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Monopoles in non-Abelian Dirac-Born-Infeld theory
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We investigate monopole solutions for the Born-Infeld Higgs system. We analyze numerically these solu-
tions and compare them with the standard ’t Hooft–Polyakov monopoles. We also discuss the existence of a
critical value of b ~the Born-Infeld ‘‘absolute field parameter’’! below which no regular solution exists.
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PACS number~s!: 11.27.1d, 11.15.2q
I. INTRODUCTION

Classical solutions for the Dirac-Born-Infeld ~DBI! theo-
ries are useful in the understanding of brane dynamics @1–3#.
In this respect, bions and soliton-like solutions have recently
attracted much attention @2–4#; in particular, vortex and
monopole solutions have been investigated @2–7#.

Concerning monopoles, it was shown in @6# that it is pos-
sible to construct a DBI action coupled to a Higgs scalar in
such a way that the usual Bogomol’nyi-Prasad-Sommerfield
~BPS! monopole solution to the Yang-Mills-Higgs theory
also solves the resulting ~first-order! equations of motion. To
this end, one has to endow the Higgs field with dynamics
also described by a square-root Born-Infeld like Lagrangian
and also consider Prassad-Sommerfield l→0 limit for the
symmetry breaking potential. The solution being that of a
BPS monopole, one does not capture any features associated
with Born-Infeld dynamics and, in particular, the resulting
solution is insensitive to the value of b , the ‘‘absolute field’’
parameter in Born-Infeld models. In contrast, a critical value
bc was discovered in a previous investigation of vortex so-
lutions in Abelian DBI theories @7#, such that no soliton so-
lution exists for b<bc , thus showing how DBI dynamics
determines the nature of soliton solutions.

It should be stressed that our main interest is to investi-
gate the existence of topologically non-trivial regular mono-
pole solutions in Dirac-Born-Infeld theories. This requires
the gauge group to be non-Abelian and faces us with the
choice of an appropriate trace operation to define a DBI sca-
lar action. Moreover, a Higgs scalar has to be introduced in
order to ensure symmetry breaking and the consequent non-
triviallity of the homotopy group related to magnetic charge.

In this work we shall discuss monopole solutions in
SO(3) DBI gauge theories coupled to a Higgs triplet which
enters through the usual kinetic energy term, LHiggs
;tr(DmfDmf). Concerning the way in which the non-
Abelian DBI scalar Lagrangian is defined, there exist differ-
ent possibilities, among which we consider taking ~i! the
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usual trace over internal indices of the square root DBI La-
grangian defined through its power series expansion and ~ii!
the ‘‘symmetric trace’’ advocated by Tseytlin @8# as a way to
make contact with the low energy effective action derived
from superstring theories.

Concerning the scalar action, bion and catenoid solutions
for DBI actions with scalars arising from the ‘‘transverse
cordinates’’ of the DBI action taken as a brane action have
been discussed @2#. Here, instead, we consider the addition to
the gauge field DBI action of the ‘‘usual’’ Higgs field La-
grangian seeking for regular monopole solutions in contrast
with bion-like singular solutions needing sources. This
choice of Lagrangian implies that the solutions we find do
not have a direct application to string theory. However, un-
derstanding the peculiarities of DBI monopole solutions for a
Lagrangian as the one we choose may help to understand
solutions arising when separated branes are considered in
such a way that the gauge symmetry is spontaneously broken
~see @2#, Sec. VII B!.

The paper is organized as follows: we present in Sec. II
the SO(3) DBI-Higgs action, discuss the spherically sym-
metric Ansatz and derive the radial equations of motion both
for the usual and the symmetric trace. In Sec. III we describe
our numerical solutions and discuss their main properties.
We give in Sec. IV analytical arguments giving support to
the existence of critical values for b below which the mono-
pole solution ceases to exist. Finally we present in Sec. V a
summary of our results and the conclusions.

