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Abstract

We discuss bosonization in three dimensions by establishing a
connection between the massive Thirring model and the Maxwell-
Chern-Simons theory. We show, to lowest order in inverse fermion
mass, the identity between the corresponding partition functions;
from this, a bosonization identity for the fermion current, valid
for length scales long compared with the Compton wavelength of
the fermion, is inferred. We present a non-local operator in the
Thirring model which exhibits fractional statistics.
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In this paper we investigate the problem of the mapping of quantum field
theories of interacting fermions in 2 + 1 dimensions onto an equivalent the-
ory of interacting bosons. These mappings, commonly called bosonization,
are well established in the context of 1 + 1 dimensional theories. There,
bosonization constitutes one of the main tools available for the study of the
non-perturbative behavior of both quantum field theories [1] and of con-
densed matter systems [2]. The bosonization identities, which relate the
fermionic current with the topological current of a bosonic theory, can be
viewed as a consequence of a non-trivial current algebra. However, in di-
mensions other than 1 + 1, much less is known. Although current algebras
do exist in all dimesions, the Schwinger terms have a much more complex
structure in higher dimensions. Also, a simple counting of degrees of freedom
shows that a simple minded mapping between fermions and scalars can only
hold in 1 + 1 dimensions. In this work we show that the low energy sector
of a theory of massive self-interacting fermions, the massive Thirring Model
in 2 + 1 dimeensions, can be bosonized. However, the bosonized theory is a
gauge theory, the Maxwell-Chern-Simons gauge theory.

Some time ago Deser and Redlich [3] discussed the equivalence of the
three dimensional effective electromagnetic action of the CP 1 model and of
a charged massive fermion to lowest order in inverse (fermion) mass, following
the ideas of Refs. [4]-[5]. This issue is relevant in the context of transmutation
of spin and statistics in three dimensions, with applications to interesting
problems both in Quantum Field Theory and Condensed Matter physics
[6]. The mapping, first discussed by Polyakov[4] and extended by Deser and
Redlich[3], shows that a massive scalar particle coupled to a Chern-Simons
gauge field becomes a massive Dirac fermion for a properly chosen value
of the Chern-Simons coupling. As such, this Bose-Fermi transmutation is a
property which holds only at very long distances, i.e. at scales long compared
with the Compton wavelength of the particle. In terms of the path-integral
picture, the transmutation is a property of very large, smooth, paths. Hence,
these results hold to lowest order in an expansion in powers of the mass of
the particle. Other approaches to bosonization in 2+1 dimensions have been
developed in Refs. [7]-[8].

In the same vein as in [3], we establish here, to leading order in the
inverse fermionic mass, an identity between the partition functions for the
three-dimensional Thirring model and the topologically massive U(1) gauge
theory, the Maxwell-Chern-Simons theory (MCS). This result enlarges the
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boson-fermion correspondence by connecting a self-interacting fermion model
and a Chern-Simons system.

We start from the three-dimensional (Euclidean) massive Thirring model
Lagrangian:

LTh = ψ̄i(i6∂ +m)ψi − g2

2N
jµjµ (1)

where ψi are N two-component Dirac spinors and Jµ the U(1) current,

jµ = ψ̄iγµψi. (2)

The coupling constant g2 has dimensions of inverse mass. (Although non-
renormalizable by power counting, four fermion interaction models in 2 + 1
dimensions are known to be renormalizable in the 1/N expansion [9].)

The partition function for the theory is defined as

ZTh =
∫

Dψ̄Dψ exp[−
∫

(

ψ̄i(i6∂ +m)ψi − g2

2N
JµJµ

)

d3x] (3)

We now eliminate the quartic interaction by introducing a vector field aµ
through the identity

exp(
∫

g2

2N
JµJµd

3x) =
∫

Daµ exp[−
∫

(
1

2
aµaµ +

g√
N
Jµaµ)d

3x] (4)

(up to a multiplicative normalization constant) so that the partition function
becomes

ZTh =
∫

Dψ̄DψDaµ exp[−
∫

(ψ̄i(i6∂ +m+
g√
N

6a)ψi +
1

2
aµaµ)d

3x]. (5)

We are now going to perform the fermionic path-integral which gives as
usual the Dirac operator determinant:

∫

Dψ̄Dψ exp(−
∫

ψ̄i(i6∂ +m+
g√
N

6a)ψid3x) = det(i6∂ +m+
g√
N

6a) (6)

