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Using a novel approach to renormalization in the Hamiltonian formalism, we study the connection between
asymptotic freedom and the renormalization group flow of the configuration space metric. It is argued that in
asymptotically free theories the effective distance between configuration decreases as high momentum modes
are integrated out. @S0556-2821~99!00320-3#
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I. INTRODUCTION

Looking at the great success that the standard model has
had since it was introduced more than 20 years ago, it is
quite striking that we still lack understanding of the strong
interaction part in the low energy regime. In spite of excel-
lent results in the perturbative QCD, we are unable to pro-
duce any analytical computation of quantities such as the
magnetic moment of the proton which is known with great
accuracy. Some important puzzles, such as where LQCD
comes from, still need to be addressed. Apart from the nu-
merous lattice results ~which reinforce our belief that QCD is
the right theory for the strong interactions!, the situation re-
mains largely the same more than 20 years later. Many at-
tempts to apply a variational approach have not yet produced
any effective calculational methods for the solution of the
problems mentioned before.

It was suggested in @1# that perhaps we need an alternative
way to look at the Yang-Mills ~YM! theory based on a more
geometrical point of view. Namely, one tries to study quan-
tum mechanics of the fields in the space of gauge-
inequivalent configurations. The following analogy with
quantum mechanics is used. Consider a free particle inside a
box of size L. The lowest eigenvalue of the Hamiltonian
~which is just a Laplacian! is of the order of ;1/L2 This is
realized by the state of the longest possible wavelength, l
;L . It is clear therefore, that the spectrum of such a system
will have a gap due to the fact that L is finite. In other words,
the spectrum is going to be discrete as long as distances in
the configuration space cannot become arbitrarily large.
Feynman’s suggestion was to try to adapt this idea to
Yang-Mills theory.

In general, in order to determine the distance between
field configurations we need to know the metric of the con-
figuration space. The geometry of the configuration space of
non-Abelian gauge theories was considered by many authors
@2–4# and, recently, in @5#. The major problem is to extract
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the metric on a space of the gauge-inequivalent configura-
tions A/G.

A natural distance between two arbitrary gauge configu-
rations A1 and A2 ~that is gauge connections modulo gauge
transformations! is given by @5#

iA12A2i25in f S E
x

Tr@A1
g~x !2A2~x !#2D U

g

, ~1!

where A1
g is a gauge-transformed A1. However the extremum

solution of this expression is highly nonlocal and very diffi-
cult to work with. Nevertheless one can try to see some
qualitative features of this distance. In @1# it was argued that
due to the non-Abelian nature of the gauge group, the low-
potential-energy configurations are in a space of finite diam-
eter for ~211!-dimensional Yang-Mills theory. According to
our very crude analogy with the quantum mechanics it would
mean that the kinetic energy operator will have a discrete
spectrum. Of course, these are only qualitative arguments
that require a rigorous mathematical formulation if one is to
draw any conclusion on the existence and value of the mass
gap. Also, as a word of caution we must say that some prop-
erties of the configuration space obtained in 211 dimensions
may not necessarily be the same as in the ~311!-dimensional
case @such as the statement above in the case of YM theory
in ~311!- and ~111!-dimensional sigma models @5,6##.

Another reason to believe that this approach could lead us
to a better understanding is the recent progress in Hamil-
tonian formulation of the ~211!-dimensional Yang-Mills
theory. In a series of papers @7,8# it was shown that by in-
troducing special gauge-invariant variables one can prove
that the ~properly regularized! volume of the configuration
space for the non-Abelian theory is finite, while the corre-
sponding quantity for the Abelian field is infinite. The dis-
creteness of the spectrum of the kinetic term, E2, has been
also shown explicitly and the string tension computed in @8#
is in remarkable agreement with the recent Monte Carlo
simulations @9#.

Behind all this discussion a natural question arises: What
is the behavior of the configuration space as we integrate out
high momenta degrees of freedom? Of course we cannot
©1999 The American Physical Society28-1
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answer this question completely, and even a partial response
deserves a profound, probably nonperturbative, analysis.
However we still can say something, and answer specific
matters as to the behavior of the configuration space metric
under the renormalization group, which encodes much of the
properties of the space. Notice that those issues acquire a
special significance in Hamiltonian formalism: there the ki-
netic term is essentially a Laplacian in configuration space
and the energy spectrum, at least in the strong coupling re-
gime, is dominated by it.

The choice of this topic was not fortuitous but we have an
idea in mind. In the standard understanding of asymptotic
freedom all the significance is put in the interaction potential
through the statement that the couplings decrease to zero as
the energy at which the theory is tested increases to infinity.
However in the Hamiltonian picture we can state the prob-
lem in a different way. In the Hamiltonian there is an obvi-
ous competition between the kinetic energy and the potential
energy. So it is natural to analyze the asymptotic freedom in
its ‘‘dual’’ form, i.e., the variation of the kinetic energy ~with
respect to potential energy! as the renormalization scale
changes. In particular we conjectured the following, in
asymptotically free theories the effective distance between
configurations decreases as the momentum is lowered.

Notice that this question does only makes sense in a
Hamiltonian formalism, since it is only in this case that all
the geometrical properties of the configuration space can be
precisely defined ~the Hamiltonian is an operator that acts on
the Hilbert space of functionals defined on the configuration
space!. It can be argued that one can always work in a La-
grangian formalism and at the end construct the respective
Hamiltonian by the standard Legendre transformation. How-
ever this cannot be done if renormalization is involved at any
moment. In the Lagrangian formalism, even in the frame-
work of perturbation theory, the process of renormalization
generates high time-derivative terms in the Lagrangian, mak-
ing impossible even the very definition of a Hamiltonian, as
the system is governed by high order time-derivatives equa-
tions of motion. Even an application of the Ostrogradsky
method can in general lead to negative norm states if higher
time derivatives are involved in the Lagrangian. Thus, a pre-
scription for renormalization within the Hamiltonian formal-
ism is indispensable. One must not leave the phase space,
thereby maintaining the first order time derivative nature of
the equations of the system.

