / 0 for i s 1, . . . , m, and we have also that the polynomial g lies ini

w x Ž .the ideal K by 7, Lemma 1 . The degree bound deg g F Ý l Q deg PP P
w xs deg K holds by 38, Proposition 1.49 .
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In the sequel we shall denote by J the contraction to the ring SrI ofi
Ž . Ž .the ideal h , . . . , h : SrI and by d the degree of the homogeneous1 i p i

ideal J for i s 1, . . . , s.i

COROLLARY 1.3. With the notation of Main Lemma 1.1, there exist
homogeneous elements h , . . . , h g SrI satisfying the following conditions:1 s

Ž . ci Ž .i h ’ p h mod J for some c G 0,i i iy1 i

Ž .ii h , . . . , h is a regular sequence,1 s

Ž .iii deg h F deg J q deg p y 1,i iy1

for i s 1, . . . , s.

Proof. We proceed by induction on i. By assumption p is not a
Ž .zero-divisor in SrI so that the canonical morphism SrI “ SrI isp

Ž .injective. The fact that h is not a zero-divisor in SrI implies then that1 p
h is not a zero-divisor in SrI.1

Now let i G 2 and assume that the elements h , . . . , h are already1 iy1
constructed. Let H denote the ideal spanned by h , . . . , h in SrI.iy1 1 iy1

Ž . Ž .Let H s F Q l F R be the primary decomposition of H , withiy1 j j l l iy1

p f Q and p g R . Our aim is to find a homogeneous element h in'' j l i

SrI lying outside of all the associated primary ideals of H .iy1
We recall that the ideal H has no imbedded component as it isiy1

spanned by a regular sequence in a Cohen]Macaulay ring. On the other
hand, the ideal J has the primary decomposition F Q and so it followsiy1 j j

Ž . Ž . Ž .that V R › V J holds for each l. We choose a point j g V R yl iy1 l l
Ž .V J and a homogeneous element g g J such that deg g F deg Jiy1 iy1 iy1

Ž .and g j / 0 for each l. The existence of g is guaranteed by the previousl
lemma. By eventually multiplying g with linear forms, we can suppose
without loss of generality that deg g s c deg p q 1 holds for some c G 0.i i
In particular, we can assume that deg g F deg J q deg p y 1 holds.iy1
Finally, we set

h [ ag q pcihi i

for some a g k to be determined. Then h is homogeneous and h ’ pcihi i i
Ž .mod J holds. Therefore, h does not belong to Q , as both p and h'iy1 i j i

Ž . Ž .are not zero-divisors modulo J . We have also that h j s ag j qiy1 i l l
c iŽ .Ž .p h j / 0 for a generic choice of a, which forces h f R .'i l i l

We fix the following notation. Let h , . . . , h g SrI be the homoge-1 s
Ž .neous polynomials introduced in Corollary 1.3, and let H [ h , . . . , hi 1 i

Ž .and L [ h , . . . , h denote the homogeneous ideals successively gener-i 1 i
ated by h , . . . , h and h , . . . , h , respectively.1 s 1 s
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Let us write h s l q pcih for some l g J and c G 0. Then seti i i i iy1 i
i Ž . i ŽŽ .g [ d y d , and let l [ Ý g q c and m [ Ý i y j q 1 g qi iy1 i i js1 j j i js1 j

Ž . .i y j c for i s 1, . . . , s.j
For an ideal K of SrI, we denote by K u the unmixed part of K, that is,

the unmixed ideal given as the intersection of the primary components of
K of maximal dimension.

g i Ž .uLEMMA 1.4. Let q g J for some 1 F i F s. Then p q g J , h .i iy1 i

Ž . Ž .Proof. Let F Q l F R be the primary decomposition of thej j l l
uŽ .ideal J , h , with p f Q and p g R . Then F Q is the primary''iy1 i j l j j

decomposition of J . Let K [ F R be the intersection of the otheri i l l
primary components. Then K is an unmixed ideal which lies in thei

� 4hypersurface p s 0 .
Ž .u Ž .The ideals J , h and J , h have the same degree because theyiy1 i iy1 i

Ž .only differ in an ideal of codimension at least i q 1. Then deg J , h siy1 i
d , as h is not a zero-divisor modulo J , and so deg K s g s d yiy1 i iy1 i i iy1

g i w xd . Therefore, p lies in the ideal K 7, Lemma 1 and we conclude thati i
g ui Ž . Ž . Ž .p q g F Q l F R s J , h , as stated.j j l l iy1 i

Ž .The following two statements Lemmas 1.5 and 1.6 are simple exten-
w xsions of 11, Lemmas 6.1 and 6.2 .

LEMMA 1.5. Let q g J for some 1 F i F s. Then pli q g H .i i

g1 Ž .uProof. We proceed by induction on i. First, p q g h by Lemma1
Ž .u Ž .1.4. We have also that h s h and so the assertion is true for i s 1.1 1

Let i G 2 and assume that the statement holds for i y 1. By Lemma 1.4,
g i Ž .u g ip q g J , h , that is, p q belongs to the intersection of the primaryiy1 i

Ž .components of dimension r y i of the ideal J , h . The intersection ofiy1 i
the other primary components is an ideal of codimension at least i q 1.
Then there exists a regular sequence w , . . . , w in this ideal, as SrI is a1 iq1

g i Ž .Cohen]Macaulay ring. We have that w p q g J , h and so there existj iy1 i
u g J and ¤ g SrI such that w pg i q s u q ¤ h for j s 1, . . . , i q 1.j iy1 j j j j i
Then

w pg iqc i q s pci u q pci ¤ hj j j i

s pci u q ¤ h y l s pci u y ¤ l q ¤ h .Ž . Ž .j j i i j j i j i

Therefore, pg iqc i u y ¤ l g J and by the inductive hypothesis,j j i iy1
liy1Ž g iqc i . lip p u y ¤ l lies in the ideal H . Then w p q g H holds forj j i iy1 j i

j s 1, . . . , i q 1, as l s l q g y c .i iy1 i i
The ideal H is spanned by a regular sequence h , . . . , h and so it is ani 1 i

unmixed ideal of dimension r y i. Thus, for each associated prime ideal P
of H , there exists some j such that w f P. We conclude that pli q g H .i j i
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LEMMA 1.6. Let q g J for some 1 F i F s. Then p m i q g L .i i