II. LAGRANGIAN AND THE MONOPOLE ANSATZ

The ’t Hooft–Polyakov monopole solution @9,10# to the
equations of motion of the Yang-Mills-Higgs Lagrangian
owes its existence and main properties to the non-Abelian
character of an Ansatz for the gauge and scalar fields, mixing
space-time and internal indices in such a way that ensures
topological non-triviality and regularity of the resulting so-
lution. In order to look for analogous solutions in the DBI
©1999 The American Physical Society14-1
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theory, one should necessarily start from a non-Abelian ver-
sion of the Born-Infeld theory and also decide how the Higgs
field will be coupled to the gauge field.

The definition of the DBI theory for a non-Abelian gauge
group is not unique and several alternatives have been dis-
cussed in the literature @8,11–16#. The simplest extension
amounts to defining the gauge field Lagrangian in the form

LDBI
tr 5b2trS 12A11

1

2b2 FmnFmn2
1

8b4 ~FmnF̃mn!2D .

~1!

Here Fmn is the field strength taking values in the Lie algebra
of the gauge group @which we take for simplicity as SO(3)],

Fmn5]mAn2]nAm1e@Am ,An# , ~2!

Am5Am
a ta5AW m• tW , tW5

sW

A2
, ~3!

F̃mn5
1
2 «mnabFab ~4!

and ‘‘tr’’ in Eq. ~1! represents the usual trace on SO(3)
indices, with generators normalized so that

tr~ tatb!5dab. ~5!

However, unlike the Abelian case, expression ~1! cannot be
written in the familiar form L’A2det(I1F).

A second possibility is precisely to define the Born-Infeld
Lagrangian in terms of a determinant and then making con-
tact with the tree level open string effective action for branes
@8#,

LDBI
Str 5b2StrF12A2detS gmn1

1
b

FmnD G . ~6!

In this case the determinant is computed over the space-time
indices and the trace over the internal indices, denoted by
‘‘Str,’’ is the symmetric trace operation defined as

Str~ t1 ,t2 , . . . ,tN![
1

N! (
p

tr~ tp(1)tp(2)•••tp(N)! ~7!

with the sum extending over all permutations p of the prod-
uct of N given t’s.

Of course, gmn in Eq. ~6! is the 311 usual Minkowski
space-time metric, gmn5diag(1,21,21,21), and not the
pullback of the (d11)-dimensional Minkowski metric to the
(p11) dimensional world volume of the p-brane. It should
be mentioned that odd powers of the field strength F are
absent from the expansion of LStr , this implying that F ~al-
though possibly large! should be slow varying since F3

;@D ,D#F2. In this sense using Str amounts to some kind of
Abelian approximation. It should be noted that some un-
solved problems related to the use of a symmetric trace have
been signaled. They refer to discrepancies between the re-
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sults that arise from a symmetrized non-Abelian Born-Infeld
theory and the expected spectrum of brane theories @12#.

By expanding the determinant in Eq. ~6! we can write the
DBI Lagrangian as

LDBI
Str 5b2StrS 12A11

1

2b2 FmnFmn2
1

8b4 ~FmnF̃mn!2D
~8!

which only differs from the Lagrangian ~1! in the prescrip-
tion of the trace operation. Notice however that in spite of its
apparent similarity both forms are operationally extremely
different. In the Lagrangian ~1! the square root can be ex-
panded in power series, eventually ressumed, and then the
trace can be taken. However, in the Lagrangian ~8! the re-
summation can only be done after taken the symmetric trace
since the Str operation has only sense acting on the series
expansion.

Apart from this alternatives related to the way the trace
operation is defined, one has to decide how the Higgs field
dynamics is introduced. In previous analysis, DBI mono-
poles were constructed by demanding that the usual Yang-
Mills-Higgs BPS relations also hold in the DBI case @6#. This
amounts to define a Higgs field Lagrangian in a Born-Infeld-
like way ~i.e., also under a square root! in such a way that the
model has a supersymmetric extension @4,14–17#. The BPS
relations being the same as in the Yang-Mills-Higgs case, the
resulting DBI monopole solutions are identical to the well-
honored Prassad-Sommerfield exact solutions and have no
specific features resulting from the DBI dynamics. Instead,
we shall consider here the usual SO(3) Higgs field Lagrang-
ian and a symmetry breaking potential not necessarily in the
BPS limit. We then propose the following Lagrangian for the
Higgs field:

LHiggs5
1
2 DmfW •DmfW 2V@f# ~9!

with the scalar triplet written in the form

f5fata5fW • tW , ~10!

the symmetry breaking potential given by

V@f#5
l

4 ~fW •fW !22
m2

2 fW •fW ~11!

and the covariant derivative defined as

DmfW 5]mfW 1eAW m‘fW . ~12!

