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Abstract

We study the connection between ζ- and cutoff-regularized Casimir

energies for scalar fields. We show that, in general, both regularization

schemes lead to divergent contributions, and to finite parts which do not

coincide. We determine the relationships among the various coefficients

appearing in one approach and the other. As an application, we discuss

the case of scalar fields in d-dimensional boxes under periodic boundary

conditions.

PACS: 03.70.+k; 02.30.Tb; 11.10.Gh

1 Introduction

The task of extracting physically meaningful results from ill defined quantities
is a fundamental aspect of quantum field theory. Perhaps the simplest example
of this situation is the infinite zero point energy of quantum fields. In 1948,
Casimir showed [1] that neutral perfectly conducting parallel plates placed in
the vacuum attract each other. The basic idea behind the concept of Casimir
vacuum energy is that quantum fields always exist in the presence of external
constraints and their zero point field energy is thus modified. Such constraints
are idealized as conditions to be satisfied by modes of the field at the boundary
of a given manifold.

One of the procedures [2] used for computing Casimir energies is the direct
evaluation of infinite sums over zero modes. These sums, which are formally
divergent, may be regularized through various techniques [2],[3].

Recently, some work aiming at understanding the relationship between the
ζ function and exponential cutoff regularizations of Casimir energies for scalar

∗This work was partially supported by CONICET and Fundación Antorchas, Argentina
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fields was performed by the authors of references [4],[5]. In particular, in [5],
the connection between both regularizations was established, with the ad-hoc
condition that the cutoff-regularized energy presents only polar divergencies.
The ζ-regularized energy was then shown to be finite and its outcome was
proved to be identical to the energy regularized via cutoff, with polar terms
subtracted.

In this paper, we extend the study of the above-mentioned connection to the
most general case of physical interest : we only restrict the associated boundary
problem to guarantee that the energy eigenvalues of the field be real. Then,
we make use of some well known results concerning traces of heat kernels and
complex powers of differential operators [6], [7], [8] for such boundary problems.
We apply Mellin transform techniques to show that both regularizations lead,
in general, to divergences and that their finite parts do not coincide.

The paper is organized as follows :
Section 2 contains a presentation of the problem to be studied. There,

the formal expression for the Casimir energy of a scalar field through mode
summation is given. The associated boundary problem is defined and ζ and
cutoff regularizations are introduced.

In Section 3 , we present our main result : we show that under fairly general
conditions on the associated boundary problem [6],[7] (which guarantee the real
nature of the energy eigenvalues), the regularization via ζ function does not, in
general, lead to a finite result and -consequently- the exponential regularization
shows not only poles but also logarithmic singularities. The relationship among
the various coefficients in one regularization and the other is established. In
particular, finite parts are seen to differ in a well determined fashion.

Section 4 contains a simple example of application : the evaluation of the
Casimir energy for a massive scalar field in a d-dimensional box, subject to
periodic boundary conditions. Both regularization schemes are applied to the
cases d = 1 and d = 2, and their outcome is shown to agree with our general
result in Section 3. For this particular geometry, and under periodicity condi-
tions, the exponential and ζ regularizations are seen to be equivalent only after
a physically meaningful prescription is given in order to eliminate divergencies.

Finally, our conclusions are presented in Section 5.

2 Casimir energies for scalar fields through mode

summation

The evaluation of Casimir energies through the mode summation method in-
volves the direct performance of infinite sums over energy eigenvalues of the
zero point field modes [2], [3],

EC =
1

2

∑

n

ωn (1)
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The energy eigenvalues, ωn, depend on the dimension of the space-time, on
the spin of the field under consideration and on the boundary condition imposed
on it.

Let us consider the case of a free scalar field in a d+1- dimensional space-time
manifold

M(d+1 ) = R ×M (2)

where M is a smooth compact d-dimensional manifold with smooth boundary
∂M .

After separation of variables, the energy eigenvalues turn out to be

ωn = λ1/2
n (3)

where the λn satisfy [3] the associated boundary problem

DBϕn =

{

Dϕn = λnϕn

BTϕn = 0
(4)

Here, D is a second order operator on M , B is a tangential operator (which
we will take to be differential), defining boundary conditions and T is the re-
striction map, which assigns to each section its Cauchy data at ∂M .