Being the Dirac operator unbounded, its determinant requires regularization.
Any sensible regularization approach (for example, ζ-function or Pauli-Villars
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approaches) gives a parity violating contribution [12]-[14]. There are also
parity conserving terms which have been computed as an expansion in inverse
powers of the fermion mass:

ln det(i6∂+m+
g√
N

6a) = ± ig2

16π

∫

ǫµναf
µνaαd3x+IPC[aµ]+O(∂

2/m2), (7)

IPC[aµ] = − g2

24πm

∫

d3xfµνfµν + . . . (8)

Using this result we can write ZTh in the form:

ZTh =
∫

Daµ exp(−Seff [aµ]) (9)

where Seff [aµ] is given by

Seff [aµ] =
1

2

∫

d3x(aµa
µ ∓ ig2

4π
ǫµανaµ∂αaν) +

+
g2

24πm

∫

d3xfµνfµν +O(∂2/m2) (10)

Up to corrections of order 1/m, we recognize in Seff the self-dual action
SSD introduced some time ago by Townsend, Pilch and van Nieuwenhuizen
[10],

SSD =
1

2

∫

d3x(aµa
µ ∓ ig2

4π
ǫµανaµ∂αaν) (11)

Then, to leading order in 1/m we have established the following identification:

ZTh ≈
∫

Daµ exp(−SSD) (12)

Now, Deser and Jackiw [11] have proven the equivalence between the model
with dynamics defined by SSD and the Maxwell-Chern-Simons theory . In
what follows, we shall adapt Deser-Jackiw arguments to the path-integral
framework showing that to the leading order in 1/m expansion the Thirring
model partition function coincides with that of the MCS theory. To this end,
let us introduce an “interpolating action” SI [aµ, Aµ]
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SI [aµ, Aµ] =
∫

d3x(
1

2
aµa

µ − iǫµανaµ∂αAν ∓ i
2π

g2
ǫµανAµ∂αAν) (13)

and the corresponding partition function ZI , a path-integral over both Aµ

and aµ,

ZI =
∫

DAµDaµ exp(−SI) (14)

The theory with action SI is invariant under the local gauge transformation

δAµ = ∂µω, δaµ = 0 (15)

To see the connection between ZI and ZTh when written as in (10) and
(11), let us perform the path-integral over Aµ in (13),

I[aµ] ≡
∫

DAµ exp[
∫

d3x(±i2π
g2
ǫµανAµ∂αAν − iǫµανaµ∂αAν)]

=
∫

DAµ exp[−
∫

d3x
1

2
AµS

µνAν + AµJ
µ] (16)

where we have scaled Aµ →
√

4π/g2Aµ and defined

Jµ = i

√

g2

4π
ǫµρσ∂ρaσ (17)

Sµν = ∓iǫµαν∂α (18)

Being Sµν non-invertible we shall define a regulated operator Sµν [Λ],

Sµν [Λ] = ∓iǫµαν∂α +
1

Λ
∂µ∂ν (19)

so that I[aµ] can be calculated from the identity

I[aµ] = lim
Λ→∞

IΛ[aµ] (20)

IΛ[aµ] =
∫

DAµ exp
(

−
∫

d3x(
1

2
AµS

µν [Λ]Aν + AµJ
µ)
)

(21)

Now, IΛ[aµ] can be easily calculated,
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IΛ[aµ] = exp(−
∫

d3xd3yJµ(x)S−1

µν [Λ]J
ν(y) (22)

with

S−1

µν [Λ] = ± i

4π
ǫµνα∂

α 1

|x− y| −
Λ

8π
∂µ∂ν |x− y| (23)

so that we finally have

I[aµ] = exp(±i
∫

d3x
g2

8π
ǫµανaµ∂αaν) (24)

and with this we see that

ZI =
∫

Daµ exp(−SSD) (25)

Let us point that the non invertibility of the operator Sµν is a consequence
of the gauge invariance of the action SI . The extra regulating term in (19)
can be interpreted as originating from a gauge fixing term in the action of
the form (Λ/2)(∂µA

µ)2 with the limit Λ → ∞ enforcing the Lorentz gauge
∂µA

µ = 0.
Using eq.(12) we can then establish the following relation:

ZTh ≈ ZI (26)