Therefore we will use a novel procedure of renormaliza-
tion of Hamiltonians, already introduced in Ref. @10#, where
a successful renormalization of the Hamiltonian of lf4 was
performed. This method relies on the successive diagonaliza-
tion of the Hamiltonian by performing iterative unitary trans-
formations and subsequent projection onto the Hilbert space
of low energy modes. It resembles, in spirit, the renormal-
ization approaches of Glazek and Wilson @11#, Wegner @12#
and several other authors @13–16#, though in practice appears
very different. To support our conjecture we have done a
detailed analysis of two particular examples: quantum elec-
trodynamics and Yang-Mills theory in 311 dimensions,
where we constructed the renormalized Hamiltonian up to
one loop.
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The paper is organized as follows: In Sec. II we briefly
present our renormalization group technique for Hamilto-
nians. In Secs. III, IV, and V we compute the one-loop renor-
malization of the SU(N) Yang-Mills Hamiltonian. In Sec. VI
we did the same with quantum electrodynamics. In Sec. VII
we discuss the relation between renormalization of the met-
ric and asymptotic freedom. Finally, Sec. VIII contains some
conclusions.

II. RENORMALIZATION
IN THE HAMILTONIAN FORMALISM

Let us review in this section the formalism of Hamil-
tonian renormalization introduced in Ref. @10#. Consider a
system described by Hamiltonian H which has already some
large cutoff L built into it; that is the system is ultraviolet-
finite from the very beginning. We are assuming that the
Hamiltonian is written in terms of renormalized fields and
couplings up to the scale L and incorporates all the renor-
malization Z(L) factors.

Now if m is some intermediate scale, m,L , we want to
find the effective Hamiltonian H(m) that has the same low
energy spectrum as the original Hamiltonian. More precisely,
we want to find the operator that has the same spectrum as
the original Hamiltonian when projected onto the Hilbert
subspace generated by the excitations with frequency less
than m:

H~m!5PlowH~L!Plow , ~2!

where Plow is the projector onto the low frequency subspace.
We will show that, in the framework of perturbation

theory, it is possible to partially diagonalize the Hamiltonian
H(L) and construct the vacuum state for the high frequency
modes. Thus, the low energy effective Hamiltonian would
take the form

H~m!5^0highuU†~L ,m!H~L!U~L ,m!u0high&. ~3!

Notice that it is not necessary to diagonalize completely
the Hamiltonian as we only need to identify the low energy
states and not the whole spectrum.

Suppose that after a unitary transformation we bring a
Hamiltonian to the form

H~ low!1H free~high!1V , ~4!

where H(low) contains only low frequency operators,
H free(high) is a free Hamiltonian for the high frequency
modes and V has the special form

V5 (
k ,p.m

ak
†Skp~m ,a†,a !ap ~5!

with Skp(m ,a†,a) an arbitrary operator of low and high fre-
quency modes. Thus, using standard Rayleigh-Schroedinger
perturbation theory it follows that the correction to an arbi-
trary state un& is given by
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udn&5(
lÞn

^luVun&
~El2En!

ul&

1 (
l ,nÞm

^luVum&^muVun&
~El2Em!~Em2En!

ul&1 . . . . ~6!

Therefore, if un& is the vacuum state of H free(high), it is
annihilated by V and there is no correction to it at any order
in perturbation theory.

Now we will show how to find the unitary transformation
U(m ,L) that transforms the Hamiltonian into the form ~4!.
First we split the Hamiltonian in four pieces:

H5H11H21VA1VB . ~7!

Here H1 contains only the modes with k,m , H2 is the free
part for all the modes with k.m , VA contains the ‘‘pure’’
terms that have only high frequency creation operators or
high frequency annihilation operators, but not both, and VB
the remaining terms containing at least one annihilation and
one creation operator of high energy modes ~we assume here
that VA and VB are normal-ordered with respect to the free
high frequency vacuum!. Notice that the term VB is already
in the form ~5!. Then, according to the preceding discussion,
the objective of the renormalization procedure is to ‘‘elimi-
nate’’ the terms in VA that spoils the form ~4!, ~5!.

We will proceed iteratively: we write the unitary operator
in the form U5U0U1U2 . . . , and compute each Un pertur-
batively. Each factor Un will bring the Hamiltonian to the
form ~4! at a given order in m/L . Therefore, there will be
two expansion parameters in this procedure: one is the cou-
pling constant of the theory l and the other is the ratio m/L
~effectively v low /vhigh).

Let us parametrize Un as exp(iVn), where Vn is a Her-
mitian operator to be determined. We start from Eq. ~7! and
perform a first unitary transformation expanding in powers
of V ~in the general case V is at least of order l so at a
given order only a finite number of terms are needed!:

e2iV0~H11H21VA1VB!eiV0

5H11H21VA1VB1i@H1 ,V0#1i@H2 ,V0#

1i@VA ,V0#1i@VB ,V0#••• . ~8!

We want to eliminate the term VA which is of the first
order in l , so V0 has to be of the same order. Furthermore
we want to generate an expansion in m/L , so we impose the
following condition on V0:

i@H2 ,V0#1VA50. ~9!

This equation can be solved perturbatively and since com-
mutators with H2 generate time derivatives we have the de-
sired expansion.

Notice that Eq. ~6! defines V0 up to the terms that com-
mute with H2. As it is shown in Appendix A this freedom
corresponds to the arbitrariness of the definition of the low
energy Hamiltonian up to a unitary transformation. There-
fore we will assume some kind of ‘‘minimal’’ scheme;
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namely, that V0, after normal ordering, does not have a part
that commutes with H2 ~terms that are functions of ak

†ak).
After V0 is chosen to cancel V12 in the effective Hamil-

tonian a new mixing term of order l has appeared from
i@H1 ,V0# . Notice however that this new term is of higher
order in m/L and will be eliminated by the next unitary
transformation U15eiV1. Explicitly,

e2iV1e2iV0~H11H21VA1VB!eiV0eiV1

5H11H21VB1i@H1 ,V0#1i@H2 ,V1#

1i@H1 ,V1#1second order terms . . . ~10!

and we now choose V1 so that

i@H1 ,V0#1i@H2 ,V1#50. ~11!

Using Eqs. ~10! and ~11! we obtain

e2iV1e2iV0~H11H21V12!eiV0eiV1

5H11H21VB1
i
2 @VA ,V0#1i@VB ,V0#

1i@VB ,V1#1i@H1 ,V1#2
1
2 @@H1 ,V0# ,V0#

2
1
2 @@H1 ,V0# ,V1#2

1
2 @@H1 ,V1# ,V1#

1higher order terms . . . . ~12!