In what follows, we will refer to the boundary problem (4) as (D,B). It is
clear that, in order for the ωn to make sense as physical energies, the eigenvalues
λn must be real and positive, which can be achieved by imposing certain well
known conditions [6], [7] (to be specified in the next section) on the boundary

problem (D,B). As we will see, such conditions also imply that ωn →
n → ∞

∞

and that they are O
(

n1/d
)

for n large.
Thus, the mode summation (1) is divergent , and a meaning must be given to

it through some regularization scheme. In this paper we will be concerned with
two of these methods : the exponential cutoff and ζ function [9] regularizations.

In the first case, one defines,

Eexp ≡ µ

2

∑

n

λ
1/2
n

µ
e−t

λ
1/2
n
µ

⌋

t=0

= −µ

2

d

dt

(

h

(

t,
DB

µ2

))⌋

t=0

(5)

where

h

(

t,
DB

µ2

)

=
∑

n

e−t
λ
1/2
n
µ = Tr

(

e−
t
µD

1/2

B

)

(6)

and µ is a parameter with dimensions of mass, introduced in order to render t
dimensionless.
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As regards ζ function regularization [9], the Casimir energy is defined as

Eζ ≡ µ
2

∑

n

(

λn

µ2

)− s
2

⌋

s=−1

= µ
2 ζ
(

s
2 ,

DB

µ2

)⌋

s=−1

= µ
2Tr

(

DB

µ2

)− s
2

⌋

s=−1

(7)

From the already mentioned behaviour of λn it is easy to see that the sum

in (7) is convergent for Re(s) large enough. So, ζ
(

DB

µ2 , s
2

)

is holomorphic in

the same region. As we will see in the next section, it can be extended to the
hole s plane as a meromorphic function, with only single poles. The ζ function
regularized energy is then defined as the value of this meromorphic extension
at s = −1. Here, a parameter µ has again been introduced, this time in order
to render the ζ function dimensionless [10].

It will be the subject of the next section to establish the behaviour of Casimir
energies regularized in both fashions, and to give the precise relationship be-
tween divergent and finite parts appearing in one scheme and the other, thus
generalizing the result in reference [5]. We will also show that both regulariza-
tions are not, in general, equivalent (i.e., finite parts differ). A particular case
will be studied in Section 4, where they will be shown to give the same result
after an adequate prescription is imposed to eliminate divergencies.

3 Equivalence between regularizations

In this section we present our main result. We study, under fairly general condi-
tions (which are those of physical interest), the connection between exponential
and ζ function regularizations of Casimir energies for scalar fields. We establish
the relationships among coefficients appearing in one case and the other.

Before going to our main result, we reproduce, without proof, some well
known facts concerning elliptic boundary problems [6],[7], as applied to the case
of interest :

Lemma 1
Let M be a smooth compact d-dimensional manifold, with smooth boundary

∂M . Let D be an elliptic second order partial differential operator, and let B
be a tangential differential operator over ∂M .

If the boundary problem (D,B) is self-adjoint and elliptic with respect to
C −R+ (i.e., it has an Agmon’s cone [11] including the negative axis), then :

a) We can find a complete orthonormal system {φn}∞n=1 with Dφn = λnφn.
b) φn satisfy the boundary condition BTφn = 0 (here, T is the restriction

map, which assigns to any smooth section its Cauchy data).
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c) λn ∈ R and limn→∞ |λn| = ∞. If we order the λn such that |λ1| ≤ |λ2| ≤
· · ·, then there exists n0 so that |λn| > n

2
d for n > n0.

d) The λn are bounded from below and spec (DB) is contained in [−C,∞]
for some constant C.

(In what follows we will assume, without loosing generality that spec (DB)
is positive).

Lemma 2
Under the conditions of the previous lemma [7] :

a) Y
(

t, DB

µ2

)

= Tr

(

e
−t

DB
µ2

)

is holomorphic in a sector Vθ0 (for some θ0 ∈
(

0, π2
)

, Vθ0 =
{

t = reiθ/r > 0, |θ| < θ0
}

.

b) Y
(

t, DB

µ2

)

has the asymptotic expansion : Y (t) ∼
∞
∑

j=0

ajt
j−d
2 , for

t → 0 uniformly for t ∈ Vδ, for each δ < θ0.
Here, the aj can be evaluated from Seeley’s coefficients [7], including volume

as well as boundary contributions.

c) Y
(

t, DB

µ2

)

decreases exponentially for |t| → ∞ in Vδ.

