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Abstract
We discuss the dynamical aspects of an asymmetric version of assisted diffusion
of hard core particles on a ring studied by Menon et al (1997 J. Stat. Phys. 86
1237). The asymmetry brings in phenomena like kinematic waves and effects
of the Kardar–Parisi–Zhang non-linearity, which combine with the feature of
strongly broken ergodicity, a characteristic of the model. A central role is
played by a single non-local invariant, the irreducible string, whose interplay
with the driven motion of reconstituting dimers, arising from the assisted
hopping, determines the asymptotic dynamics and scaling regimes. These
are investigated both analytically and numerically through sector-dependent
mappings to the asymmetric simple exclusion process.

1. Introduction

The issue of universality classes in non-equilibrium statistical systems is often linked to the
existence of conservation laws [1]. Normally, the number of conservation laws is finite,
leading to the occurrence of dynamically disjoint sectors whose number grows as a power
of the system size. However, certain dynamical processes involving composite objects exhibit
strongly broken ergodicity, with the number of disjoint sectors growing exponentially with
system size, as a result of having an extensive number of conservation laws. Examples studied
earlier include deposition and evaporation (••• ↔ ◦◦◦) [2–5], and diffusion (••◦ ↔ ◦••) [6]
of bunches of particles. If these moves are interpreted as involving trimers or dimers (in general
k-mers), then the k-mers in question do not keep their identity and can reconstitute in time. The
dynamical moves in these models do not connect configurations in different sectors, implying
that the steady state is not unique and depends strongly on the initial condition. Moreover, the
form of the long-time decay of time-dependent correlations in the steady state varies strongly
from one sector to another. In one dimension, both the partitioning of phase space into many
sectors and the accompanying dynamical diversity could be understood in terms of a non-local
construct known as the irreducible string (IS) which is an invariant of the motion. The IS
provided a convenient label for each sector [4]. Moreover, the position of the elements of the
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IS was the relevant ‘slow’ variable in the problem, and thus governed the long-time dynamics
in different sectors. The dynamical diversity found in different sectors (ranging from different
power law decays to stretched exponentials) could be accounted for in terms of the differences
in the IS from sector to sector [5]. In turn, the IS can be used to construct an extensive number
of conservation laws, although it turns out that these involve non-local combinations of the site
occupancies [4].

All such studies known to us involve a symmetric movement of the IS. Here we study
the dynamical consequences of an asymmetric (directed) motion of the IS. This brings in new
phenomena associated with driven diffusive systems, such as kinematic waves and effects of
the Kardar–Parisi–Zhang (KPZ)/Burgers non-linearity, present in the 1-D asymmetric simple
exclusion process (ASEP) [7, 8]. We investigate these effects by studying the directed diffusion
of reconstituting dimers (DDRD). The model resembles the diffusing reconstituting dimer
model studied in [6], the only difference being that we allow for only forward motion of the
dimers (••◦ → ◦••), in contrast to the two-way motion studied in that paper. The construction
of the IS is the same for symmetric/asymmetric motion, but the dynamics of dimers (and of the
IS) is quite different in the directed case.

It turns out that there is a correspondence between the DDRD and the well-studied ASEP,
though of a generalized sort, leading to extra features including additional wheeling motion of
sites, oscillations of correlation functions and other new kinetic effects. These typically result
from the combination of collective driving and the invariant, but moving, IS. Interestingly, there
is a very useful correspondence between the DDRD and a three-species exclusion process.
Further, the problem of forward-moving non-reconstituting (hard) dimers which keep their
identity is recovered in the DDRD, in a particular sector.

As in the previous studies of dynamic diversity, Monte Carlo (MC) simulation is a key
ingredient in trying to understand the dynamics. In particular we study time-dependent
correlation functions in different sectors and use analytic reductions related to the specific
form of the IS and the motion of its elements to correlate the diverse behaviour seen in the
simulations with properties of the ASEP. Remarkably close correspondences in non-universal
as well as scaling properties are seen.