A. Equations of motion for LDBI-Higgs
tr

When the trace operation ‘‘tr’’ is used, the DBI-Higgs
Lagrangian reads
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LDBI-Higgs
tr

5b2trS 12A11
1

2b2 FmnFmn2
1

8b4 ~FmnF̃mn!2D
1

1
2 DmfW •DmfW 2V@f# . ~13!

From here on we shall consider purely magnetic configura-
tions for which FmnF̃mn50. Then the equations of motion
take the form

DmS FW mn

A11
1

4b2
FW mn

•FW mn
D 5efW 3DnfW , ~14!

DmDmfW 5m2fW 2lf2fW . ~15!

We shall consider the usual spherically symmetric ’t Hooft–
Polyakov Ansätze @9,10#

AW i~rW !5
K~r !21

e VW ‘] iVW , ~16!

AW 0~rW !50, ~17!

fW ~rW !5
H~r !

er VW , ~18!

VW 5VW ~u ,w!5
1
r rW , ~19!

with the appropriate boundary conditions for K and H,

lim
r→‘

K~r !50, lim
r→‘

1
r H~r !5

me
Al

~20!

together with the conditions at the origin:

K~0 !51, H~0 !50. ~21!

Inserting Ansätze ~16!–~18! into the equations of motion
~14!,~15! one gets

r2K92r2 R8

R K85K~RH21K221 !,

r2H952HK22m2r2HS 12
l

e2m2r2 H2D ~22!

where

R5A11
1

b2e2r4 S r2K821
1
2 ~K221 !2D . ~23!
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It will be convenient to define new dimensionless variables
and parameters,

r5
emr
Al

,

l05l/e2,

b05
bl

em2 , ~24!

so that one finally has

r2K95K~RH21K221 !1r2 R8

R K8, ~25!

r2H952HK22l0H~r22H2!, ~26!

R5A11
1

b0
2r4 S r2K821

1
2 ~K221 !2D . ~27!

With this Ansatz, we can write the energy for the mono-
pole solution in the form

E5
4pm

Ale
E drr2H 2b0

2~R21 !1
1

2r2

3F S H82
H
r D 2

1
2

r2 H2K2G1
l0

4 S H2

r2 21 D 2J .

~28!

This expression reduces to the ’t Hooft–Polyakov monopole
mass formula in the b→‘ limit, as expected.

The electromagnetic U(1) field strength Fmn is defined as
usual @9# in the form

Fmn5
1

ufu
fW •FW mn2

1

eufu3fW •~DmfW ‘DmfW !. ~29!

Now, since we are considering DBI dynamics, we have to
distinguish between the magnetic induction BW and the mag-
netic intensity HW ,

Bi5
1
2 « i jkFjk , Hi5

1
2 « i jkFjk

R . ~30!

Using Ansätze ~16!–~18! one easily finds that

Bi5
xi

er3 , ~31!

so that the magnetic flux at infinity,

F[E
S‘

2
dSiBi5

4p

e , ~32!
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corresponds to that of a unit magnetic monopole located at
the origin. The magnetic flux F can alternatively be defined
in terms of HW , this leading to the same answer ~32!.

B. Equations of motion for LDBI-Higgs
Str

When the symmetric trace operation is used, the DBI-
Higgs Lagrangian is defined as

LDBI-Higgs
Str

5b2StrS 12A11
1

2b2 FmnFmn2
1

8b4 ~FmnF̃mn!2D
1

1
2 DmfW DmfW 2V@f# . ~33!