Lemma 3
Under the same conditions [7],[12] :
a)

Γ
(s

2

)

ζ

(

s

2
,
DB

µ2

)

= Γ
(s

2

)

Tr

(

(

DB

µ2

)− s
2

)

=

∫ ∞

0

t
s
2
−1Y

(

t,
DB

µ2

)

dt (8)

is the Mellin transform of Y (t, DB

µ2 ). It is holomorphic for Re(s) > d and extends
to a meromorphic function, with isolated simple poles :

Γ
(s

2

)

ζ

(

s

2
,
DB

µ2

)

=

∞
∑

j=0

2aj
s+ j − d

+ r
(s

2

)

(9)

where r
(

s
2

)

is an entire function.
b) For each real c1, c2 and each δ < θ0,
∣

∣

∣

∣

Γ
(s

2

)

ζ

(

s

2
,
DB

µ2

)∣

∣

∣

∣

≤ C (c1, c2, δ) e
−δ|Im s

2 | ,
∣

∣

∣
Im

s

2

∣

∣

∣
≥ 1, c1 ≤ Re

s

2
≤ c2

(10)
With these elements at hand, we are now able to prove the following Lemma,

which is the basis of our main result :
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Lemma 4
Under the same assumptions as before :

a) h
(

t, DB

µ2

)

= Tr
(

e−
t
µD

1/2

B

)

=
∑

n
e−t

λ
1/2
n
µ has the asymptotic expansion

h
(

t, DB

µ2

)

∼
d
∑

k=0

Γ( k+1

2 )
Γ( 1

2 )
ad−k

(

t
2

)−k
+

∞
∑

k=1

Γ(−k+ 1
2 )

Γ( 1
2 )

ad+2k

(

t
2

)2k

+
∞
∑

k=1

(−1)k−1

Γ( 1
2 )Γ(k)

(

t
2

)2k−1
[

r
(

−k + 1
2

)

+ ad+2k−1

(

Ψ(1)−
k−2
∑

l=1

1
l−k+1

)

+
∑

j 6=d+2k−1

2aj

j−d−2k+1 − 2ad+2k−1 ln
(

t
2

)

]

(11)

for t → 0, uniformly for t ∈ Vδ, for each δ < θ0.

Proof
Notice, in the first place, that

Γ (s) ζ

(

s

2
,
DB

µ2

)

=

∫ ∞

0

ts−1h

(

t,
DB

µ2

)

dt (12)

is the Mellin transform of h
(

t, DB

µ2

)

. Now,

Γ (s) ζ
(

s
2 ,

DB

µ2

)

= Γ(s)

Γ( s
2 )

[

Γ
(

s
2

)

ζ
(

s
2 ,

DB

µ2

)]

=

= 2s−1

√
π
Γ
(

s+1
2

)

[

Γ
(

s
2

)

ζ
(

s
2 ,

DB

µ2

)]

(13)

From Lemma 3 a), and the well known singularity structure of Γ
(

s+1
2

)

, it
turns out that (13) is holomorphic for Res > d, and

h

(

t,
DB

µ2

)

=
1

2πi

c+i∞
∫

c−i∞

ds t−s 2
s−1

√
π
Γ

(

s+ 1

2

)[

Γ
(s

2

)

ζ

(

s

2
,
DB

µ2

)]

, c > d

(14)

Moreover, from Lemma 3 b), together with the fact that Γ
(

s+1
2

)

isO
(

e(−
π
2
+ǫ)|Im s

2 |
)

,

for any ǫ > 0, an asymptotic expansion for h
(

t, DB

µ2

)

can be obtained by shifting

the contour of integration in (14) past the poles of Γ
(

s+1
2

)

[

Γ
(

s
2

)

ζ
(

s
2 ,

DB

µ2

)]

.