Proof. We shall proceed by induction on i. The case i s 1 follows in
the same way as in the preceding lemma because L s H and m s l .1 1 1 1

Let i G 2. Then pli q lies in H by Lemma 1.5. Let us write pli q si
u q ¤h for some u g H and ¤ g SrI. Therefore, pli q y ¤h g Hi iy1 i iy1
and thus pli q y pci ¤h lies in the ideal J because H : J andi iy1 iy1 iy1

ci Ž . liyc ih ’ p h mod J . This implies in turn that p q y ¤h g J .i i iy1 i iy1
m iy1Ž liyc i .From the inductive hypothesis, we get that p p q y ¤h lies ini

L and so p m iy1ql iyc i q g L . The statement follows from the observationiy1 i
that m s m q l y c .i iy1 i i

Proof of Main Lemma 1.1. We can suppose without loss of generality
Ž .that h , . . . , h is a weak regular sequence in SrI and that s F r. After1 s p

Lemma 1.6, it only remains to bound m . We make use of the estimatess
g , c F d and we get the boundi i iy1

s

m s s y j q 1 g q s y j cŽ . Ž .Ž .Ýs j j
js1

s
2F s y j q 1 d q s y j d F s deg I.Ž . Ž .Ž .Ý jy1 jy1

js1

The rest of the section is devoted to the extension of the previous result
to the case when we consider homogeneous elements of arbitrary degree
instead of linear forms. First we establish some generalities about the
Veronese imbedding.

n q dŽ .Let us denote by N the integer y 1 and let a , . . . , a denote the0 Nd

exponents of the different monomials of degree d in S. Let

¤ : P n “ P N , x [ x : ??? : x ‹ x a0 : ??? : x aNŽ . Ž .d 0 n

be the Veronese map. This is a regular morphism of projective varieties
and so its image is a closed subvariety of P N. This variety is called

Ž .the Veronese variety and it is denoted by ¤ . Let I ¤ be its definingn, d n, d
Žd. w x Ž .ideal and let us denote by S [ k y , . . . , y rI ¤ its homogeneous0 N n, d

coordinate ring. The Veronese map induces an inclusion of k-algebras
i : S Žd. ¤ S defined by y ‹ x aj for j s 0, . . . , N.d j

Let J be an ideal of S and J Žd. be its contraction to the ring S Žd..
Identifying the quotient ring S Žd.rJ Žd. with its image in SrJ through the
inclusion i : S Žd.rJ Žd. ¤ SrJ, we obtain the decomposition in gradedd
parts

S Žd.rJ Žd. s SrJ .Ž . d j[
j
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Let h Žd . and h denote the Hilbert functions of J Žd. and J, respectively.J J
Ž . Ž . Žd.

Žd .Then h m s h dm for m g N. It follows that the ideals J and JJ J
have the same dimension and that their degrees are related by the formula
deg J Žd. s ddim Jy1 deg J.

LEMMA 1.7. Let J be a homogeneous Cohen]Macaulay ideal in S and let
J Žd. denote its contraction to the ring S Žd.. Then J Žd. is a Cohen]Macaulay
ideal.

Proof. Let us denote by A and B the quotient rings S Žd.rJ Žd. and SrJ,
respectively. We identify A with its image in B through the inclusion i .d
We shall exhibit a regular sequence of homogeneous elements in A of
length equal to the dimension of A.

Let e denote the dimension of the ring B, which is also the dimension of
A. Let b , . . . , b be a regular sequence in B of homogeneous elements.1 e
Let a [ b d for i s 1, . . . , e. Then a , . . . , a are elements of A whichi i 1 e

w xform a regular sequence in B, by 25, Theorem 16.1 . We assert that they
also form a maximal regular sequence in A. We need only to prove that a i

Ž .is not a zero-divisor in Ar a , . . . , a for i s 1, . . . , e. Let z g A be an1 iy1
Ž .element such that za g a , . . . , a . Then there exist homogeneousi 1 iy1

elements z , . . . , z g B such that z s z a q ??? qz a because1 iy1 1 1 iy1 iy1
a , . . . , a is a regular sequence in B. An easy verification shows that1 iy1
z , . . . , z can be chosen to lie in A, from which it follows that z g1 iy1
Ž .a , . . . , a .1 iy1

w xTHEOREM 1.8. Let I : k x , . . . , x be a homogeneous Cohen]Macaulay0 n
w x w xideal. Let f , . . . , f g k x , . . . , x rI and p g k x , . . . , x rI be homoge-1 s 0 n 1 n

Ž .neous elements such that p lies in the radical of the ideal f , . . . , f and p is1 s
not a zero-di¤isor. Let r [ dim I and d [ max f . Theni i

p D g f , . . . , fŽ .1 s

holds, with D [ r 2dr deg I.

Ž . � 4Proof. First, we note that the zero locus in V I of the polynomials fi i
Ž . � dydeg f i 4equals the zero locus in V I of the polynomials x f . We havej i i j

dydeg f i Ž .also that x f lies in the ideal f , . . . , f for all i and j. Therefore,j i 1 s
we can suppose without loss of generality that f is a homogeneousi
polynomial of degree d for i s 1, . . . , s. We note, however, that the
number of input polynomials has been enlarged in this preparative step.