The obvious next step is to introduce V2 in order to cancel
i@H1 ,V1# and continue with the same process. Then a
simple question emerges: Where should we stop? To answer
this question we have to consider the divergence properties
of the terms introduced by each new V into the Heff . These
contributions like, for example, 2 1

2 @@H1 ,V0# ,V0# may di-
verge as L→` . Nevertheless, the degree of divergence of
each new term will be smaller as we introduce more and
more Vn factors. In general, the following power counting
can be used: since Vn is determined from

@H2 ,Vn11#52@H1 ,Vn# ~13!

and H2'L ,H1'm , then

Vn11'
m

L
Vn . ~14!

Therefore the next V will be less divergent and eventually
all the new terms introduced by this prescription will be
convergent starting from certain n. At this point we will stop
since for our purposes we are only interested in divergent
contributions.

Of course so far we have only eliminated the high mo-
mentum degrees of freedom up to the first order in the cou-
pling constant. Requiring the absence of the l2-order mixing
terms will lead to the introduction of a whole new series of
unitary transformations, and the same arguments can be ap-
plied to them.
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Finally, the actual process of renormalization is per-
formed by choosing the renormalization Z(L) factors of the
original Hamiltonian to cancel the divergent contributions
coming from evaluation of Eq. ~3!. We now turn to the ex-
plicit computation for QED and QCD Hamiltonians.

III. SU„N… YANG MILLS THEORY: PRELIMINARIES

The kinetic energy term for the Hamiltonian of Yang-
Mills theory is essentially a Laplace operator on the configu-
ration space. However, due to the gauge invariance, the
physical degrees of freedom belong to the space of gauge
connections modulo the group of gauge transformations, i.e,
the space of nonequivalent gauge potentials, and a satisfac-
tory parametrization of this space is needed. In this section
we find a perturbatively adequate coordinate system of the
configuration space ~a similar analysis was done in Ref. @17#!
and compute the associated metric.

We consider a SU(N) Yang-Mills theory in the temporal
gauge, A050. The canonical variables are the vector poten-
tial Ai

a(x) and the electric field Eai(x). They satisfy canoni-
cal commutation relations

@Ai
a~x !,Eb j~y !#5idabd i

jd (3)~x2y ! ~15!

which permit the representation of the electric field as

Eai~x !52i
d

dAi
a~x !

. ~16!

The Hilbert space of the theory is supplemented by the
Gauss law that enforces a constraint on the wave functionals,
essentially only allowing gauge invariant configurations,

G a~x !C@A#52iD@A# i
ab d

dAi
b~x !

C@A#50, ~17!

where D@A# i
ab5¹ id

ab2e f abcAi
c(x) is the covariant deriva-

tive.
The gauge potential can be written also as a Lie algebra

valued field Ai(x)5taAi
a(x) where ta are the Hermitian gen-

erators of the Lie algebra of SU(N) in the fundamental rep-
resentation, normalized to tr(tatb)5 1

2 dab.
The Hamiltonian can be written as

H5
1
2E d3x@Eai~x !Eai~x !1Bai~x !Bai~x !# , ~18!

where we used the magnetic field Bi
a :

Bai~x !5e i jk@] jAk
a~x !1 1

2 e f abcA j
b~x !Ak

c~x !# . ~19!

Note that due to the constraint ~17!, not all the degrees of
freedom in the Hamiltonian ~18! are ‘‘physical.’’ In order to
isolate the physical degrees of freedom we will perform a
change of coordinates in such a way that the Gauss law takes
its simplest form. We parametrize an arbitrary configuration
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in terms of a ‘‘gauge fixed’’ configuration plus gauge trans-
formations. The former will define a coordinate system of
the orbit space. We write

Ai~x !5g21~x !Ai~x !g~x !1ig21~x !] ig~x !, ~20!

where g is a SU(N)-valued matrix and Ai is a configuration
satisfying the Coulomb gauge condition

¹ iAi50. ~21!

It is well known that the parametrization ~20! with condition
~21! is not well defined globally due to the Gribov ambiguity
problem. However, we will work in the framework of per-
turbation theory where the parametrization ~20! and ~21! de-
fines an acceptable isomorphism in the configuration space.

From Eq. ~20! we deduce,

dAi5g21~dAi1@D@A# i ,idgg21# !g ~22!

where D@Ai#5] i2ieAi .
Thus we can decompose the metric of vector valued con-

figurations in‘‘gauge fixed’’ and ‘‘pure gauge’’ parts:

ds25E ddxdAi
a~x !dAi

a~x !

5E d3x@dA i
a~x !dA i

a~x !

1D@A# i
ab~ idgg21!bD@A# i

ac~ idgg21!c# . ~23!

The normalization of the wave functionals is then given by

^C1uC2&5
1

Vol GE @DAi
a#C1*@A#C2@A#

5E @DA i
a#AGC1*@A#C2@A# ~24!

where G is the matrix metric defined by Eq. ~23!.
Using the Coulomb gauge condition Eq. ~21! we can in-

vert Eq. ~22! and write

i~dgg21!a5~¹W •DW @A# !b
21a¹W •~dAW R21!b ~25!

and

dA i
a5@d i jd

ab2Di
ac@A#~¹W •DW @A# !a

21c¹ j#~dA jR21!b,
~26!

where R[R(g) is the adjoint representation representative
of g.

Notice that not all the components of Ai are independent
as they are subject to condition ~21!, so we can parametrize
the space of gauge configurations modulo gauge transforma-
tions with the 2(N221) functions A ı̂

a , ı̂51,2.
From Eqs. ~25! and ~26! we can write the functional de-

rivative as
8-4
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dC

dAi
a~x !

5E R21ad~Ry
21¹ i

x~DW •¹W !(y ,x)
21 !bd

3
dC

i~g21dg !b~y !
1E R21ad$d j id

dbd~x ,y !

1@D@A# j
y¹ i

x~DW •¹W !(y ,x)
21 #bd%P j ı̂~y ,z !

dC

dA ı̂
b
~z !

,

~27!

where Pi j(x ,y)5d i jd(x ,y)2¹ i¹ jn
21(x ,y) is the projector

on the transverse modes.
As previously announced, in these variables the Gauss

law has the simple form

dC@A#

~ idgg21!b 50 ~28!

so it is trivially imposed by demanding that the wave func-
tionals be independent of g.

It is useful to define a ‘‘transverse’’ functional derivative
as

dT

dA i
a~x !

5E d3zPi ̂~x ,z !
d

dA
̂

a
~z !

~29!

restoring rotational invariance at the expense of modifying
the canonical commutation relations:

FA i
a~x !,

dT

dA j
b~y !

G52Pi j~x ,y !dab. ~30!