These poles are located at s = d− j.
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For s = d− j = k ≥ 0 (j ≤ d) they are simple poles, and they contribute
to the Cauchy integral with

Γ
(

k+1
2

)

Γ
(

1
2

) ad−k

(

t

2

)−k

, k = 0, 1, . . . , d (15)

For s = d− j = −2k (k = 1, 2, . . .) they are also simple, and their contri-
bution is

Γ
(

−k + 1
2

)

Γ
(

1
2

) ad+2k

(

t

2

)2k

, k = 1, 2, . . . (16)

For s = d− j = − (2k − 1) (k = 1, 2, . . .) they are simple and double poles,
which contribute :

(−1)
k−1

Γ
(

1
2

)

Γ (k)

(

t

2

)2k−1


r

(

−k +
1

2

)

+
∑

j 6=d+2k−1

2aj
j − d− 2k + 1



 (17)

(−1)k

Γ
(

1
2

)

Γ (k)

(

t

2

)2k−1

ad+2k−1

[

2 ln

(

t

2

)

−
(

Ψ(1)−
k−2
∑

l=1

1

l − k + 1

)]

(18)

(Notice that the last sum in (18) is to be included whenever it makes sense).
So, shifting the path of integration in (14) up to, and including, the singu-

larity at s = −2K we have,

h
(

t, DB

µ2

)

=
d
∑

k=0

Γ( k+1

2 )
Γ( 1

2 )
ad−k

(

t
2

)−k
+

K
∑

k=1

Γ(−k+ 1
2 )

Γ( 1
2 )

ad+2k

(

t
2

)2k

+
K
∑

k=1

(−1)k−1

Γ( 1
2 )Γ(k)

(

t
2

)2k−1
[

r
(

−k + 1
2

)

+ ad+2k−1

(

Ψ(1)−
k−2
∑

l=1

1
l−k+1

)

+
∑

j 6=d+2k−1

2aj

j−d−2k+1 − 2ad+2k−1 ln
(

t
2

)

]

+ ρK (t)

(19)

The remainder ρK (t) is given by an integral like (14), but with c < −2K
which, as a result of Lemma 3 b) and the estimate for

∣

∣Γ
(

s+1
2

)∣

∣ already dis-

cussed, is O
(

∣

∣

t
2

∣

∣

2K+1−ǫ
)

, which completes the proof.

This asymptotic development can be differentiated term by term, to obtain
an asymptotic development for dh

dt . When evaluated at t = 0, it gives for the
Casimir energy,

Eexp = −µ
2

dh
(

t,
DB
µ2

)

dt

⌋

t=0

= −µ
2

d
∑

k=1

(−k)
Γ( k+1

2 )
2−kΓ( 1

2 )
ad−k (t)

−k−1

⌋

t=0

− µ

4Γ( 1
2 )

[

r
(

− 1
2

)

+ ad+1 (Ψ (1)− 2) + 2
∑

j 6=d+1

aj

j−d−1

]

+ µ
2

ad+1

Γ( 1
2 )

ln
(

t
2

)

(20)
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As concerns the Casimir energy regularized via zeta function, from (9) it can
be seen to be given by

Eζ = µ
2 ζ
(

s
2 ,

DB

µ2

)⌋

s=−1
= µ

2Γ(− 1
2 )

∑

j 6=d+1

2aj

j−d−1 + µ

2Γ(− 1
2 )
r
(

− 1
2

)

+ µ

Γ( s
2 )

ad+1

s+1

⌋

s=−1

=

= − µ

2Γ( 1
2 )

∑

j 6=d+1

aj

j−d−1 − µ

4Γ( 1
2 )
r
(

− 1
2

)

+ µ

2Γ( 1
2 )
ad+1

(

Ψ(1)
2 + 1− ln 2

)

− µ

2Γ( 1
2 )

ad+1

s+1

⌋

s=−1

(21)

From (20) and (21) the following conclusions concerning Casimir energies
for scalar fields in a d+ 1-dimensional space-time can be drawn :

1) Both regularization methods do, in principle, give rise to divergent contri-
butions. If the coefficient ad+1 vanishes, the zeta function regularization gives a
finite result, which coincides with the finite part of the energy obtained through
exponential regularization. On the other hand, this last regularization method
presents poles of order 2, 3, . . ., d+ 1, the coefficient of the pole of order k + 1

being Γ (k + 1) times the residue of µ
2 ζ
(

s
2 ,

DB

µ2

)

at s = k (k = 1, . . . , d).