Let i : S Žd. ¤ S be the inclusion of k-algebras induced by the Veronesed
map and let I Žd. denote the contraction of the ideal I to the ring S Žd..
Then we have the inclusion i : S Žd.rI Žd. ¤ SrI and the decomposition ind

Ž Žd. Žd.. Ž .graded parts i S rI s SrI . We take a linear form h g[d j d j i
Žd. Žd. Ž .S rI such that i h s f for i s 1, . . . , s, which exists as the inclusiond i i
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i is a bijection in degree one. We take also a homogeneous elementd
Žd. Žd. Ž . dq g S rI such that i q s p .d

Ž . Ž Žd..The map ¤ : V I “ V I is a dominant regular map of projectived
varieties and so it is surjective. Therefore, the zero locus of the linear
forms h , . . . , h lies in the image of the zero locus of the polynomials1 s

� d 4f , . . . , f . The common zeros of f , . . . , f lie in the hypersurface p s 01 s 1 s
Ž . Ž� d 4. � 4of V I and we have in addition that ¤ p s 0 s q s 0 . Then thed

Ž Žd.. � 4subvariety of V I defined by h , . . . , h lies in the hypersurface q s 0 .1 s
By Lemma 1.7, the ideal I Žd. is Cohen]Macaulay, and we have also that

q is not a zero-divisor modulo I Žd.. Then we are in the hypothesis of the
Main Lemma 1.1. As a consequence, we obtain that

q r 2 deg I Žd . g h , . . . , hŽ .1 s

holds. Finally, we apply the morphism i to the previous expression and wed
get that

pdr 2Žd ry1 deg I . g f , . . . , fŽ .1 s

Žd. ry1holds, as deg I s d deg I.

w xCOROLLARY 1.9. Let I : k x , . . . , x be an ideal such that its homoge-1 n
h w xnization I in the ring k x , . . . , x is Cohen]Macaulay. Let f , . . . , f g0 n 1 s

w x Ž .k x , . . . , x be polynomials without common zeros in the affine ¤ariety V I .1 n
w xThen there exist g , . . . , g g k x , . . . , x such that1 s 1 n

1 ’ g f q ??? qg f mod IŽ .1 1 s s

Ž .2 rq1 hholds, with deg g f F r q 1 d deg I for i s 1, . . . , s.i i

Proof. By assumption, the ideal I h is a Cohen]Macaulay homogeneous
ideal of dimension r q 1. We have also that x is not a zero-divisor0
modulo I h.

Let f h denote the homogenization of f for i s 1, . . . , s. The homoge-i i
h h Ž h.neous polynomials f , . . . , f have no common zero in V I outside the1 s

� 4hyperplane x s 0 . By Theorem 1.8, there exist homogeneous polynomi-0
als ¤ , . . . , ¤ g S such that1 s

x Ž rq1.2 d rq1 s ¤ f h q ??? q¤ f h mod I hŽ .0 1 1 s s

h Ž .2 rq1holds, with deg ¤ f s r q 1 d . The corollary then follows by evaluat-i i
ing x [ 1.0

Let the notation be as in Corollary 1.9. In the case when I is the zero
ideal, that is, in the setting of the classic effective Nullstellensatz, we get
the degree bound

2 rq1deg g f F r q 1 d .Ž .i i
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¨2. SPARSE EFFECTIVE NULLSTELLENSATZE

ŽThis section is devoted to our sparse effective Nullstellensatze Theo-¨
.rems 1 and 2 and the derivation of some of their consequences.

First, we introduce notation and state some basic facts from polyhedral
w x w xgeometry and toric varieties. We refer to the books 14 and 35 for the

proofs of these facts and for a more general background on these subjects.
Let AA : Zn be a finite set of integer vectors. The convex hull of AA as a

n Ž . Ž .subset of R is denoted by conv AA . The cone over conv AA is denoted by
Ž . Ž . Ž .pos AA , that is, pos AA [ R conv AA . The set AA is graded if there˙G 0

n ² :exists an integer vector v g Z such that a, v s 1 holds for every
a g AA, that is, when the set AA lies in an affine hyperplane which does not
contain the origin.

Let Z AA denote the Z-module generated by AA. Let R AA denote the linear
space spanned by AA, so that Z AA is a lattice in R AA. Let r denote the
dimension of this linear space. Then we consider the Euclidean volume
form in R A, normalized in such a way that each primitive lattice simplex

Ž .has unit volume. The normalized ¤olume Vol AA of the set AA is defined as
the volume of its convex hull with respect to this volume form.

We get readily from the definition the bound

Vol AA F r ! vol conv AA ,Ž . Ž .Ž .

Ž Ž ..where vol conv AA denotes the volume of the convex hull of AA with
respect to the usual nonnormalized volume form of R n. Let N AA denote
the semigroup spanned by AA. This semigroup is always contained in the

Ž .semigroup pos AA l Z AA. The set AA is said to be normal or saturated if
Ž .the equality N AA s pos AA l Z AA holds. A polytope PP is said to be

integral if it is the convex hull of a finite set of integer vectors.
An integral simplex is called unimodular if its interior contains no

integral vector. Let PP be an integral polytope. A subdivision of PP is said
to be unimodular if it consists solely of unimodular integral simplices. For

n Ž . � 4 Ž n.an integral polytope PP in R , we denote by AA PP the set 1 = PP l Z ,
which is a graded set of integral vectors in Znq1. We note that the set
Ž .AA PP is normal in the case when PP admits a unimodular subdivision.

w xWith respect to toric geometry, we shall follow the lines of 35 . This
point of view differs from the usual one in algebraic geometry. It is more

� 4combinatorial and suits better for our purposes. Let AA s a , . . . , a in1 N
Zn be again a finite set of integer vectors. We associate to the set AA the
morphism

y1 y1 aiw xw : k y , . . . , y “ k x , . . . , x , x , . . . , x , y “ x .AA 1 N 1 n 1 n i
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w xThe kernel of this map is a prime ideal I of k y , . . . , y , called the toricAA 1 N
ideal associated to the set AA. This ideal defines an affine toric ¤ariety X asAA

its zero locus in AN. This variety is irreducible and its dimension equals the
rank of the Z-module Z AA.

w y1 y1 xThe k-algebra k x , . . . , x , x , . . . , x is the coordinate ring of the1 n 1 n
n nŽ . Ž .torus k* . Thus the map w induces a dominant map k* “ X . TheAA AA

image of this map is called the torus T of the affine toric variety X . ThisAA AA

� 4torus equals the open set y ??? y / 0 of X .1 N AA

The ideal I is homogeneous if and only if the set AA is graded. In thisAA

case, the set AA defines a projecti¤e toric ¤ariety Y as the zero locus of theAA

ideal I in the projective space P Ny1. The dimension of Y equals thenAA AA

the rank of Z AA minus one, and its degree equals the normalized volume of
the set AA.