Again we will only consider purely magnetic configurations;
so FmnF̃mn50. Because of the use of the symmetric trace,
deriving the equations of motion in this case becomes rather
involved. Indeed, one has first to expand the square root in
LStr in powers of 1/b2 and at each order N, consider the N!
terms which are included in Str. For example, up to order
1/b2 one has for the purely DBI Lagrangian

LDBI
Str 52

1
4FW mn•FW mn1

1

96b2 @~FW mn•FW mn!212~FW mn•FW rs!

3~FW mn
•FW rs!#1OS F6

b4D . ~34!
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Already at this order, this DBI Lagrangian differs from the
one arising when one expands LDBI

tr ,

LDBI
tr 52

1
4FW mn•FW mn1

1

32b2 ~FW mn•FW mn!21OS F6

b4D .

~35!

The 1/b4 term in the expansion of LDBI
Str involves 120 terms

containing the sixth power of the field strength, this making
the search of a solution using a numerical approach too com-
plicated. We shall here consider the problem to the 1/b2

order given in Eq. ~34! and analyze how the solution differs
from the one obtained using the more simple ‘‘tr’’ operation.

The equations of motion for the gauge field resulting from
Eq. ~34! read

DmS FW mn2
1

12b2 @~FW rs•FW rs!FW mn12~FW rs•FW mn!FW rs# D
5efW 3DW nf ~36!

while those associated to the Higgs field remain unchanged.
After using the spherically symmetric Ansätze ~16!–~18!,

Eq. ~36! becomes
K9~r!52@3K~r!26r4b0
2K~r!16r4b0

2H~r!2K~r!217K~r!316r4b0
2K~r!3145K~r!5271K~r!7170K~r!9

242K~r!11114K~r!1322K~r!1524rK8~r!18rK~r!2K8~r!24rK~r!4K8~r!12r2K~r!3K8~r!228rK8~r!3

24r3K8~r!3132rK~r!2K8~r!3248rK~r!4K8~r!3132rK~r!6K8~r!328rK~r!8K8~r!3212r2K~r!K8~r!4

136r2K~r!3K8~r!4236r2K~r!5K8~r!4112r2K~r!7K8~r!428r3K8~r!722r2K~r!K8~r!2#
1
S , ~37!

S5r2@126r4b222K~r!21K~r!416K8~r!216r2K8~r!2224K~r!2K8~r!2136K~r!4K8~r!2224K~r!6K8~r!2

16K~r!8K8~r!2128r2K8~r!6# ~38!
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while the equation for H(r) is still given by Eq. ~26!. Fi-
nally, the energy associated with the monopole is given by

E5
4pm

Ale
E drH 1

r2 S r2K821
1
2 ~K221 !2D2

1

6r6b0
2

3F S r2K821
1
2 ~K221 !2D 2

1S r2K841
1
2 ~K221 !4D 2G

1
1
2 F S H82

H
r D 2

2
2H2K2

r2 G2
l0

4 S H2

r2 21 D 2J 1O~b0
4!.

~39!

III. NUMERICAL RESULTS

To obtain a detailed profile of the monopole solution, we
solved numerically the differential equations ~25!–~27! for
the case of the trace operation ‘‘tr’’ and Eqs. ~37!, ~38!, and
~26! for the symmetric trace ‘‘Str’’. We employed a relax-
ation method for boundary value problems @18#. Such a
method determines the solution by starting with an initial
guess and improving it iteratively. The natural initial guess
was the exact Prassad-Sommerfield solution @19# ~which cor-
responds to l050 and b→‘).

A. Usual trace

For b*10, the solutions to Eqs. ~25!–~27! do not differ
appreciably from the ’t Hooft–Polyakov monopole solution
~see for example @20# for a plot of the ’t Hooft–Polyakov
solution!. As b decreases, the solution changes slowly: the
monopole radius decreases and the ~radial! magnetic field HW
concentrates at the origin. Some of the solutions profile are
depicted in Figs. 1 and 2.