The development begins (section 2) with an introduction to the model and then moves on
in the same section to the following sequence of emerging topics: equivalence to the three-
species process and correspondences with the ASEP, whose properties are summarized. In
section 3 we study the kinetics within a particularly simple sector in which the problem is
tantamount to that of non-reconstituting dimers. New effects such as wheeling of sites in the
equivalent ASEP, resulting from the combination of driving and the composition of dimers,
are shown to have important consequences for autocorrelation functions. These show early
oscillations and later a decay, whose form (exponential or power law), is decided by a critical
condition related to wheeling and kinematic wave velocities. The long-time behaviour shows
scaling, and universality in the sense of data collapse to ASEP scaling functions, but with
sector-specific parameters. The theoretical and MC results are extended to more general sectors
in section 4, via investigations of sublattice currents, sublattice current–density relations and
consequent kinematic wave velocities. Section 5 is mainly concerned with spatial correlations
in a particular sector, involving MC results and their exact analysis via one of the equivalent
models. Section 6 contains a concluding discussion.

2. DDRD model and correspondence to ASEP

The DDRD model consists of a ring of L sites, each of which may be singly occupied
(occupation variable ni = 1) or empty (ni = 0). Any of the 2L possible configurations is

2



J. Phys.: Condens. Matter 19 (2007) 065112 M Barma et al

then an L-bit binary string. The system evolves stochastically through the move 110 → 011,
which represents the directed diffusion (rightward hopping) of reconstituting dimers (DDRD).
This is equivalent to stochastic hopping of holes two steps to the left (i.e. staying on the same
sublattice) provided the intervening site is occupied. The process is the totally asymmetric
alternative to the fully symmetric reconstituting dimer diffusion process (DRD) [6] which is
known to be strongly non-ergodic due to the existence of a conserved string of variables, the
IS. All states linked by the dynamic process have the same IS, so the phase space divides into
many sectors, ∼λL in number, where λ is the Golden number (

√
5 + 1)/2. All these properties

are shared by the asymmetric generalizations. The IS for a given sector can be obtained from
any state in the sector by deleting from its L-bit string any pair of adjacent 1s and repeating
the procedure until no more deletions are possible (the result is independent of the order of
deletion). For instance, the configuration C ≡ 11101001111010 leads to the IS 10100010.

An equivalent representation of configurations, of the IS and of the process, uses characters
A, B, C related to the binary variables by A = 11, B = 10, C = 0 [6]. With the periodic
boundary conditions used here any DDRD configuration can be uniquely decomposed into
a configuration of As, Bs and Cs. For example, the configuration C of the last paragraph
can be written as AB BC AAC B . Moreover, the totally asymmetric dimer hopping move
110 → 011 corresponds to either AB → B A, or AC → C A; the former move involves
dimer reconstitution. The IS construction now corresponds to deletion of all As, so the IS is a
string of only Bs and Cs, e.g. for the configuration C defined above the IS is B BCC B . The
absence of any exchange of Bs and Cs in the DDRD process verifies the conservation of the IS.

In terms of the characters A, B, C , the DDRD process has an obvious and important
analogy with the (totally) asymmetric exclusion process (ASEP), in which mutually excluding
particles hop to nearest neighbour vacancies on the right. In this correspondence the dimers A
play the role of the ASEP particle, and the Bs and Cs of the IS correspond to ASEP vacancies.
In order to exploit the correspondence here and later, we use NA, NB , NC to denote the numbers
of dimers, 10 pairs and single zeros, respectively. Then the lengths of the DDRD lattice, the IS,
and the ASEP lattice are L = 2NA + 2NB + NC ,L = 2NB + NC , and L X = NA + NB + NC ,
respectively.

The particle density in the ASEP is x = NA/L X , and the fraction of zeros of C type is
y = NC/(NB + NC ). Then, in the case of a periodic IS, if the periodic unit [· · ·] of the IS
contains nB Bs and nC Cs, we have y = nC/(nB + nC). It is straightforward to show from
these definitions that L/L X = 2 − y(1 − x). This ratio provides a metric factor particularly
important for converting known currents, tagged hole velocities and particle densities for the
ASEP into corresponding DDRD quantities. An important point is that the ASEP image of
a fixed DDRD site is not fixed but moves forward and wheels around the periodic ring. The
causes and consequences of wheeling are discussed in detail in section 3.