� 4 nLet AA s a , . . . , a : Z be a graded set. The intersection of the1 N
� 4 Ny1projective variety Y with the affine chart y / 0 ( A equals theAA i

affine toric variety associated to the set

� 4AA y a [ a y a , . . . , a y a , a y a , . . . , a y a .i 1 i iy1 i iq1 i N i

In fact, Y is irredundantly covered by the affine varieties X , where aAA AAya ii
Ž .runs over the vertices of the polytope conv AA .

w xThe k-algebra k y , . . . , y rI is isomorphic to the semigroup algebra1 N AA

w xk N AA . This algebra is normal if and only if the set AA is normal. We recall
w xHochster’s theorem that the k-algebra k N AA is a Cohen]Macaulay

w xdomain when the set AA is normal 10 .
Let PP be an integral polytope of R n. This polytope determines a fan D PP

Ž .and a complete toric variety X s X D . This variety comes equippedPP PP

with an ample Cartier divisor D . This Cartier divisor defines then a mapPP
Ny1 � n4w : X “ P , where N denotes the cardinality of the set PP l Z .PP PP

Ž .The image of this map is the projective variety Y , where the set AA PPAAŽ PP .
� 4 Ž n. w xis defined as before as 1 = PP l Z 14, Section 3.4 . The divisor

Ž . w x ŽŽ . .n y 1 D is very ample 12 , and so the graded set AA n y 1 PP isPP

normal.

w xTHEOREM 2.10. Let p, f , . . . , f g k x , . . . , x be polynomials such1 s 1 n
Ž .that p lies in the radical of the ideal f , . . . , f . Let PP be an integral polytope1 s

which contains the Newton polytope of the polynomials 1, x , . . . , x , f , . . . , f .1 n 1 s
Ž . nq1Assume furthermore that AA PP is a normal set of integer ¤ectors in Z .

w xThen there exist D g N and g , . . . , g g k x , . . . , x such that1 s 1 n

p D s g f q ??? qg f1 1 s s

� 42 Ž . Ž . ŽŽ .holds, with D F n! min n q 1, s vol PP and NN g f : 1 q deg pi i
� 42 Ž ..?n! min n q 1, s vol PP ? PP for i s 1, . . . , s.
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� 4 nProof. Let BB s b , . . . , b denote the set of integer vectors PP l Z ,0 N
Ž . � 4 Ž .so that AA PP s 1 = BB. Assume that b s 0, . . . , 0 . We consider the0

morphism of k-algebras

w x w x bic : k y , . . . , y “ k x , . . . , x , y ‹ x .1 N 1 n i

The kernel of this morphism is the defining ideal I of the affine toricBByb0

variety X . This affine variety is the intersection of the projectiveBByb0
� 4 Ntoric variety Y with the affine cart y / 0 of P . In addition, theAAŽ PP . 0

map c induces an isomorphism An “ X .BByb0 w xLet z be a polynomial of degree one in k y , . . . , y such thati 1 N
Ž . w xc z s f for i s 1, . . . , s. We take also a polynomial q in k y , . . . , y ofi i 1 N

Ž .degree less than or equal to the degree of p such that c q s p. Then
z , . . . , z have no common zero in X outside the hypersurface1 s BByb0
� 4q s 0 .

Let h , . . . , h , u denote the homogenization of z , . . . , z , q in1 s 1 s
w xk y , . . . , y , respectively. Then the linear forms h , . . . , h have no com-0 N 1 s

� 4mon zero in Y outside the hypersurface y u s 0 .AAŽ PP . 0
Ž .By assumption, the set AA PP is normal, and so I is aAAŽ PP .

w xCohen]Macaulay prime homogeneous ideal of k y , . . . , y of dimension0 N
less than or equal to n q 1. We have also that y u is not a zero-divisor0
modulo I . Then we are in the hypothesis of the Main Lemma 1.1.AAŽ PP .

� 42Let D denote the integer min n q 1, s deg Y . We obtain that thereAAŽ PP .
w xexist homogeneous elements a , . . . , a g k y , . . . , y rI of degree1 s 0 N AAŽ PP .

Ž .1 q deg u D y 1 satisfying

Dy u s a h q ??? qa h .Ž .0 1 1 s s

Finally, we evaluate y [ 1 and we apply the map c to the preceding0
identity. We get

p D s g f q ??? qg f ,1 1 s s

Ž . Ž b1 bN .where we have set g x [ a 1, x , . . . , x for i s 1, . . . , s. We have thei i
Ž .estimates deg u F deg p and deg Y F n! vol PP . We conclude thatAAŽ PP .

� 4 Ž . Ž .D F n! min n q 1, s vol PP and that the polytope NN f g is contained ini i
2ŽŽ . � 4 Ž ..1 q deg p n! min n q 1, s vol PP ? PP for i s 1, . . . , s.

We derive from the previous theorem the following degree bound.

COROLLARY 2.11. Let the notation be as in Theorem 2.10 and d [
w xmax f . Then there exist D g N and g , . . . , g g k x , . . . , x such thati i 1 s 1 n

p D s g f q ??? qg f1 1 s s
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� 42 Ž . Ž .holds, with D F n! min n q 1, s vol PP and deg g f F d 1 q deg pi i
� 42 Ž .?n! min n q 1, s, vol PP for i s 1, . . . , s.

We are going to show with an example that this degree bound can be
much more precise than the usual one in case of a sparse input system.