For b;1 new features become apparent from our numeri-
cal analysis. In particular, we found that:

~1! For l050 the behavior of the Higgs field at large
distances depends on b ,

FIG. 1. Plot of the functions K(r) and H(r)/r ~in dimensionless
variables! for the monopole solution with l50. The solid line cor-
responds to the solution with b510 and the dashed line corre-
sponds to the the solution with b50.5.
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H~r !→f0r1c~b/m2! for r→‘ ~40!

@here f0 is the Higgs field vacuum expectation value ~VEV!
in the Prassad-Sommerfield limit#. Of course, for b→‘ ,
c(b/m2)→1 and one has the usual asymptotic behavior of
the Higgs field for the ’t Hooft–Polyakov monopole. For
finite b , however, it is interesting to note that the 1/r falloff,
which in the Yang-Mills-Higgs case is related to the mass-
less dilaton associated with the scale invariance of the BPS
regime, has now a b dependent coefficient.

~2! There is a critical value of b , which we shall denote as
bc , such that for b<bc there is no ~numerical! solution to
the equations of motion ~25!–~27!. Some values for bc are
bc50.41 for l050, bc50.62 for l050.5.

This peculiar characteristic of the solutions appears to be
a consequence of the high nonlinearity of the equations and
not a fictitious artifact of the numerical method. Moreover,
the energy of the solutions seems to be singular at b5bc
~see Fig. 3!.

FIG. 2. Plot of the functions K(r) and H(r)/r ~in dimensionless
variables! for the monopole solution with l50.5. The solid line
corresponds to the solution with b510 and the dashed line corre-
sponds to the the solution with b50.8.

FIG. 3. Energy of the monopole configuration as a function of b
for different values of l .
4-5
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B. Symmetric trace

For this case we solved Eqs. ~37!, ~38! and ~26! with the
same numerical approach. Since the equations are valid to
order 1/b2, our analysis cannot be reliable for small b . We
see that for b*4 the solutions do not differ notably from
those arising when the trace operation ‘‘tr’’ is considered.
The profile of the solutions are indistinguishable from the
solid-line curves of Figs. 1 and 2. In view of our approxima-
tion, we could not analyze the region where one expects the
existence of bc in this case.

The use of the Str prescription makes the equations of
motion so involved as to prevent an exact treatment similar
to that developed for the normal trace. In particular, even
when the fields take the simplified form of the ’t Hooft–
Polyakov Ansatz, the series expansion of the square root of
Eq. ~33! cannot be resummed as in the normal trace case and
the Born-Infeld Lagrangian only makes sense as an infinite
series. The approximate treatment shows, however, that the
main properties of the monopole solution are common to
both prescriptions although it does not guarantee the exis-
tence of a critical value bc .

IV. ANALYSIS OF bc

As noted in the Introduction, the existence of a critical
value of the absolute field, below which the solution to the
equations of motion of the DBI-Higgs system ceases to exist,
was already noticed for vortices in the Abelian case @7# and
should be considered as a distinctive feature of soliton solu-
tions in DBI theories.

In order to better understand the origin of bc let us intro-
duce the following scaling argument. For a monopole-like
solution, there is a characteristic radius RW that can be asso-
ciated with the monopole core; outside this core, the gauge
field approaches its asymptotic value. For Yang-Mills-Higgs
monopoles ~or Nielsen-Olesen vortices!, this radius should
be necessarily related to m , the sole parameter carrying di-
mensions RW;1/m . The size RW is fixed so as to minimize
the sum of the energy stored in the magnetic field outside the
core and the energy due to the scalar field gradient inside the
core. The resulting value RW is in this case RW51/M W , with
M W the mass of the gauge boson, M W5(e/Al)m . A second
length playing a role in the monopole configuration is related
to the size of the region outside of which the Higgs scalar
takes practically its vacuum expectation value. We shall call
the radius of this region RH . For the Yang-Mills-Higgs sys-
tem one has RH51/m . From RW and RH we can define a
dimensionless parameter v measuring the relative intensity
of the two coupling constants in the theory,

v[
RH

RW
5

e
Al

. ~41!

~In the vortex case 1/v coincides with the Ginzburg-Landau
parameter separating the two types of superconductivity.!
For v;1 one has a well-defined monopole configuration.