2) In the general case (ad+1 6= 0), the exponential regularization shows -
appart from polar singularities - a logarithmic divergence , with a coefficient

that equals minus the residue of µ
2 ζ
(

s
2 ,

DB

µ2

)

at s = −1. Moreover, the finite

parts appearing in one and the other regularization scheme then differ by terms
proportional to ad+1. The difference between the finite part obtained through
exponential regularization and the one obtained via ζ is given by

− µ

2

ad+1√
π

Ψ(1) =
µ

2

ad+1√
π

γ (22)

where γ is the Euler-Mascheroni constant.
Before ending this section, it is worth pointing out that our results are,

of course, valid in the case of a boundaryless manifold M . In this case, the
conditions on the boundary problem reduce to the requirement that the operator
D be self adjoint, with a positive definite principal symbol. The coefficients aj
then include only volume contributions, which vanish for j odd [6], [8].
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4 A simple example: massive scalar field in a

d-dimensional box

As a simple example of the results just obtained we study, in this section, the
Casimir energy of a massive scalar field through ζ and exponential regulariza-
tions, and compare the results with the general predictions just made. We will
consider the field to satisfy the Klein-Gordon equation

(

∂2 +m2
)

ϕ (x) = 0 (23)

inside a d-dimensional spatial box of finite dimensions L1, L2, . . . , Ld (d ≥ 1).
Moreover, periodic boundary conditions

ϕ (t, Li) = ϕ (t, 0) , i = 1, . . . , d (24)

will be imposed in each spatial direction. (Notice that this problem is equivalent
to a boundaryless one).

After separation of variables, the modes of the field are easily seen to be given
by the square roots of the eigenvalues of the d-dimensional Laplacian (Dper).

ωn1...nd
=

[

m2 +

(

2n1π

L1

)2

+ . . .+

(

2ndπ

Ld

)2
]1/2

, n1, . . . nd ∈ Z (25)

(In the massless case, the mode n1 = . . . = nd = 0 must be excluded, since it
gives no contribution to the Casimir energy).

A meromorphic extension for Γ
(

s
2

)

ζ
(

s
2 ,

Dper

µ2

)

can be obtained through Ja-

cobi’s inversion formula. Such extension is given by [3]

Γ
(

s
2

)

ζ
(

s
2 ,

DPer

µ2

)

= L1...Ld

π
d
2

(

µ
2

)d
[

(

m
µ

)−(s−d)

Γ
(

s−d
2

)

+2
(

µ
m

)
s−d
2

∞
∑

n1=−∞
· · ·

∞
∑

nd=−∞
′
[

(

n1L1µ
2

)2

+ . . .+
(

ndLdµ
2

)2
]

s−d
4

K d−s
2

(

2m
(

(

n1L1

2

)2
+ . . .+

(

ndLd

2

)2
)

1
2

)]

(26)

where the prime indicates that the term where all ni = 0 is to be omitted.
The last term in (26) is analytic in the hole s plane. The first one has poles

at s = d− 2k (k = 0, 1, . . .).
Thus, comparison with (9) shows that, in this case, aj = 0 for j odd, which

is consistent with our comment at the end of the previous section. As regards
a2k, they can be easily seen to be given by

aj=2k =
(−1)k

k!

(µ

2

)d L1 . . . Ld

π
d
2

(

m

µ

)2k

, k = 0, 1, . . . (27)

9



At this stage, some general conclusions can be drawn (for m 6= 0), from our
result in Section 3 :

- If the space is even dimensional, then ad+1 = 0; the Casimir energy will be
finite when calculated through ζ function regularization, while the exponential
regularization will show poles. Finite parts will then coincide.

- On the other hand, if d is odd, ad+1 6= 0 . Both regularizations will in
this case present divergencies. These will show up as a pole at s = −1 in
the ζ-regularized version, and a logarithmic singularity as well as poles in the
exponential one. Finite parts will differ by (22). However, being the divergent
terms proportional to the volume of the box, they can be subtracted through a

physically meaningful prescription (E →
L1 . . . Ld → ∞

0) [1],[3][13]. This same

prescription leaves finite results which are coincident; it is in this sense that
equivalence between both regularizations is to be understood in this particular
example.

It should be remarked here that, being all aj (j 6= 0) proportional to positive
powers of the mass, the massless case is particular : in such case, the ζ function
will only present a pole at s = d, and the ζ-regularized Casimir energy will thus
be finite in any dimension, while the exponential regularization will only show
a pole of order d+ 1, both finite parts being coincident.