Now, if instead of integrating out Aµ in ZI we integrate over aµ, we easily
find

ZL =
∫

DAµ exp
∫

d3x(
1

4
F 2

µν ± i
2π

g2
ǫµανAµ∂αAν) (27)

which is nothing but the partition function ZMCS for the Maxwell-Chern-
Simons theory [15]-[16]. Then, using eq.(26) one finally proves the equiva-
lence, to leading order in 1/m, of the partition functions for Thirring model
and the MCS theory:

ZTh ≈ ZMCS (28)

(As stressed above, ≈ means that the identification has been proven to lead-
ing order in 1/m)
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Equation (28) is one of the main results in our work. It expresses the
equivalence between the low energy sector of a theory of 3-dimensional fer-
mions (interacting via a current-current term) and (gauge) bosons (with
Maxwell-Chern-Simons action). The Thirring coupling constant g2/N in
the fermionic model enters as 2π/g2 in the CS term. This means that the
Thirring spin 1/2 fermion in 2+1 dimensions is equivalent to a spin 1 massive
excitation, with mass π/g2 [15]-[16].

The equivalence has been established at lowest order in 1/m. However,
if we follow Deser and Redlich [3] and consider that g2 = c/m, with c a
dimensionless coupling constant, the first term in IPC becomes of order 1/m2

(see eq.(8)) and the equivalence is then extended to the next order.
In order to infer the bosonization recipe deriving from the equivalence,

we add a source for the Thirring current:

LTh[bµ] = LTh +
∫

d3xjµbµ (29)

Then, instead of (5), the partition function now reads:

ZTh[bµ] =
∫

Dψ̄DψDaµ exp[−
∫

(ψ̄i(i6∂ +m+
g√
N

6a+ 6b)ψi +
1

2
aµaµ)d

3x].

(30)
Or, after shifting aµ → aµ − (g/

√
N)bµ,

ZTh[bµ] = exp

(

− N

2g2

∫

d3xbµb
µ

)

×
∫

Daµ exp(−Seff [aµ] +

√
N

g2

∫

d3xbµa
µ)

(31)
with Seff [aµ] still given by eq.(10). Then, we can again establish to order 1/m
the connection between the Thirring and self-dual models, in the presence of
sources:

ZTh[bµ] = exp

(

− N

2g2

∫

d3xbµb
µ

)

×
∫

Daµ exp(−SSD +

√
N

g

∫

d3xbµa
µ)

(32)
or

ZTh[bµ] = exp(− N

2g2

∫

d3xbµb
µ)× ZSD[bµ] (33)
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In order to connect this with the Maxwell-Chern-Simons system, let us again
consider Jackiw-Deser [11] interpolating action SI (eq.13) but now in the
presence of sources:

SI [aµ, Aµ; bµ] = SI [aµ, Aµ] +

√
N

g

∫

d3xaµb
µ (34)

By integrating out Aµ, one easily shows that the corresponding partition
function ZI [bµ] coincides with ZSD[bµ],

ZI [bµ] = ZSD[bµ] (35)

Now, if one integrates first over aµ one has

ZI [bµ] = exp(
N

2g2

∫

d3xbµb
µ)×

∫

DAµ exp(−
∫

d3x
1

4
FµνF

µν +

±i2π
g2

∫

d3xǫµνα∂
µAνAα +

√
N

g

∫

d3xǫµνα∂
µAνbα) (36)

or

ZI [bµ] = exp(
N

2g2

∫

d3xbµb
µ)× ZMCS[bµ] (37)

Finally, using eq.(33) we have the identity between partition functions for
the Thirring and Maxwell-Chern-Simons models in the presence of sources

ZTh[bµ] ≈ ZMCS[bµ] (38)

Here too, it is convenient to rescale the vector potential Aµ → (g/
√
4π)Aµ,

so that the MCS action takes the standard form. With this change, ZMCS[bµ]
in (38) now reads,

ZMCS[bµ] =
∫

DAµ exp( −
∫

d3x
1

4e2
FµνF

µν ± i
1

2

∫

d3xǫµνα∂
µAνAα

+

√

N

4π

∫

d3xǫµνα∂
µAνbα) (39)

where e2 = 4π/g2.
From eqs.(38)-(39) we see that the bosonization rule for the fermion cur-

rent reads, to leading order in 1/m,
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ψ̄γµψ → i

√

N

4π
ǫµνα∂νAα (40)

A few comments are in order. Firstly, the bosonized expression for the
fermion current is manifestly conserved. Secondly, this formula is the 2 + 1-
dimensional analog of the 1 + 1-dimensional result ψ̄γµψ → (1/

√
π)ǫµν∂

νφ.
(The factor of i in the expression for the current in eq.(40) appears be-
cause, here, we are working in Euclidean space). However, unlike the 1 + 1-
dimensional formula, which is a short distance identity valid for length scales
long compared to a short distance cutoff but small compared with the Comp-
ton wavelength of the fermion, the 2+1-dimensional identity is valid only for
length scales long compared with the Compton wavelength of the fermion.