Now, when DBI-Higgs monopoles are considered, there
is, apart from m , a second dimensionful parameter, b , @b#
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5@m#2. Then RW and RH could in principle depend both on m
and b and the configuration minimizing the energy will re-
sult from the matching of both parameters determining the
size of the monopole. It may happen that in some region of
the (b ,m) domain such a matching becomes not possible.
The outcome will be the non-existence of solutions in a
range of values of b with size related to bc . In view of the
complexity of the non-linear coupled system ~25!–~27!, let
us analyze this possibility by using an approximate mono-
pole configuration sharing the main features of the true so-
lution:

Kapp~r !5S 12
r
R D u~R2r !, ~42!

Happ~r !5rS 12
r0

2

r2D 2

u~r2r0!. ~43!

Here R and r0 are parameters controlling the shape of the
gauge field and scalar field configurations and they have to
be determined by minimizing the energy E of the configura-
tion. One can relate R and r0 with RW and RH by searching
in Eqs. ~42!,~43! for the values of r for which the gauge and
scalar field configurations differ in 1/e from its asymptotic.
This gives RW;(1/2)R , RH;3r0 and in this sense one can
think that R5R(b ,m) and r05r0(b ,m). Let us finally note
that using Eq. ~41! one can write v in terms of r0 and R,

v;6
r0

R [6x . ~44!

We have seen that for large b ~say b*5), the DBI-Higgs
theory just gives the same answer as the Yang-Mills-Higgs
model so that one should always find in this region values for
R and r0 minimizing E. In particular, in the b→‘ case we
found using our approximate configurations that one has, for
l050.5, x50.128. This giving for v the result approximate
result vapp;6x;0.8 to be compared with the ‘‘exact’’ result
for Yang-Mills-Higgs theory, v51/Al05A2.

Now, for small b the situation radically changes. Indeed,
using Eqs. ~42! and ~43! one finds for the energy, to second
order in b ~apart of an irrelevant additive constant!,

E52R@20.3310.03b13.04x13.33x228.53x312x4

20.13x610.01x818x2 log~x !#12.1R3lx31O~b3!

52.1R3lx32R„f ~x !10.03b…1O~b3!. ~45!

It is not difficult to show that for small b ~and any l) the
above expression does not have a minimun for any R and x.

We conjecture that this phenomenon, occurring for an ap-
proximate configuration, also takes place for the actual
monopole solution: below a critical b value, there is no pos-
sible matching between the monopole core and the size of
the region where the Higgs scalar is different from its
vacuum value, in such a way the energy is minimized.
4-6
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V. SUMMARY AND CONCLUSIONS

We have discussed in this work monopole solutions for an
SO(3) Dirac-Born-Infeld gauge theory coupled to a Higgs
scalar. We considered two alternative Lagrangians for the
theory, differing in the way the trace over group indices is
taken. Concerning the Higgs field, we have chosen the usual
kinetic energy term and symmetry breaking potential.

As in the case of the Yang-Mills-Higgs system, a spheri-
cally symmetric Ansatz leads to a system of coupled non-
linear radial equations that have to be solved numerically.
We have seen that the magnetic field corresponds, as in the
’t Hooft–Polyakov case, to that of a monopole with unit
charge. When the absolute field b parameter is large (*5)
the profile of the monopole solution is practically the same
as the corresponding to the Yang-Mills-Higgs model. As b
decreases, the monopole radius becomes smaller and the
magnetic field concentrates more and more near the origin.

A remarkable effect takes place for small b: there exists a
critical value bc such that for b<bc the solution ceases to
exist. The actual value of bc depends on the choice of the
other free parameters. We presented an scaling argument that
supports this result: using an approximate solution that de-
pends only on the dimensions of the configuration we
12501
showed that for small values of b it is impossible to adjust
the size parameters to minimize the energy.

The monopole solution we have presented has many re-
markable features that make worth a thorough investigation.
In particular, the analysis of dyon solutions, which implies
the inclusion of the (FF̃)2 term in the DBI action, should
reveal new features related to the existence of the dimension-
full parameter b . We hope to discuss this problem in a future
work.
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