Now we can write the kinetic energy term in terms of the
variables A i

a @taking into account Eq. ~29!#,

^C1uTuC2&5
1

Vol GE @DAi
a#

1
2E d3x

dC1*

dAi
a~x !

dC2

dAi
a~x !

5E @DA i
a#Adet G

1
2

3E d3xd3yd3z$d i jdabd~x ,y !

1@D@A# j
y¹ i

x~DW •¹W !(y ,x)
21 #ba%

3
dTC1*

dA j
b~y !

$d ikdacd~x ,z !

1@D@A#k
z¹ i

x~DW •¹W !(z ,x)
21 #ca%

dTC2

dA k
c~z !

. ~31!

That is, the kinetic energy density term takes the form
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T52
1

2AG
E ia~x !AGGA/G

(ia)( jb)~x ,y !E jb~y !, ~32!

where E ia52i(dT/dA i
a) and GA/G is the effective metric of

the space of gauge configurations modulo gauge transforma-
tions,

GA/G
(ia)( jb)~x ,y !5E d3z$d ikdacd~x ,z !

1@D@A# i
x¹k

z~DW •¹W !(x ,z)
21 #ac%$d jkdbcd~y ,z !

1@D@A# j
y¹k

z~DW •¹W !(y ,z)
21 #bc%. ~33!

As we mentioned above, the previous analysis was only
valid in the framework of perturbation theory where condi-
tion ~21! defines a local system of coordinates on the orbit
space. So it is consistent with this approach to compute all
the elements of T ~the metric of the space of gauge transfor-
mations G and the metric of the true configuration space
GA/G) in powers of the coupling constant e. In fact, after a
straightforward computation, the kinetic energy, up to order
e2, can be shown to be

T5
1
2E d3xd3yGA/G

(ia)( jb)~x ,y !E ai~x !E b j~y !

2
i
2 e2cAn21~0 !E d3xA i

aE ai~x !, ~34!

where cA is the Casimir of G in the adjoint representation,

GA/G
(ia)( jb)~x ,y !5d i jdabd~x ,y !

2e2 f acd f bceA i
d~x !A j

e~y !n21~x ,y !

1O~e3! ~35!

and the transverse variables A i
a and E i

a satisfy the commu-
tation relations @see Eq. ~30!#:

@A i
a~x !,E j

b~y !#5idabPi j~x ,y !. ~36!

IV. RENORMALIZATION
OF YANG-MILLS HAMILTONIAN

In this section we will compute the renormalization con-
tribution to the E2 and B2 terms in the effective Hamiltonian.
In what follows, we will assume the ‘‘gauge-fixed’’ variables
from the previous section and will use A and E instead of A
and E. Using expression ~34! the gauge-fixed Yang-Mills
Hamiltonian can be written as follows:

H5
1
2Ex ,y

a i j
ab~x ,y !Ei

a~x !E j
b~y !

1
1
2 icAAi

a~x !Ei
a~x !G~x ,x !1

1
2 Bi

a~x !Bi
a~x !, ~37!

where cA is N for SU(N) and
8-5
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a i j
ab~x ,y !5d i jd

abd3~x2y !1e2 f adc f bdeAi
c~x !A j

e~y !G~x ,y !

1••• , ~38!

G~x ,y !5E 1
q2 e2iq(x2y) d3q

~2p!3 . ~39!

This is the so called ‘‘bare’’ Hamiltonian. For the loop cal-
culations we have to introduce the Z factors by the following
procedure. Using ~38! let us rewrite expression ~37! as

H5
1
2 ZE2~L!E21

1
2 ZAAEE~L!e2 f adc f bdeAi

c~x !A j
e~y !

3G~x ,y !Ei
a~x !E j

b~y !1
1
2 ZB2~L!B2

1eZ1~L! f abc] iA j
aAi

bA j
c

1
e2

4 Z4~L! f abc f decAi
aA j

bAi
dA j

e1••• . ~40!

Each of the Z factors will have the following form

Z511e f 1~L!1e2 f 2~L!1••• . ~41!

The functions f n will be chosen order-by-order from the re-
quirement that after integration of the modes from m to L all
the corrections sum up in such a way that f n(L)→ f n(m) and
Z(L)→Z(m), accordingly. When doing the one-loop cor-
rections one can therefore assume that all the Z’s are initially
1 and choose the corresponding f ’s from the condition that
high-cutoff dependence be canceled after computing the He f f
to one loop. Since one-loop wave function renormalization in
QCD is of the second order in coupling constant it is easy to
see that we need V only up to the first order in e. Then there
is only one term of V that is relevant:

V (3)5e f abc] iA j
aAi

bA j
c . ~42!

To compute the renormalization of the quadratic terms in the
Hamiltonian we have to assign, according to the general pro-
cedure of Sec. II, two A’s to be ‘‘high’’ and one ‘‘low.’’
Therefore, the relevant part of V (3) looks like1

V (3)5e f abc~2] iA1 j
a A2i

b A2 j
c 1] iA2 j

a A1i
b A2 j

c !. ~43!

We now write A2 and E2 in second-quantized form:

A2i
a ~x !5(

k

1

~2vk!1/2 ~aki
a eikx1aki

a†e2ikx!, ~44!

E2i
a ~x !5(

k
i S vk

2 D 1/2

~aki
a†e2ikx2aki

a eikx!,

~45!

1We use the following convention: fields with subscript 1 indicate
‘‘low momenta’’ fields and fields with subscript 2 indicate ‘‘high
momenta’’ fields.
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where the creation and annihilation operators satisfy

@aki
a ,ap j

b†#5S d i j2
kik j

k2 D dabdkp . ~46!

After normal ordering, V (3) can have three kind of terms:
ak

†ap
† , akap , and ak

†ap . As was explained in Sec. II, only the
first two types will be used to in order to determine V , so the
final form of V (3) is therefore

V (3)5e f abc(
p ,q

E d3x$2~api
a†aq j

c†e2i(p1q)x

1api
a aq j

c ei(p1q)x!] jAi
b~x !2iq j~api

a†aqi
b†e2i(p1q)x

2api
a aqi

b ei(p1q)x!A j
c~x !%

1

2Avpvq
. ~47!

In order so solve Eq. ~9! with the interaction given by ~43!
we use

H25(
k

v~k !aki
b†aki

b , @H2 ,api
a†#5vpapi

a† ,

@H2 ,api
a #52vpapi

a . ~48!