EXAMPLE 2.12. Let

df [ a q a x q ??? qa x q b x ??? x q ??? qb x ??? xŽ .i i0 i1 1 in n i1 1 n id 1 n

for i s 1, . . . , s be polynomials without common zeros in An. Let PP [d
Ž Ž ..conv 0, e , . . . , e , d e q ??? qe so that PP contains the Newton poly-1 n 1 n d

tope of the polynomials 1, x , . . . , x , f , . . . , f . We have the decomposi-1 n 1 s
tion

PP s D QQd i j

ŽŽ .Ž . Ž ..with QQ [ j y 1 e q ??? qe , e , . . . , e , . . . , e , j e q ??? qe forˆi j 1 n 1 i n 1 n
i s 1, . . . , n and j s 1, . . . , d. Then PP is unimodular and so the setd
Ž .AA PP is normal. Thus we are in the hypothesis of Corollary 2.11 and we

w xconclude that there exist g , . . . , g g k x , . . . , x such that1 s 1 n

1 s g f q ??? qg f1 1 s s

Ž . Ž � 42 .holds, with NN g f : nd min n q 1, s ? PP , as the volume of PP equalsi i d d
Ž . Ž .4 2dr n y 1 !. In particular, we get the degree bound deg g f F n q 1 d ,i i

which is much sharper than the estimate deg g f F nndn which followsi i
from direct application of the usual degree bound.

Let notation be again as in Theorem 2.10. Let NN denote the Newton
polytope of the polynomials 1, x , . . . , x , f , . . . , f and let UU denote the1 n 1 s
unmixed volume of this polytope. Assume that n G 2. In this situation we

Ž .can then take the polytope PP to be n y 1 NN. Then we get the bounds

D F nnq2 UU , NN g f : 1 q deg p nnq3UU ? NN .Ž . Ž .Ž .i i

It is easy to check that these bounds hold also when n s 1. Thus Theorem
1 follows from this observation in the particular case p s 1. We observe
that in this case the condition 0 g PP is redundant.

We remark that the naive notion of sparseness, based on counting the
number of nonzero monomials in each polynomial, does not yield better
bounds for the degrees in the Nullstellensatz than the usual ones, in view
of the Mora]Lazard]Masser]Philippon]Kollar example.´

We obtain a similar result in the case of Laurent polynomials.

w y1 y1 xTHEOREM 2.13. Let p, f , . . . , f g k x , . . . , x , x , . . . , x be Lau-1 s 1 n 1 n
Ž .rent polynomials such that p lies in the radical of the ideal f , . . . , f . Let PP1 s
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be an integral polytope which contains the Newton polytope of p, f , . . . , f .1 s
Ž .Let r denote its dimension. Assume furthermore that AA PP is a normal set of

integer ¤ectors in Znq1. Then there exist D g N, a g Zn, and g , . . . , g g1 s
w y1 y1 xk x , . . . , x , x , . . . , x such that1 n 1 n

p D s g f q ??? qg f1 1 s s

� 42 Ž . Ž � 4 Ž ..2holds, with D F r! min n q 1, s vol PP , a g r! min n q 1, s vol PP ?
Ž . Ž � 4 Ž ..2PP, and NN g f : r! min n q 1, s vol PP ? PP y a for i s 1, . . . , s.i i

� 4Proof. As before, we denote by BB s b , . . . , b the set of integer0 N
n Ž .vectors PP l Z . Assume for the moment that b s 0, . . . , 0 . We consider0

the morphism

y1 y1 biw xc : k y , . . . , y “ k x , . . . , x , x , . . . , x , y ‹ x .1 N 1 n 1 n i

The kernel of this morphism is the defining ideal I of the affine toricBByb0

variety X . Let T denote the torus of this toric variety. Then we haveBByb0

that X equals the intersection of the projective variety Y withBByb AAŽ PP .0
� 4 Nthe affine cart y / 0 of P , and that T is also the torus of Y . We0 AAŽ PP .

� 4recall that this torus equals the open set y ??? y s 0 of Y .0 N AAŽ PP .
nŽ .The map c induces a surjection k* “ T. Let z , . . . , z , q be ele-1 s

w x Ž .ments of degree one in k y , . . . , y such that c z s f for i s 1, . . . , s1 N i i
Ž .and c q s p. Then z , . . . , z have no common zero in T outside the1 s

� 4hyperplane q s 0 .
Let h , . . . , h , u denote the homogenization of z , . . . , z , q in1 s 1 s

w xk y , . . . , y , respectively. Then the linear forms h , . . . , h have no com-0 N 1 s
� 4mon zero in Y outside the hypersurface y ??? y u s 0 .AAŽ PP . 0 N

Ž .Let V h , . . . , h denote the subvariety of Y defined by the linear1 s AAŽ PP .
w xforms h , . . . , h . By Bezout’s inequality 19 , the number of irreducible´1 s

Ž .components of V h , . . . , h does not exceed the degree of Y . Let us1 s AAŽ PP .
Ž .denote by d the degree of Y , so that d F r! vol PP holds. In ourAAŽ PP .

Ž .situation, this implies that V h , . . . , h lies in the union of at most d1 s
hyperplanes. These hyperplanes are defined by variables y , . . . , y , andi i1 l

eventually also by the linear form u, depending on whether h , . . . , h have1 s
� 4a common zero in T in the hyperplane u s 0 or not. Let P denote the

product of these equations, which is a polynomial of degree less than or
equal to d .