We conclude the section by recalling some facts about the ASEP that we will need later. On
a ring, the ASEP has a product-measure uniform steady state (SS), with current JX = x(1 − x)

at ASEP particle density x . Density fluctuations move as a kinematic wave through the
system [8, 9], with velocity U = ∂x JX = (1 − 2x). Also, in the long-time scaling regime, the
ASEP density–density correlation function CX (r, t) ≡ hn(r, t)n(0, 0)i − hni2 is of the form

CX (r, t) ∝ t−2/3g00(s), s = 1
2 (JX t2)−1/3(r − Ut). (1)

It is known (equation (4.8) of [12]) that in the limit of large s, g00(s) ∼ exp(−μ|s|3) with
μ ' −0.295, so the correlation function is exponentially decaying in time at large time t . The
exception is when the co-moving condition r = Ut applies, a special case being the autocorre-
lation function (r = 0) when x = 1/2 (making U = 0). In these cases the correlation function
shows t−2/3 power law decay in time.
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In view of the DDRD–ASEP correspondence, one might expect similar behaviour for
asymmetrically diffusing dimers, unlike the symmetrically diffusing dimers of [6], where power
law decay is always seen. Detailed considerations of the correspondence show that the results
are broadly in agreement with these expectations, but modified by a variety of interesting extra
features discussed below.

3. Null sector

We denote a sector whose IS contains no B elements as a null sector. In terms of the notation
introduced earlier, this refers to [0]L with L = NC and y = 1. In any such sector, the DDRD
with an even number of particles is isomorphic to directed diffusion of non-reconstituting or
‘hard’ dimers. The reason is that every cluster of ones must contain an even number of particles
(otherwise the IS would not be all 0s), and hence a cluster can be labelled as DE DE DE DE ,
with a D at the start and E at the end. Each successive DE pair can be thought of as a dimer,
which retains its identity forever: the elementary move 110 → 011 is DE0 → 0DE . The
problem of non-reconstituting hard dimers (and more generally k-mers) is of interest in several
contexts, and some aspects have already been studied [10, 11]. This isomorphism allows us to
obtain the correlation function for the reconstituting dimer problem, in the special case of the
null sector, from the derivation given in section 5 for the non-reconstituting case.

We now summarize the results for the dynamic properties of interest in null sectors. A
more detailed account will appear in [13]. By following the motion of a hole in the DDRD and
its image in the ASEP we find that the ratio of the currents JDDRD (for DDRD) and JX is equal
to the metric factor L X /L = 1/(1 + x). Evidently, we then have JDDRD = x(1 − x)/(1 + x).

3.1. Wheeling effect

An important effect shows up in a more detailed consideration of the mapping between sites
in the ASEP and in the DDRD. A fixed site in the DDRD problem corresponds to a moving
site in the ASEP—it wheels around the ring at a finite mean velocity. This happens because if
we follow the ASEP image of a single jump 110 → 011 in the DDRD, we find that the image
of the central site of the triplet advances by one unit, while the images of the other two sites
remain unchanged. In time t , the displacement of a mapped site is thus 1r(t) = Wt + φ(t),
where W is the wheeling velocity and φ(t) is a zero-mean variable which represents the effect
of stochasticity in the motion. It can be shown [13] that in the null sector the wheeling velocity
is given by

W = x(1 − x)/(1 + x). (2)

The wheeling motion of ASEP sites has been verified by direct observation of mapped site
motion in MC simulations, which shows a small jitter corresponding to φ(t) around the
predicted average wheeling velocity.