Then,

V05ie f abc(
p ,q

E d3x$2~api
a†aq j

c†e2i(p1q)x

2api
a aq j

c ei(p1q)x!] jAi
b~x !2iq j~api

a†aqi
b†e2i(p1q)x

1api
a aqi

b ei(p1q)x!A j
c~x !%

1

2Avpvq~vp1vq!
. ~49!

According to Eq. ~11!, the next V will be

V152ie f abc(
p ,q

E d3x$2~api
a†aq j

c†e2i(p1q)x

1api
a aq j

c ei(p1q)x!@H1 ,] jAi
b~x !#

2iq j~api
a†aqi

b†e2i(p1q)x2api
a aqi

b ei(p1q)x!

3@H1 ,A j
c~x !#%

1

2Avpvq~vp1vq!2 . ~50!

To study the renormalization of the metric we have to
determine the corrections to the E2 term in the Hamiltonian.
There are only two possibilities. The first one is
2 1

2 @@H1 ,V0# ,V1# , since V0;A and V1;E . The other
comes from the normal-ordering of the quadratic part of the
a term in Eq. ~38!. When computing the double-
commutator, there is only one divergent term:
8-6
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2
1
2 @@H1 ,V0# ,V1#

5e2(
k ,p

1
2 @H1 ,Ai

b~x !#

3@H1 ,Aa
n ~y !# f abc f mnlkiqa~dkq

amdps
cl

1dks
aldpq

cm!P jg~k !P jg~p !~e2i(k1p)(x2y)1ei(k1p)(x2y)!

3
1

4~vk1vp!~vq1vs!
2Avkvpvqvs

. ~51!

At this point we can say that momenta (k1p) and 2(k
1p) are essentially the momenta of the ‘‘low’’ fields. There-
fore uk1pu,m . We can now change the summation by the
following trick: say k1p5r and uru,m . Then k5r2p and
the summation goes over k and r. Any possible divergence
can only come from the summation over k. Using f adc f bdc

5cAdab the expression ~27! can be simplified as follows:

(
r ,k

cA

4vkvp

@H1 ,Ai
c~r !#@H1 ,Aa

c ~2r !#

~vk1vp!3

3~kika2kipa!P jg~k !P jg~p !. ~52!

Noticing that the leading divergence of the expression is
logarithmic, which means that we can neglect the difference
between k and p ~for the divergent contribution only! and
using

(
k

5E d3k
~2p!3 , vk5uku, k;2p , ~53!

P jg~k !P jg~p !5S 11
~k•p !2

k2p2 D;2, ~54!

we obtain

cA

24(r
@H1 ,Ai

c~r !#@H1 ,Ai
c~2r !#(

k

1
vk

3

52
cA

24
1

2p2 lnS L

m D E d3xE2. ~55!

As we mentioned earlier, there is another term that can cor-
rect the E2 term of the effective Hamiltonian. It is the ‘‘Cou-
lomb interaction’’ term from the kinetic term in ~38!. Look-
ing at the e2 order correction part of ~38!,~42! and choosing
the A’s to be ‘‘high’’ and the E’s to be ‘‘low’’ we have

e2

2 f adc f bdeE
x ,y

A2i
c ~x !A2 j

e ~y !G~x ,y !E1i
a ~x !E1 j

b ~y !.

~56!

As written, this term is not normal ordered with respect to
the high-energy vacuum. Using ~44!,~45!, and ~46! we obtain
10502
e2

2 f adc f bdeE
x
E

y
(

k

dcePi j~k !

2vk
eik(x2y)G~x ,y !E1i

a ~x !E1 j
b ~y !.

~57!

Upon using the definition ~39! of G(x ,y) one can see that the
leading divergence is logarithmic and that the final expres-
sion reads

e2

6 cA(
k

1
vk

3E d3xE25
e2

6
cA

2p2 lnS L

m D E d3xE2. ~58!

The sum of the terms ~55! and ~58! gives the total correction
to the kinetic energy at one loop:

dHE25
cA

8
e2

2p2 lnS L

m D E d3xEi
2~x !. ~59!

At this point we can say that the ZE2 factor is therefore,

ZE2512
cA

4
e2

2p2 lnS L

m D1••• . ~60!

Since the operator Ei is represented by a variational deriva-
tive with respect to gauge field, d/dAi , one would naturally
expect that ZE2 should be equal to the ZB2

21. It is therefore an
important check on our method to show that it is indeed so.
To compute ZB25Z3 we need to find out B2 correction to the
effective H. In comparison with the computation of the E2

correction it is much more involved due to the fact that for
most of the terms B2 comes as a subleading divergence. We
will not present detailed computation but sketch the main
steps and give the final result. B2 contributions can arise
from the following terms: (i/2)@V ,V0# and normal ordering
of the a term from Eq. ~38! again. This term is similar to
~56!, the only difference being how the ‘‘high’’ and ‘‘low’’
components are assigned:

e2

2 f adc f bdeA1i
c ~x !A1 j

e ~y !G~x ,y !E2i
a ~x !E2 j

b ~y !. ~61!

Leading divergence for both terms is quadratic and gives
correction of the form A2. The appearance of this term is
related to our choice of the cutoff procedure as a way of
regulating the theory; it can be dealt with by introducing
A2L2 counterterms in the bare Hamiltonian and defining ap-
propriate boundary conditions at the ends of the renormaliza-
tion group flow trajectory @18#. To capture the logarithmic
contribution one has to expand the denominators of the V0
up to the second order in the momenta of the ‘‘low’’ fields.
Tedious but straightforward computation gives

2
i
2 @V ,V0#52

27
120 e2cAS (

k

1
k3D E d3xB2. ~62!

The logarithmic divergent part of the normal ordering of the
two E’s from ~61! gives
8-7
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1
10 e2cAS (

k

1
k3D E d3xB2. ~63!

The final result is

dHB252
cA

8
e2

2p2 lnS L

m D E d3xB2 ~64!

which makes the corresponding Z factor

ZB25Z3511
cA

4
e2

2p2 lnS L

m D1••• . ~65!

This coincides with the value of Z3 for QCD in the Coulomb
gauge obtained in the Lagrangian formalism @19#.

V. THREE POINT FUNCTION RENORMALIZATION

Let us show briefly the renormalization of the three point
function within our formalism. To do that let us recall the
general method of Sec. II. We will have to be a little more
careful in the analysis of the relevant contributions to the
renormalized Hamiltonian.

