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Abstract

The deviation of primordial Helium production due to a variation on the

difference between the rest masses of the nucleons is presented. It is found an

upper bound δ(M
n
−M

p
) <∼ 0.129 MeV, between the present and nucleosyn-

thesis epochs. This bound is used to analyze Wesson’s theory of gravitation;

as a result, it is ruled out by observation.
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The so-called Hot Big Bang model provides a consistent description of the evolution of

the Universe. This model depends on a set of universal parameters known as fundamental

constants. However, a great number of theories of gravitation have appeared in which some

of these constants do vary with time. In particular, scalar-tensor theories of gravity [1–3]

make predictions which are in complete agreement with present experimental data while

predicting a variation of Newton’s gravitational constant over cosmological time scales. The

physical embodiment of these theories allows a natural generalization of General Relativity

and thus provides a convenient set of representations for the observational limits on possible

deviations of Einstein’s theory, making them a profitable arena for cosmology.

The hypothesis that the gravitational interaction has changed over the history of the

Universe (i.e. the gravitational parameter G or the rest masses of elementary particles

depend on the time t) can be also analyzed in the framework of a 5-dimensional cosmology,

proposed by Wesson [4]. This theory is founded either on dimensional analysis [5,6] as well

as on reinterpretation of the five dimensional vacuum equations [7,8]. A consequence of this

relation is that the rest mass of a given body varies from point to point in space-time, in

agreement with the ideas of Mach [9,10]. This is a definite and testable prediction, especially

when time intervals of cosmological order are considered [4,11].

In this letter, we find an upper bound to the variation of the masses of the nucleons over

cosmological time intervals, from a comparison of the observed primordial abundance of 4He

with the theoretical variation induced by a changing mass. Subsequently, this upper bound

is compared with the prediction of the 5–dimensional Wesson’s theory of gravitation.

If we consider that a variation of the rest masses of the particles had occurred between

the epoch of primordial nucleosynthesis and ours, we can compute the deviation in the 4He

production from the Hot Big Bang model prediction due to this fact. The method we are

going to apply is a generalization of the calculation made by Casas, Bellido and Quirós [12]

to fix nucleosynthesis bounds on the variation of the gravitational constant in Jordan-Brans-

Dicke theory of gravity. The same method was recently used to limit other scalar-tensor
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theories with more general couplings functions [13]. We know that – in the Hot Big Bang

model – the primordial 4He production is given by

Yp = λ
(

2x

1 + x

)

tf

(1)

where λ = exp(−(tnuc − tf)/τ) stands for the fraction of neutrons which decayed into protons

between tf and tnuc, with tf (tnuc) the time of freeze out of the weak interactions (nucleosyn-

thesis) [14], τ the neutron mean lifetime, and x = exp(−(Mn − Mp)/kT ) the neutron to

proton ratio. If we make a variation on the rest masses of the particles, i.e. if we consider

that a difference between the rest masses in the present and nucleosythesis epochs does

exist, it is straightforward to compute an expression for the deviation in the 4He primordial

production, that reads

δYp = Yp ln

(

2λ

Yp

− 1

)

[

−1 +
Yp

2λ

]

δ(∆Q)

∆Q
(2)

where we have defined ∆Q = Mn −Mp.

We must also take into account that a variation in the rest masses of the particles will

affect the neutron lifetime. The latter fact was not considered above since (2) represents

only the explicit derivative with respect to ∆Q. A calculation of how a variation of the

neutron lifetime affects the prediction on primordial 4He has been already done in [12,15].

It is given by,

δYp = 0.185
δτ

τ
(3)

Noting that the dependence of τ upon the masses is τ ∝ G−2
F ∆Q−5 ∝ M4

W ∆Q−5, where GF

is the Fermi constant and MW is the mass of the bosonic mediator of weak interactions, it

is easy to obtain,

δτ

τ
= −δ∆Q

∆Q
(4)

Thus, any variable rest mass theory will predict a primordial Helium abundance given

by,
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Yp,var−rest−mass = Yp,std + δYp (5)

where Yp,std is the value predicted by the standard big–bang nucleosynthesis theory.