4.1 Casimir energy for d = 1

From (21) and (26), the ζ-regularized Casimir energy turns out to be

E
(1)
ζ = −m

π

∞
∑

n=1

1

n
K1 (nmL) +

Lµ2

4
√
π

(

m

µ

)1−s Γ
(

s−1
2

)

Γ
(

s
2

)

⌋

s=−1

(28)

which is divergent at s = −1 as already discussed.
By developing the last term around s = −1, we get

E
(1)
ζ = −m

π

∞
∑

n=1

1

n
K1 (nmL) +

m2L

4π

(

1

s+ 1

⌋

s=−1

− ln

(

m

2µ

)

− 1

2

)

(29)

As regards exponential regularization

E(1)
exp = −µ

2

d

dt

( ∞
∑

n=−∞
e
−t
(

( 2nπ
Lµ )

2
+(m

µ )
2
) 1

2

)⌋

t=0

(30)

The series can be evaluated making use of Poisson’s summation formula (see
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Appendix 1) and, after differentiating, one gets

E
(1)
exp = −m

π

∞
∑

n=1

1
nK1 (nmL)

+m2L
4π

(

− ln (t)− ln
(

m
2µ

)

+ 2
(

mt
µ

)−2

− γ − 1
2

)⌋

t=0

(31)

Comparison among the various coefficients (both in divergent as well as in
finite parts) in (29) and (31) shows a complete agreement with our results in

Section 3. When the prescription E(1) →
L → ∞

0 is imposed, the physically

meaningful Casimir energy turns out to be

E
(1)
Cas = −m

π

∞
∑

n=1

1

n
K1 (nmL) (32)

in the framework of both regularization schemes. This remaining finite result
can be easily seen to decay exponentially with L. On the other hand, divergences
as well as finite parts proportional to L have been subtracted as a consequence
of the forementioned prescription, which amounts to adding a ”constant ” to
the energy density.

4.2 Casimir energy for d = 2

Again, from (21) and (26), the ζ-regularized Casimir energy is given by

E
(2)
ζ = −L1L2

23π
3
2

∞
∑

n1=−∞

∞
∑

n2=−∞
′
(

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)− 3

2

K 3
2

(

2m

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)

+µ3

23
L1L2

π

(

m
µ

)−(s−2) Γ( s−2

2 )
Γ( s

2 )

⌋

s=−1

=

= −L1L2

23π
3
2

∞
∑

n1=−∞

∞
∑

n2=−∞
′
(

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)− 3

2

K 3
2

(

2m

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)

−L1L2m
3

12π
(33)
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The exponentially regularized Casimir energy is

E(2)
exp = −µ

2

d

dt





∞
∑

n1=−∞

∞
∑

n2=−∞
e
−t

(

(

2n1π

L1µ

)2

+
(

2n2π

L2µ

)2

+(m
µ )

2

) 1
2













t=0

(34)

The double series can again be calculated by repeated use of Poisson’s formula
(see Appendix 2). After differentiating, we get

E
(2)
exp = −L1L2

23π
3
2

∞
∑

n1=−∞

∞
∑

n2=−∞
′
(

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)− 3

2

K 3
2

(

2m

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)

−L1L2m
3

12π + L1L2µ
3

2πt3

⌋

t=0

(35)

As predicted, the ζ regularization gives a finite result, which coincides with
the finite part in the exponential regularization. This last regularization presents
a single pole of order d + 1 = 3, whose coefficient coincides with Γ (3) times

the residue of E
(2)
ζ at s = 2 as expected. After applying the prescription

E(2) →
L1L2 → ∞

0 the divergence is eliminated, and a finite piece -proportional

to the volume- is also discarded; we thus get

E
(2)
Cas = −L1L2

23π
3
2

∞
∑

n1=−∞

∞
∑

n2=−∞
′
(

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)− 3

2

K 3
2

(

2m

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)

(36)

which, as in the d = 1 case, decays exponentially when the volume increases.

5 Conclusions

In this paper, we have studied the connection between ζ and cutoff regular-
izations of Casimir energies for scalar fields in a space-time R ×M , with M a
d-dimensional manifold with or without boundary.

Under fairly general conditions on the associated boundary problem (which
are those of physical interest), we have shown that, in general, both regular-
izations lead to divergent terms. These divergencies appear as a simple pole
when regularizing via ζ, and are logarithmic as well as polar in the exponential
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regularization. Moreover, finite parts do not in general coincide. We have also
determined the precise relationship among the various coefficients appearing in
one case and the other.