According to the notation of Sec. II, we write the Yang-
Mills Hamiltonian in terms of the low momentum and high
momentum fields as

H5H11H21~VA
(3)1VB

(3)1V (4)1••• !, ~66!

where H1 is the part of the Hamiltonian that only contains
low momentum fields, H2 is the part that only contains high
momentum fields, and the V’s are the ‘‘mixing’’ terms. For
convenience we have separated these last terms according to
the vertex number and the high momentum creation-
annihilation operators structure:

VA
(3)5e f abc(

p ,q
E d3x$2~api

a aq j
c ei(p1q)x

1api
a†aq j

c†e2i(p1q)x!] jAi
b~x !1iq j~api

a aqi
b ei(p1q)x

2api
a†aqi

b†e2i(p1q)x!A j
c~x !%

1

2Avpvq
, ~67!

VB
(3)5e f abc(

p ,q
E d3x$2~aq j

c†api
a ei(p2q)x

1api
a†aq j

c e2i(p2q)x!] jAi
b~x !1iq j~api

a†aqi
b e2i(p2q)x

2aqi
b†api

a†ei(p2q)x!A j
c~x !%

1

2Avpvq
, ~68!
10502
V (4)5
e
2 (

p ,q
E d3x$~api

a aqi
c ei(p1q)x

1api
a†aqi

c†e2i(p1q)x! f abe f cdeA j
b~x !A j

d~x !

1~api
a aq j

b ei(p1q)x1api
a†aq j

b†e2i(p1q)x!~ f abe f cde

1 f ade f cbe!Ai
c~x !A j

d~x !%
1

2Avpvq
. ~69!

Now we have to analyze which terms contribute to the three
point vertices. At this order only V at order e is needed,
moreover, one can convince oneself that only V0, i.e., the
first iteration of the unitary transformation leads to divergent
contributions. Then Eq. ~8! reads in this case:

H85H11H21VA
(3)1VB

(3)1V (4)1•••1i@H1 ,V0#

1i@H2 ,V0#1i@VA
(3) ,V0#1i@VB

(3) ,V0#1i@V (4),V0#

2
1
2 @@H1 ,V0# ,V0#2

1
2 @@H2 ,V0# ,V0#

2
1
2 @@VA

(3) ,V0# ,V0#2
1
2 @@VB

(3) ,V0# ,V0#

2
1
2 @@V (4),V0# ,V0#2

i
6 @@@H1 ,V0# ,V0# ,V0#

2
i
6 @@@H2 ,V0# ,V0# ,V0#1••• . ~70!

As explained in Sec. II, we choose V0 in such a way that
its commutator with H2 cancels the mixing terms that con-
tain high momentum annihilation operators or high momen-
tum creation operators, but not both. Also, we note that up to
this order, only V (3) is of order e. Then V0 satisfies

@H2 ,V0#5iVA
(3) ~71!

@which is precisely the equation that gives Eq. ~49!#.
Now it is not difficult to individualize the only terms that

contribute to the three point vertex:

dH (3)5DH11i@H1 ,V0# (3)1i@VA
(4) ,V0# (3)

2
1
2 @@VB

(3) ,V0# ,V0# (3). ~72!

Here DH1 stands for the normal ordering contribution ~tad-
pole diagram! of order e3 in the kinetic energy. In fact, at
this order, the kinetic energy has a term of the form

Te35e3 f abc f ade f emn

3E
xyz

Ai
b~x !G~x ,y !A j

d~y !] jG~y ,z !Ak
m~z !Ei

c~x !Ek
n~z !

~73!

which, when properly contracted, generates the contribution
8-8
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DH15
1
6 cAe3 lnS L

m D f abcE
x
] iA j

aAi
bA j

c . ~74!

The remaining terms in Eq. ~72!, are computed similarly
to the ones of Sec. II. After a very lengthy, but straightfor-
ward computation, we get the following results:

@H1 ,V0# (3)52i
5
24 cAe3 1

2p2 lnS L

m D f abc

3E
x
] iA j

aAi
bA j

c ,

@V (4),V0# (3)5i
3
8 cAe3 1

2p2 lnS L

m D f abcE
x
] iA j

aAi
bA j

c ,

@@VB
(3) ,V0# ,V0# (3)52

1
6 cAe3 1

2p2 lnS L

m D f abc

3E
x
] iA j

aAi
bA j

c . ~75!

Finally, after adding up all the contributions, we have

dH (3)5
1
12 cAe3 1

2p2 lnS L

m D f abcE
x
] iA j

aAi
bA j

c . ~76!

This result corresponds to a renormalization constant Z1
equal to

Z1512
1
12 cAe2 1

2p2 lnS L

m D , ~77!

which is the same as the Coulomb gauge result in the La-
grangian approach as well @19#.

VI. QED

In this section we will outline a similar computation for
quantum electrodynamics. The QED Hamiltonian can be
written as

H5
1
2E d3x~E21B2!1E d3x$c̄~ igW •]W1m !c1ec̄A•gc%.

~78!

The imposition of the Gauss law constraint,

] iEi5ec̄g0c , ~79!

generates an ‘‘instantaneous’’ Coulomb interaction and H
takes the form
10502
H5
1
2E d3x~E21B2!

1
1
2Ex

E
y
e2c̄~x !g0c~x !G~x ,y !c̄~y !g0c~y !

1E d3x$c̄~ igW •]W1m !c1ec̄Agc%, ~80!

where G(x ,y) is given by ~39!. According to the general
idea we are supposed to split it in to ‘‘high’’ and ‘‘low’’
energy parts,

H15
1
2E d3x~E1

21B1
2!1E d3xc̄1~ i]W•gW 1m !c1

1ec̄1A•gc1 , ~81!

H25(
k

vkbka
† bka1(

p
vpdpb

† dpb ,

V (3)5eE d3x$c̄2A1gc21ec̄2A2gc11ec̄1A2gc2%,
~82!

V (4)5E
x
E

y
e2c̄2~x !g0c1~x !G~x ,y !c̄1~y !g0c2~y !1••• .

~83!

Here the ellipses mean that we show only those terms that
play a role in one loop effects. Using arguments similar to
those in Yang-Mills theory one can see that in order to de-
termine Z factors up to the order e2 we need V only up to the
first order. It turns out that only first two iterations in m/L
are needed—V0 and V1. In parallel to the previous sections,
we determine Z3 and Z1 by identifying corrections of the
type E2, B2, and c̄A•gc . There is only one commutator that
can contribute to the B2 term: (i/2)@V ,V0# where one has to
take subleading divergence to identify the ln corrections. E2

correction is given by two commutators
2 1

2 @@H1 ,V0# ,V1# and commutator of the ‘‘Coulomb’’ term
with V0 : i@V (4),V0# . The final result is

dHE252
e2

6
1

2p2 lnS L

m D E d3xE1
2 , ~84!

dHB25
e2

6
1

2p2 lnS L

m D E d3xB1
2 ~85!

which leads us to the well-known answer for the Z3 factor in
QED:

ZE2
21

5ZB25Z3512
e2

3
1

2p2 lnS L

m D . ~86!