Ž .By assumption, the set AA PP is normal and so I is a Cohen]AAŽ PP .
w xMacaulay prime homogeneous ideal of k y , . . . , y . We have also that P0 N

is not a zero-divisor modulo this ideal. Thus we are again in the hypothesis
� 42of the Main Lemma 1.1. Let E denote the integer min n q 1, s deg Y .AAŽ PP .

w xThen there exist homogeneous elements a , . . . , a g k y , . . . , y rI1 s 0 N AAŽ PP .
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Ž .of degree deg P ? E y 1 such that

P E s a h q ??? qa h1 1 s s

holds. We evaluate y [ 1 and we apply the map c to the preceding0
identity. We get

p D s g f q ??? qg f ,1 1 s s

Ž . Ž bi b i .y1 Ž b1 bN .1 lwhere we have set g x [ x ??? x a 1, x , . . . , x for i s 1, . . . , si i
and D [ E in the case when u appears as a factor of P and D [ 1 in the

� 42 Ž .other case. Then D F r! min n q 1, s vol PP holds and the polytope
Ž . Ž Ž . . Ž .NN g f is contained in r! vol PP E y 1 ? PP y b q ??? qb for i si i i i1 1

Ž .1, . . . , s. We have that deg P F deg Y F r! vol PP and that i q ???AAŽ PP . 1
Ž .qi g deg Y ? PP.k AAŽ PP .

Now we consider the general case. Let b be any integer vector in PP,0
and let QQ denote the polytope PP y b . By the previous considerations,0

n w y1 y1 xthere exist D g N, a g Z , and g , . . . , g g k x , . . . , x , x , . . . , x0 1 s 1 n 1 n
such that

p D s g f q ??? qg f1 1 s s

� 42 Ž . Ž . Ž .holds, with D F r! min n q 1, s vol QQ , a g r! vol QQ ? QQ, and NN g f0 i i
Ž � 4 Ž ..2: r! min n q 1, s vol QQ ? QQ y a for i s 1, . . . , s.0

Ž � 4 Ž ..2Let a be the integer vector a q r! min n q 1, s vol PP b . Then a0 0
Ž � 4 Ž ..2lies in the polytope r! min n q 1, s vol PP ? PP and we have also that

Ž . Ž � 4 Ž ..2NN g f : r! min n q 1, s vol PP ? PP y a holds for i s 1, . . . , s asi i
stated.

Let notation be as in Theorem 2.13. Let NN denote the Newton polytope
of p, f , . . . , f and let UU denote the unmixed volume of this polytope.1 s
Assume in addition that n G 2. In this situation, we can then take the

Ž .polytope PP to be n y 1 ? NN. We get the bounds

D F nnq2 UU , NN g f : n2 nq3UU ? NN y a,Ž . Ž .i i

Ž 2 nq3 .for some a g n UU ? NN. As before, it is easy to verify that the same
bounds hold also when n s 1. Thus Theorem 2 follows from this observa-
tion in the particular case p s 1.

Ž .Let q s frg g k x , . . . , x be a rational function given as the quotient1 n
of two polynomials without common factors. Then the degree of q is

� 4defined as deg q [ max deg f , deg g .
We derive from Theorem 2.13 the following degree bound.

COROLLARY 2.14. Let notation be as in Theorem 2.13 and let d be a
bound for the degree of p, f , . . . , f . Then there exist D g N and g , . . . , g g1 s 1 s
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w y1 y1 xk x , . . . , x , x , . . . , x such that1 n 1 n

p D s g f q ??? qg f1 1 s s

� 42 Ž . Ž . Ž �holds, with D F r! min n q 1, s vol PP , and deg g f F d r! min n qi i
4 Ž ..21, s vol PP for i s 1, . . . , s.

3. IMPROVED BOUNDS FOR THE DEGREES IN
THE NULLSTELLENSATZ

In this section we consider the degree bounds in the Nullstellensatz. We
shall apply the methods used in Section 1 in a direct way}without any
reference to the Veronese map}in the setting of the classic effective
Nullstellensatz. The proof follows closely the same lines and so we shall
skip some verifications in order to avoid unnecessary repetitions.

Assume that we are given homogeneous polynomials f , . . . , f in1 s
w x � 4k x , . . . , x without common zeros in the hyperplane x s 0 . In this0 n 0

situation, we are going to give a bound for the minimal D g N such that
D Ž .x g f , . . . , f .0 1 s
We shall assume without loss of generality that s F n q 1 and that

w xf , . . . , f is a weak regular sequence in k x , . . . , x . Let d [ deg f ,1 s 0 n x i i0

and we suppose that d G ??? G d and that d G d hold. As before,2 s s 1
these polynomials can be obtained as linear combinations of the original
polynomials, eventually multiplied by powers of x .0

Ž .Let us denote by J the contraction to the ring S of the ideal f , . . . , fi 1 i
Ž .: S for i s 1, . . . , s. We make the convention J [ 0 .x 00

LEMMA 3.15. Following the preceding notation, there exist homogeneous
w xpolynomials h , . . . , h g k x , . . . , x satisfying the following conditions:1 s 0 n

Ž . ci Ž .i h ’ x f mod J for some c g N,i 0 i iy1 i

Ž .ii h , . . . , h is a regular sequence,1 s

Ž . � 4iii deg h F max deg J , deg f ,i iy1 i

for i s 1, . . . , s.

We introduce the following notation. Let d denote the degree of thei
homogeneous ideal J for i s 0, . . . , s. We recall the Bezout bound d F´i i

i � 4Ł d . Then let g s d d y d for i s 1, . . . , min n, s and g [js1 j i i iy1 i nq1
� 4 �d q d y 1. We also let d [ max d : i s 1, . . . , s y 1 and d [ max d :n nq1 i i

4 ui s 1, . . . , s y 1 . For an ideal I of S, we denote by I its unmixed part.
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g i Ž .uLEMMA 3.16. Let q g J , for some 1 F i F s. Then x q g J , h .i 0 iy1 i

Proof. The case i F n is exactly as in Lemma 1.4. Thus we only
consider the case i s n q 1.