We can find an upper bound for δYp summing up the two deviations referred above, i.e.

equations (2) and (3), and comparing with the observed value Yobs,

|δYp| ≤ |Yobs − Ystd|+ ǫ ≤ σ (6)

where ǫ is an estimate of the observational error and σ includes also estimates of theoretical

errors. From [15,16] we estimate σ ≤ 0.01. But, it may also be possible that, due to small

changes in nucleon masses, small changes in nuclear cross sections do occur. Since the

functional dependence of cross sections with masses is generally unknown, we shall take into

account these changes by arbitrarily doubling the theoretical error. Thus, we obtain
∣

∣

∣

∣

∣

δ(∆Q)

∆Q
0

∣

∣

∣

∣

∣

≤ 10% (7)

with ∆Q
0
≃ 1.294 MeV [16], or equivalently

δ(∆Q) ≤ 0.129 MeV (8)

At this stage, we must work out the cosmological solution for the radiation dominated

era. We shall consider the warped product M4×R, where M4 is the ordinary 4-dimensional

spacetime manifold and R correspond to the extra dimension. This leads to the line element

ds2 = −dt2 +
A2(t)

(1 + k(x2
1
+ x2

2
+ x2

3
)/4)2

( dx2
1
+ dx2

2
+ dx2

3
) + eζ(t)dx2

5
(9)

where A2(t) is the expansion scale factor and eζ(t) must be associated with the mass scale

factor. This could be simplified considering a flat spatial section in M4 (i.e. k = 0). This

assumption is justified when one compares the order of magnitude of the different terms in

the Einstein equation evaluated in the radiation era [19].

The suitable generalization of Einstein equation for the theory can be written as1

1In what follows, latin indices A,B, . . ., run from 0 to 4, greek indices from 0 to 3 and latin indices

i, j, . . ., from 1 to 3.
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GAB = 8 π G TAB (10a)

TAB = diag(ρ, −p, −p, −p, 0) (10b)

with ρ (p) the density (pressure) of the radiation fluid, and G is Newton’s gravitational

constant. The equation of state is p = 1/3ρ. The boundary condition that ought to be

imposed is a smoothly matching at t = teq ( equivalence time) with the dust-filled solution

obtained in a previous paper [20]. It is important to stress that in our previous work we

required that both ζ and dζ/dt vanish at t = today. With these conditions, the masses

of the fundamental particles can be set to their present experimental value [16], and mass

variations are negligible in short time scales (see eq.(14)), which is consistent with the bound

|ṁ/m|today <∼ 10−12 yr−1 [21]. However, our results are to a large extent independent of the

epoch in which the initial conditions for ζ and dζ/dt were imposed. 2

The radiation dominated era solution is given by

A2(t) = 2 β t (11a)

ζ(t) = 2 ln

[

−1

2

[

teq√
t
0

−
√

t
0

]

t−1/2 +

√

teq
t
0

]

(11b)

ρ(t) =
1

16 πG







3

2 t2
+

3

2 t

1
4
[ teq√

t0
−√

t0 ] t
−3/2

−1
2
[ teq√

t0
−√

t0 ] t−1/2 +
√

teq
t0







(11c)

(with β a constant)3.

2This can be seen by comparing the prediction of this theory for ṁ/m = ζ̇/2 at t = today in the

case where the initial conditions for ζ and its derivative were imposed for instance at the Earth

formation epoch, with the current experimental limits on ṁ/m [21].

3This solution was previously obtained by Mann and Vincent [17] imposing different boundary

conditions. It was also obtained by Grøn [18]; from his work it is clear that the rate of change of

the fifth metric coefficient depends on initial conditions.
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The way in which the mass is introduced in this formalism has an inherent ambiguity.

The proposal of Ma [6]

m(t) =
c2

G

∫ x
5
+ l

x5

√
g55 dx

5 (12)

or, in the case of an x5-independent metric,

m(τ) =
c2

G

√
g55 ∆l0 (13)

(∆l0 is the -finite- “length” of the body in the x5 direction [6]), does not specify the tensorial

character of the mass, which is implicitly introduced into the theory. In other words, there

is no conclusive reason to mantain the covariant form of g55 under the square root, and so

m(t) can be also scale as

m(τ) =
c2

G

√

g55 ∆l̃0 (14)

The bottom line in this idea is that the dimensional analysis used to define the relationship

between the mass and the extra dimension x5 = c2m/G does not exclude the covariant

formulation x5 = c2m/G. We shall adopt hereafter the most favorable definition for the

theory.

Hence, we can estimate the variation of the mass from eq. (11b). Since t0 ≫ teq ≫ tnuc

(t0 is the present age of the universe), we find

ζnuc ≈ 2 ln
1

2

√

t0
tnuc

≈ 2 ln 108 (15)

Defining the quotient ∆m/m as

∆m

m0

=
m(t

nuc
)−m(t

0
)

m(t
0
)

= e−ζnuc/2 − 1 ≃ −1 (16)

we are able to see that the theory predicts

∣

∣

∣

∣

∣

δ∆Q

∆Q
0

∣

∣

∣

∣

∣

≃ 100% (17)

which is in disagreement with the previous bound (7). Using a covariant formulation for the

mass scale factor in (16) one would get an even worse disagreement.
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Thereupon, the assumed relation connecting the 5th dimension and the particles rest

masses is false, at least in the case we have explored. More general (i.e. x5 dependant)

metrics deserve more thorough analysis. We hope to report on this issues in a forthcoming

work.
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