Up to this point all our Z’s were identical to those known
from the covariant calculations in the Coulomb gauge. How-
ever, when computing the other two renormalization con-
stants, Z1 and Z2, we find results which are different from
8-9
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the covariant ones. In the case of Z2-fermion kinetic term
renormalization there are three possible contributions arising
from (i/2)@V ,V0 # , 2 1

2 @@H1 ,V0# ,V0# and normal-ordering
of the four-fermion term in the Hamiltonian ~80!. Extracting
c̄gW •]Wc-type corrections from each of these terms one can
see that they cancel. The similar thing happens in case of Z1

as well: all the c̄g•Ac-type terms cancel at the e3 order.
This makes both Z1 and Z2 equal to 1 at one loop. Never-
theless there is no contradiction between our result and the
conventional one. In covariant formalism there exists a Ward
identity Z15Z2 which is essential for maintaining the gauge
invariance of the effective action. It is satisfied, presumably,
in our case as well. But values of Z1 and Z2 are gauge de-
pendent and cancel out from the final expression that defines
the beta function for QED, which is determined by Z3 only.
There is an obvious reason why, say, Z2 must be 1 in our
case. Since c̄ and c are conjugated variables, in the Hamil-
tonian formalism one should be represented by the varia-
tional derivative with respect to the other. Then, similarly to
the E2 and B2 terms for the gauge field, they will have in-
verse renormalization factors which will cancel each other in
the final expression for the kinetic term for fermions.

VII. GEOMETRIC INTERPRETATION
OF THE ASYMPTOTIC FREEDOM

Let us recall the Yang-Mills Hamiltonian, after integrat-
ing the high momenta modes down to the scale m ~at order
e2), incorporating the correct renormalization factors Zi :

HY M5
1
2

1
Z3~m!

E21
1
2 Z3~m!~] iA j

a2] jA j
a!2

1Z1~m!eR f abc] iA j
aAi

bA j
c

1Z4~m!
1
4 eR

2 f abc f decAi
aA j

bAi
dA j

e1••• . ~87!

A similar expression for the QED Hamiltonian will be

HQED5
1
2

1
Z3~m!

E21
1
2 Z3~m!B21Z2~m!c̄igW •]Wc

1Z1~m!eRc̄Agc••• . ~88!

Here eR is a fixed quantity at certain scale and all the depen-
dence on the scale is hidden in the Z factors. The definition
of the ‘‘renormalized’’ fields through the incorporation of
the Z factors was done in analogy with the Lagrangian cova-
riant approach where the renormalized quantities are in-
cluded in such a way that the ‘‘renormalized’’ effective ac-
tion gives finite results when the cutoff is removed. But in
the Schrodinger picture this requirement is not necessary as
the fields are only coordinates of the configuration space and
do not enter explicitly in the computation of correlation func-
tions. With this fact in mind we will alter this requisite and
adapt it to our needs.

The usual covariant renormalization program puts the em-
phasis on the interactions, and the scaling properties of the
105028
theory are extracted from the study of the b functions. How-
ever, in a Hamiltonian description the kinetic term plays a
significant role since essentially it is nothing but the Laplac-
ian in configuration space. Hence, many of the properties of
the quantum-field theory ~QFT! can be inferred from the
geometrical features of the configuration space ~as compact-
ness, boundness, etc.!. In particular we are interested in the
change of the configuration space metric under the renormal-
ization group flow. We claim that in asymptotically free
theories the distance between configurations increases as we
move to the UV limit, thus ‘‘flattening’’ the potential energy
and consequently fading the interaction. We will support our
claim with the analysis of the one-loop Yang-Mills theory.

It is clear then, that in the spirit of our work we want to
stress the kinetic term ~better, the configuration space metric!
over the potential energy and try to understand the
asymptotic behavior of the theory through the renormaliza-
tion flow properties of the distance in the configuration
space. For this reason we will rescale the fields in such a way
to transfer the renormalization scaling properties to the ki-
netic term.

Then let us rescale the fields as

Ai
a→ 1

eR
Z3~m!Z1~m!21Ai

a , Ei
a→eRZ3

21~m!Z1~m!Ei
a

~89!

so the QCD Hamiltonian takes the form

HQCD5
1
2 eR

2 S Z1
2

Z3
3D Ei

a21
1

eR
2 S Z3

3

Z1
2D H 1

2~] iA j
a2] jA j

a!2

1 f abc] iA j
aAi

bA j
c1

1
4 f abc f decAi

aA j
bAi

dA j
eJ 1••• ,

~90!

where we have used the Slavnov-Taylor identities ~adapted
for the Hamiltonian formalism!2

Z1

Z3
5

Z4

Z1
. ~91!

Note that with this normalization we have ‘‘homogenized’’
the potential term ~up to an overall factor! by transferring all
the cutoff dependence to the kinetic term. Now we can read
from the kinetic term the cutoff dependence of the ~inverse
of the! metric. In fact, using the result of Sec. III, we can
write the cutoff dependent configuration metric as

G (ia)( jb)~x ,y ;m!5S 11eR
2 11N

12
1

2p2 ln~m/mR! D
3G (ia)( jb)

0 ~x ,y !1O~eR
3 ! ~92!

2By writing both the Hamiltonian H and Gauss law G a in terms of
renormalized fields with the explicit Z factors and requiring
@H ,G a#50 one can get linear relations between Z’s that lead to
~91!.
-10
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where G (ia)( jb)
0 is the metric defined in Eq. ~33! written in

terms of the rescaled fields ~89! and eR .
Looking at the QED Hamiltonian and using Z151 and

Z251 one can see that no rescaling is needed at all, since all
the cutoff dependence is already shifted to the kinetic term,

HQED5
1
2 S 1

Z3
DE21

1
2 Z3B21c̄igW •]Wc1eRc̄Agc••• .

~93!

Following our procedure the corresponding metric will be

G (i j)~x ,y ;m!5S 12eR
2 1

3
1

2p2 ln~m/mR! D d (i j)d~x2y !