Ž .The ideal J has dimension one and its degree is d . Then J , f sn n n nq1 m
S for m G d q d y 1, as f is not a zero-divisor modulo Jm n nq1 nq1 n
w x g nq 1 Ž .33, Theorem 2.23 . It follows that x g J , f and in particular,0 n nq1

g unq 1 Ž .x q g J , f .0 n nq1

Now let h , . . . , h be the homogeneous polynomials introduced in1 s
i ŽŽ . Ž . .Lemma 3.15. We set m [ Ý i y j q 1 g q i y j c for i si js2 j j

� 41, . . . , min n, s and m [ m q g , where c denotes the integernq1 n nq1 i
deg h y deg f .i i

Ž .We denote by L the homogeneous ideal f , . . . , f for i s 1, . . . , s.i 1 i

LEMMA 3.17. Let q g J for some 1 F i F s. Then x m i q g L .i 0 i

Proof. The case i F n is exactly as in Lemma 1.6. Thus we only
consider the case i s n q 1.

g nq 1 Ž .u Ž . g nq 1By the previous lemma, x qg J , f s J , f and so x q y0 n nq1 n nq1 0
uf g J for some polynomial u g S. We apply then the inductivenq1 n

mnŽ g nq 1 .hypothesis and we obtain that x x q y uf g L , from which it0 0 nq1 n
mnq 1follows that x q g L .0 nq1

Thus it only remains to bound m . We shall be concerned with twos
different types of bounds. One depends as usual on the number of
variables and on the degrees of the input polynomials, and the other
depends also on the degree of some ideals associated to these polynomials.

� 42LEMMA 3.18. Let notation be as before. Then m F min n, s dd . In cases
deg f G 2 for i s 1, . . . , s, we ha¤e that m F 2Łmin�n, s4 d .i s js1 j

Proof. We decompose the integer m in two terms and we estimates
s Ž .them separately. First we consider the term Ý s y j c . We have thatjs2 j

� 4c F max d y d , 0 . In particular, c s 0 as d s d and d F d . Theni iy1 i 2 1 1 1 2

s sy1

s y j c F s y j d ??? d y dŽ . Ž . Ž .Ý Ýj 1 jy1 j
js2 js3

sy1 sy1

F d ??? d s y j rd ??? d y s y j dŽ . Ž .Ý Ý1 sy2 j sy2 j
js3 js2

F 4d ??? d y d ,1 sy2 sy1

sy1Ž .under the assumption d G2 for is1, . . . , s. We have also Ý syj c Fi js2 j
1sy1Ž . Ž .Ž .Ý s y j d s s y 2 s y 1 d .js2 2
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Now we estimate the other term. We consider first the case s F n. Then

s

s y j q 1 gŽ .Ý j
js2

s

s s y j q 1 d d y dŽ . Ž .Ý j jy1 j
js2

s

s s y 1 d d q s y j q 1 d y s y j d y dŽ . Ž . Ž .Ž .Ý2 1 j jy1 n
js3

F d ??? d y d ,1 s s

s Ž . sy1Ž .from which we obtain the bound m s Ý s y j q 1 g q Ý s y j cs js2 j js2 j
Ž . Ž .F d ??? d y d q 4d ??? d y d F 2d ??? d . In the case s s1 s s 1 sy2 sy1 1 s

n q 1, we have that m s m q g , which implies that m Fnq1 n nq1 nq1
Ž . Ž .2d ??? d y d y d q d q d y 1 F 2d ??? d . On the other1 n n ny1 n nq1 1 n

1s Ž . Ž .hand, we have also the estimate Ý s y j q 1 g F s y 1 sdd , fromjs2 j 2
1 1Ž . Ž .Ž .where we conclude that m F s y 1 sdd q s y 2 s y 1 d Fs 2 2

2Ž .s y 1 dd holds, as stated.

w xTHEOREM 3.19. Let f , . . . , f g k x , . . . , x be homogeneous polyno-1 s 0 n
Ž .mials such that x lies in the radical of the ideal f , . . . , f . Let d [ deg f0 1 s i i

for i s 1, . . . , s and assume that d G ??? G d holds. Then1 s

x D g f , . . . , fŽ .0 1 s

holds, with D [ 2d Łmin�n, s4y1 d .s is1 i

Proof. After Lemmas 3.17 and 3.18, it only remains to consider the
case when some f has degree one.i

By assumption, f , . . . , f are ordered in such a way that d G ??? G d1 s 1 s
holds. Let r be maximum such that d G 2, so that the polynomialsr
f , . . . , f have all degree one. We can assume without loss of generalityrq1 s
that they are k-linearly independent. We can also suppose that neither 1
nor x lie in the k-linear space spanned by f , . . . , f , as if this is the0 rq1 s
case, the statement is trivial.

Let y , . . . , y g S be polynomials of degree one which complete0 nqrysy1
f , . . . , f to a linear change of variables. We suppose in addition thatrq1 s

w xy s x . Then the natural inclusion k y , . . . , y ¤0 0 0 nq ry sy 1
w x Ž .k x , . . . , x r f , . . . , f is an isomorphism. Let ¤ be a homogeneous0 n rq1 s i

w x Ž .polynomial in k y , . . . , y such that ¤ ’ f mod f , . . . , f for0 nqrysy1 i i rq1 s
Ž .i s 1, . . . , r. Then x lies in the radical of the ideal ¤ , . . . , ¤ of0 1 r

w xk y , . . . , y and deg ¤ F d holds for i s 1, . . . , r.0 nqrysy1 i i
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Let E denote the integer 2Ł r deg ¤ so that E F D [is1 i
min�n, s4y1 D Ž . D2d Ł d . Then x g ¤ , . . . , ¤ , from where it follows that xs is1 i 0 1 r 0

Ž .g f , . . . , f as stated.1 s

Then the degree bound announced in the Introduction follows from this
result by homogenizing the input polynomials and by considering the
degree of the polynomials in a representation of x D.0

Now we are going to prove Theorem 4. We introduce the notion of
algebraic degree of a polynomial system.

w xLet f , . . . , f g k x , . . . , x be polynomials without common zeros in1 s 1 n
n s=sŽ .A . Let l s l g k be an arbitrary s = s matrix with entries in k.i j i j

Ž .We note by h l the linear combinations Ý l f induced by the matrix li j i j j
for i s 1, . . . , s.