We give now a first application of the bosonization formulas and, in this
way, explore their physical content. The effective action of eq.(27) has a
Chern-Simons term which controls its long distance behavior. It is well
known[4, 17] that the Chern-Simons gauge theory is a theory of knot in-
variants which realizes the representations of the Braid group. These knot
invariants are given by expectation values of Wilson loops in the Chern-
Simons gauge theory. In this way, it is found that the expectation values of
the Wilson loop operators imply the existence of excitations with fractional
statistics. Thus, it is natural to seek the fermionic analogue of the Wilson
loop operator WΓ which, in the Maxwell-Chern-Simons theory is given by

WΓ = 〈exp{i
√
N

g

∮

Γ

Aµdx
µ}〉 (41)

where Γ is the union of a an arbitrary set of closed curves (loops) in three
dimensional euclidean space. Given a closed loop (or union of closed loops )
Γ, it is always possible to define a set of open surfaces Σ whose boundary is
Γ, i.e. Γ = ∂Σ. Stokes’ theorem implies that

〈exp{i
√
N

g

∮

Γ

Aµdx
µ}〉 = 〈exp{i

√
N

g

∫

Σ

dSµǫ
µνλ∂νAλ}〉

= 〈exp{i
√
N

g

∫

d3xǫµνλ∂νAλ bλ}〉 (42)
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is an identity. Here bλ(x) is the vector field

bλ(x) = nλ(x)δΣ(x) (43)

where nλ is a field of unit vectors normal to the surface Σ and δΣ(x) is a delta
function with support on Σ. Using eq.(38) we find that this expectation value
becomes, in the Thirring Model, equivalent to

WΓ = 〈exp{i
√
N

g

∫

∂Σ
dxµA

µ}〉MCS = 〈exp{
∫

Σ

dSµψ̄γ
µψ}〉Th (44)

More generally we find that the Thirring operator WΣ

WΣ = 〈exp{q
∫

Σ

dSµψ̄γ
µψ}〉Th (45)

obeys the identity

〈exp{q
∫

Σ

dSµψ̄γ
µψ}〉Th = 〈exp{iq

√
N

g

∮

Γ

Aµdx
µ}〉MCS (46)

for an arbitrary fermionic charge q.
The identity (46) relates the flux of the fermionic current through an

open surface Σ with the Wilson loop operator associated with the boundary
Γ of the surface. The Wilson loop operator can be trivially calculated in the
Maxwell-Chern-Simons theory. For very large and smooth loops the behavior
of the Wilson loop operators is dominated by the Chern-Simons term of the
action. The result is a topological invariant which depends only on the linking
number νΓ of the set of curves Γ [4, 17]. By an explict calculation one finds

〈exp{q
∫

Σ

dSµψ̄γ
µψ}〉Th = exp{∓iνΓ

Nq2

8π
} (47)

This result implies that the non-local Thirring loop operator WΣ exhibits
fractional statistics with a statistical angle δ = Nq2/8π. The topological sig-
nificance of this result bears close resemblance with the bosonization identity
in 1+1 dimensions between the circulation of the fermion current on a closed
curve and the topological charge (or instanton number) enclosed in the inte-
rior of the curve[18]. From the point of view of the Thirring model, this is a
most surprising result which reveals the power of the bosonization identities.
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To the best of our knowledge, this is the first example of a purely fermionic
operator, albeit non-local, which is directly related to a topological invariant.

In summary, in this work we presented a mappping between the low
energy sector of a self-interacting fermionic quantum field theory, the massive
Thirring model in 2+1 dimensions, and a bosonic theory of a vector field, the
Maxwell-Chern-Simons theory. This dual gauge theory has a spectrum which
consists of a spin one bosonic excitation of mass π/g2. We presented a number
of identities for the partition functions and for the generating function of the
fermion current correlation functions. The Wilson loop operator of the dual
gauge theory were found to have a natural expression in terms of the fermion
theory. As a byproduct, we found a fermion loop operator which exhibits
fractional statistics.
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