As an example of application, we have evaluated Casimir energies for a scalar
field in a d-dimensional box, under periodic boundary conditions. In this par-
ticular example, the ζ function turns out to be finite, in the massive case, for
d even and, in the massless case, for any dimension. For whatever dimension,
both regularizations have been shown to be equivalent once the same prescrip-

tion (EC →
V → ∞

0, with V the volume of the box) is imposed to eliminate

infinities. We have performed the calculation of the energy with exponential
regularization, and we have verified the agreement with our general result in
the cases d = 1 and 2. Although we haven’t found the energy via Poisson’s
formula for d > 2 (the process becomes increasingly tedious as the space di-
mension grows up), it is possible, by using the relationships among coefficients
determined in Section 3, to obtain the exact result of the exponential regular-
ization for whatever dimension, from the energy obtained via zeta function.

The extension of these results to fields with other spins is at present under
study.

The authors acknowledge M. De Francia, H. Falomir, R.E. Gamboa Sarav́ı
and M.A. Muschietti for useful comments and discussions.

Appendix 1- Poisson sum for d = 1

In this appendix, we derive (31) for the exponentially regularized Casimir energy,
making use of Poisson’s formula :

∞
∑

n=−∞
f (n) =

∞
∑

p=−∞
cp (37)

with

cp =

∫ ∞

−∞
dxe2πipxf (x) (38)

When applied to the calculation of h
(

t, DB

µ2

)

, it gives

h

(

t,
DB

µ2

)

=

∞
∑

n=−∞
e
−t
(

( 2nπ
Lµ )2+(m

µ )
2
) 1

2

=

∞
∑

p=−∞
cp (t) (39)
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where

cp (t) =
∫∞
−∞ dxe

2πipx−t
(

( 2nπ
Lµ )2+(m

µ )
2
) 1

2

=

= Lµ
π

∫∞
0

dx cos (Lµpx) e
−t
(

x2+(m
µ )

2
) 1

2

=

= mL

π
√

1+(Lµp
t )2

K1

(

m
µ

√

t2 + (Lµp)2
)

(40)

By replacing (40) into (39) and taking the derivative, we get

− µ

2

d

dt
h

(

t,
DB

µ2

)

= −µ

2

d

dt

(

2
∞
∑

p=1

cp (t) + c0 (t)

)

(41)

Recurrence relations and ascending series for modified Bessel functions then
give (31).

Appendix 2- Poisson sums for d = 2

In order to derive (35), we make repeated use of Poisson’s formula, as given by
(37) and (38).

In this case we have

h

(

t,
DB

µ2

)

=

∞
∑

n1=−∞

∞
∑

n2=−∞
e
−t

(

(

2n1π

L1µ

)2

+
(

2n2π

L2µ

)2

+(m
µ )

2

) 1
2

(42)

We first perform the sum over n2 in the same fashion as in Appendix 1, to
obtain

h
(

t, DB

µ2

)

=

∑∞
n1=−∞

∑∞
p=−∞

L2µt
π

√

(

2n1π

L1µ

)2

+(m
µ )

2

√
t2+(L2µp)

2
K1

(√

[

(

2n1π
L1µ

)2

+
(

m
µ

)2
]

[

t2 + (L2µp)
2
]

)

(43)
Now, due to the convergence properties of the double sum, the summation

order can be interchanged, and Poisson’s formula can again be used to obtain

h

(

t,
DB

µ2

)

=

∞
∑

p=−∞

L2µ

π

t
√

t2 + (L2µp)
2

∞
∑

k=−∞
ck (t) (44)
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with

ck (t) =
L1µ√
2π

√

t2 + (L2µp)
2
(

m
µ

)
3
2
[

t2 + (L2µp)
2
+ (L1µk)

2
]− 3

4

K 3
2

(

m
µ

√

t2 + (L2µp)
2
+ (L1µk)

2

)

(45)

Again, (44) can be differentiated term by term in a straightforward although
tedious calculation, and recurrence formulas for modified Bessel functions can
be used to get

−µ
2

d
dth

(

t, DB

µ2

)⌋

t=0
= −µ

2
d
dt

(

∑∞
p=−∞

∑∞
k=−∞

′ L2µ
π

t√
t2+(L2µp)

2
ck (t) +

L2µ
π c0 (t)

)⌋

t=0

= −L1L2

23π
3
2

∞
∑

n1=−∞

∞
∑

n2=−∞
′
(

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)− 3

2

K 3
2

(

2m

√

(

n1L1

2

)2
+
(

n2L2

2

)2
)

−L1L2m
3

12π + L1L2µ
3

2πt3

⌋

t=0
(46)
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