Consider the set G of s = s matrices such that, for any l in G, the
Ž . Ž . w xpolynomials h l , . . . , h l form a regular sequence in k x , . . . , x1 ty1 1 n

Ž Ž . Ž .. Ž . Ž .and 1 g h l , . . . , h l for some t s t l F min n, s . This set is1 t
s=snonempty, and in fact it contains a nonempty open set of k .

Ž . w xFor each l g G and i s 1, . . . , t y 1, we denote by J l : k x , . . . , xi 0 n
Ž Ž . Ž .. Ž .the homogenization of the ideal h l , . . . , h l . Then let d l denote1 i

Ž .the maximum degree of the homogeneous ideal J l for i s 1, . . . , t y 1.i
The algebraic degree of the polynomial system f , . . . , f is defined as1 s

d f , . . . , f [ min d l : l g G .� 4Ž . Ž .1 s

w x w xThe notion of geometric degree of 23 and 33 is defined in an
Ž .analogous way as the minimum of d l for l g G, with the additional

Ž .hypothesis in the definition of G that the ideals J l are radical fori
i s 1, . . . , t y 1. Another difference is that in the case when the character-

Ž .istic of k is positive, the polynomials h l are taken as linear combina-j
� 4tions of the polynomials x f .j i i j

w x w xThe notion of geometric degree of 16 is similar to that of 23, 33 ; the
only difference is that it is not defined as a minimum but as the value of
Ž .d l for a generic choice of l.
Thus the algebraic degree is bounded by the geometric degree, whichever

version of the latter one we consider. The following example shows that in
w xfact it can be much smaller. It is a variant of 23, Example 3 .

EXAMPLE 3.20. Let us consider the polynomial system

f [ 1 y x x d , f [ x y x d , . . . , f [ x y x d , f [ x 2
1 1 2 2 2 3 ny1 ny1 n n n

for some d G 2. It is easy to check that these polynomials have no
common zero in An. We are going to compute both the geometric degree

w xd }in the sense of 23, 33 }and the algebraic degree d for this particu-g a
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lar example. We obtain d s dny1 and d s 2 and thus we show that dg a a
can be much smaller than d in some particular instances.g

First, we consider the geometric degree. The polynomials f , . . . , f1 n
Ž . Ž .form a weak regular sequence, 1 g f , . . . , f and the ideal f , . . . , f1 n 1 i

Ž . iis radical for i s 1, . . . , n y 1. Then deg V f , . . . , f s d for i s 1, . . . ,1 i
n y 1, from where it follows d F dny1.g

Let h [ Ý l f be k-linear combinations of f , . . . , f for i s 1, . . . , l.i j i j j 1 n
Ž . Ž .Assume that 1 g h , . . . , h and that h , . . . , h is a radical ideal of1 n 1 i

dimension n y i for i s 1, . . . , l y 1. We are going to show that l s n and
Ž . ny1that deg V h , . . . , h G d .1 ny1

We can assume without loss of generality that the linear combinations
h are in staircase form in the sense of linear algebra. By this we meani

Ž . Ž .h s f q Ý a f with n 1 - ??? - n l . For our particular polyno-i nŽ i. j) nŽ i. i j j
mial system, this allows us to eliminate the variables x , . . . , x intonŽ1. nŽ l .
the equations h , . . . , h , as each variable x does not appear in f for1 l i j
j ) i. Thus when l F n y 1, the variety defined by h , . . . , h can be1 l
parametrized by expressing these variables as rational functions of the

Ž .other ones. It follows that h , . . . , h has dimension at least n y l. We1 l
Ž .deduce that l s n and that h , . . . , h is a radical ideal of dimension1 ny1

one.
Next, suppose first that h , . . . , h are invertible linear combinations1 ny1

ˆ Ž .of f , . . . , f , . . . , f for some 1 F i F n y 1. Then h , . . . , h s1 i n 1 ny1
ˆŽ .f , . . . , f , . . . , f , which is not radical, thus contradicting our assumptions.1 i n

Then h s f q a f for some a g k, if we assume again that the lineari i i n i
combinations h , . . . , h are in reduced form. We deduce that the curve1 ny1
Ž . Ž .V h , . . . , h is parametrized by a rational map t ‹ w t s1 ny1

ny iŽ Ž . Ž .. Ž .w t , . . . , w t , where w g k t is a rational function of degree d for1 n i
Ž . ny1i s 1, . . . , n. We get that deg V h , . . . , h s d , from where we1 ny1

deduce the lower bound d G dny1. Combining this with the previousg
estimate, we conclude d s dny1.g

Now we consider the algebraic degree. The polynomials f , . . . , f for an 1
Ž . Ž .weak regular sequence and 1 g f , . . . , f . We have that f , . . . , fn 1 n nyiq1

Ž 2 .s x , x , . . . , x for i s 1, . . . , n, from where it follows that d F 2.n ny1 nyiq1 a
In addition, any nontrivial linear combination h of f , . . . , f has degree at1 n
least two and so d G deg h G 2. We conclude that d s 2.a a

We obtain the following degree bound by direct application of Lemmas
3.17 and 3.18.

w xTHEOREM 3.21. Let f , . . . , f g k x , . . . , x be homogeneous polyno-1 s 0 n
Ž . amials such that x lies in the radical of the ideal f , . . . , f . Let f denote the0 1 s i

affinization of f for i s 1, . . . , s. Let d [ max deg f and let d denotei i i
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the degree of the polynomial system f a, . . . , f a. Then1 s

x D g f , . . . , fŽ .0 1 s

� 42holds, with D [ min n, s dd .

Then Theorem 4 follows from this result in the same way we derived
Theorem 3 from Theorem 3.19.

If we apply this degree bound to the previous example, we obtain that
w xthere exist g , . . . , g g k x , . . . , x satisfying1 n 1 n

1 s g f q ??? qg f ,1 1 n n

with deg g f F 2n2d for i s 1, . . . , s. In fact, we have the identityi i

1 s f q x x dy1 f q x x dy1 x dy1 f q ??? qx x dy1 ??? x dy1 x dy2 f .1 1 2 2 1 2 3 3 1 2 ny1 n n
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