1O~eR
3 !. ~94!

At this point it is easy to compare relative behavior of the
two metrics under the renormalization flow. Equation ~92!
clearly shows that the distance between configurations de-
creases as the cutoff is lowered, while the corresponding
expression ~94! increases, sustaining our claim. Incidentally,
it is worthwhile to mention that the combination Z1

2/Z3
3 that

appears in Eq. ~90! is precisely the one that defines the b
function of the Yang-Mills theory and, at least in the La-
grangian approach, it has been proved to be independent of
the gauge fixing condition. Similarly, QED expression in-
volves only Z3, since Z15Z2 is 1 to this order, and Z3 is the
only constant that determines beta function for QED and it is
known to be gauge independent to all loops.

VIII. SUMMARY AND CONCLUSION

There are several issues that are more natural to address in
the Hamiltonian picture than in the usual covariant Lagrang-
ian formalism. One of them, which we are interested in, is
the relevance of the geometry of the configuration space to
the properties of the corresponding quantum field theory.
The reason is simple: in the Hamiltonian formalism the ki-
netic energy term is nothing but a Laplacian operator in the
configuration space and its topological and geometrical fea-
tures determine the nature of its spectrum. Then it is natural
to ask what is the behavior of the configuration space as we
integrate out high momentum degrees of freedom.

To answer a small part of this question was the aim of this
paper. To be precise, we were interested in the following
aspect of the problem: the evolution of the distance between
field configurations ~and more precisely the metric! with the
renormalization group in asymptotically free theories. In par-
ticular we state the following conjecture: in asymptotically
free theories the effective distance between configurations
decreases as high momenta degrees of freedom are inte-
grated out.

To support this statement we first developed an original
renormalization group technique for Hamiltonian formalism
in the framework of perturbation theory. This method re-
sembles the Hamiltonian renormalization approaches of
Glazek and Wilson @11# and Wegner @12# and operates by a
progressive diagonalization of the Hamiltonian by means of
a succession of iterative unitary transformations followed by
105028
a projection onto the Hilbert space of the low-momentum
degrees of freedom. Finally we applied the formalism to two
conspicuous QFT’s: quantum electrodynamics and Yang-
Mills theory in 311 dimensions, where we constructed the
renormalized Hamiltonian up to one loop.

Our results were substantially supportive of our conjec-
ture. In the case of Yang-Mills, an asymptotically free
theory, the one-loop metric renormalization showed that in
fact the distance between configuration increases as the mo-
mentum scale increases, and on the contrary for QED, not
asymptotically free, the behavior of the metric is the oppo-
site.

We are aware, of course, that our results are not decisive
but just consistent with the conjecture. After all we have only
studied two examples at one-loop order in perturbation
theory. However from the examples considered we can ob-
serve a pattern that seems to repeat at any instance: when
moving all the weight of the renormalization group onto the
configuration space metric, it acquires a renormalization fac-
tor which is a function of the same combination of renormal-
ization constants that defines the b function of the theory,
and thus, presumably, inherits its asymptotic behavior prop-
erties.
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APPENDIX

In this appendix we show that the ambiguity in the defi-
nition of the effective Hamiltonian due to the freedom in the
solution of Eq. ~6! @and generally ~10!# is just the standard
ambiguity of the Hamiltonian operator, namely the freedom
of unitary transformations.

Let us recall that the solution of Eqs. ~6!, ~8!, or ~10! is
not uniquely defined; if Vn is a solution so will be Vn
1On with On satisfying the homogeneous equation
@H2 ,On#50. Now let us consider two sets of V’s—say Vn

(a)

and Vn
(b) , all of them satisfying the proper equations ~6! and

~10! but generated from different type of solutions. Then we
have

HA5¯e2iV1
(a)

e2iV0
(a)

HeiV0
(a)

eiV1
(a)

••• ,

HB5¯e2iV1
(b)

e2iV0
(b)

HeiV0
(b)

eiV1
(b)

••• .
~A1!

Obviously HA and HB are unitarily related: HA
5U21HBU and consequently they have identical spectrum.
What we have to show is that this property remains after
projecting onto the ‘‘high’’ perturbative vacuum u0high&.
-11
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Following the prescription given in Sec. II, we have
shown that, up to given order n in coupling constant l and a
given order m in m/L we can write

HA5H1
(a)~ low!1H2

free~high!1 (
k ,p.m

ak
†Skp

(a)ap

1O~ln,~m/L!m!,

HB5H1
(b)~ low!1H2

free~high!1 (
k ,p.m

ak
†Skp

(b)ap

1O~ln,~m/L!m!, ~A2!

where the Hamiltonians H1
(a ,b) depend only on the low en-

ergy modes, H2 is the free Hamiltonian for the energy modes
and S (a ,b) are arbitrary operators of low and high frequency
modes.

Without losing any generality we can assume that H1
(a)

and H1
(b) are diagonal, as they can always be brought to that

form with a ‘‘low energy modes’’-unitary transformation
that respects the structure of ~A2!.

Now we will show that the low energy Hamiltonians H1
(a)

and H1
(b) have the same spectrum and consequently they are

unitarily related.
Consider the eigenvalues equations for H1

(a) and H1
(b) :

H1
(a)ca

a 5Ea
a ca

a , H1
(b)ca

b 5Ea
b ca

b . ~A3!
105028
Using standard perturbation theory we can compute the
eigenvalues of the whole Hamiltonians, A and B as an ex-
pansion in powers of the matrix elements of the interaction
terms

V (a ,b)5 (
k ,p.m

ak
†Skp

(a ,b)ap . ~A4!

We get, for the eigenvalues of the operator HA ,

Ea ,n
TOT5Ea

a 1En
01^a ,nuVaua ,n&

1(
g ,m

^a ,nuVaug ,m&^g ,muVaua ,n&

Eg
a1Em

0 2Ea
a 2En

0 1••• ~A5!

and a similar equation is valid for the eigenvalues of the
operator HB . But the low energy spectrum corresponds to
those states with n50, and in this case, due to the particular
form of the interaction, all the perturbative contributions
vanish and the eigenvalue Ea

a is the exact eigenvalue of the
whole Hamiltonian ~up to the given order in l and m/L):

Ea ,0
TOT5Ea

a 1O~ln,~m/L!m!. ~A6!

And finally, since both Hamiltonians HA and HB have the
same spectrum, or since ETOT is the same for both HA and
HB , we deduce that

Ea
a 5Ea

b 1O~ln,~m/L!m!. ~A7!
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