3.2. Autocorrelation functions

The considerations of the previous paragraph have important consequences for the DDRD:
correlation functions are like those of the ASEP only if wheeling of sites (r → r + Wt) is
allowed for. This suggests that in the long-time scaling regime, if the effects of jitter arising
from the stochastic part φ(t) can be ignored, the density–density correlation function C(r, t)
of the DDRD in the null sector will be of the form

C(r, t) = t−2/3 F([r + (W − U)t]t−2/3). (3)
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For the autocorrelation function (r = 0) the argument of F is proportional to the difference
of the wheeling velocity and the kinematic wave speed U of the ASEP, W − U = x(1 −
x)/(1 + x) − (1 − 2x). Then, if F is similar to the scaling function g00 of the ASEP, the
autocorrelation function C(r = 0, t) ≡ C(t) of the null sector will decay as t−2/3 exp(−κ t)
at large times, where κ is a constant proportional to W − U . On the other hand, in the special
case where W − U vanishes, late-time slower-than-exponential decay should be expected, that
is C(t) ∝ t−2/3Y (t) where Y falls slowly, e.g. approaching a constant. Notice that W − U
vanishes at the ‘compensating’ value xc of the ASEP particle concentration given by

xc = √
2 − 1, (4)

which would correspond to an IS [0]L of length L = L(
√

2 − 1).

3.3. Numerical simulations

To support these expectations, we have conducted extensive simulations of forward-diffusing,
reconstituting dimers in a variety of situations. Since autocorrelation functions of interest refer
to spontaneous fluctuations in steady state (SS), we avoided the relaxation of the system by
generating SS configurations directly, thus saving considerable CPU time. In the equivalent
ASEP, all configurations in SS are equally weighted under periodic boundary conditions and
can be translated to DDRD configurations. This enables us to average our measurements over
a large number of samples to reduce scatter in the data.

In null sectors with IS of length L, such initial conditions are obtained by random
deposition of (L − L)/2 monomers on a ring of (L + L)/2 sites. Subsequently, each
monomer is duplicated by adding another one over an extra adjacent location specially added
for that purpose, i.e. 1 → A = 11, which leaves us with a ring of L sites and (L − L)/2
randomly distributed dimers. Notice that this generating procedure is not equivalent to a
random sequential adsorption of dimers in the original system. Had the latter method been
applied it would necessarily introduce correlations between dimers because of shielding effects
among them [14, 15].

We then evolved our DDRD system using the stochastic microscopic rules referred to
above. After a sequence of L update attempts at random locations, the timescale is increased by
one unit, i.e. t → t + 1, irrespective of these attempts being successful. Also, measurements at
shorter (longer) time intervals can also be allowed by updating the system in M < L (M > L)

microsteps, and increasing t as t + M/L. Typically, we considered rings of 105 sites and
averaged our measurements over 2×104 histories starting from the independent configurations
constructed above. In figure 1 we show the resulting autocorrelation functions for various
particle densities ρ in null sectors of length L = L(1 − ρ), or equivalently, at different
concentrations x = ρ/(2 − ρ) of the associated ASEP system. The full line corresponds
to the compensating condition xc = √

2 − 1, thus making U − W = 0, and is the case
where slower-than-exponential decay is seen. Specifically, it is consistent with a large-time
behaviour C(t) ∝ t−2/3, in turn suggesting that the slowly decaying function Y (t) referred to
after equation (3) approaches a constant at large t . This is in marked contrast to all other IS
fractions studied which always give rise to exponential decays, either below or above xc. This
constitutes a strong confirmation of the theory.

In preparation for the analysis of SS currents in more general situations (see section 4), we
also estimated these quantities numerically by measuring the three-point correlations involved
in the assisted hopping, namely

J1 = 2

L

X

i

hn2i−1n2i n2i+1i, J2 = 2

L

X

i

hn2i n2i+1n2i+2i (5)
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Figure 1. Autocorrelation functions of null strings [0]L with different lengths L. From bottom
to top they refer to L/L = 1/5, 3/5, 1/3 and ∼√

2 − 1 (compensating condition W − U = 0).
The latter case is consistent with a t−2/3 large-time decay, whereas the other situations give rise
to exponential decays. The inset displays steady currents of null sectors with particle densities
ρ = 1 − L/L , closely following the analytical current ρ(ρ − 1)/(ρ − 2) derived from section 3,
and reaching a maximum near vanishing wave velocities.

on each of the sublattices 1 and 2, where n ≡ 1 − n denotes a vacancy. As will be discussed
below, the compensating condition also corresponds to the vanishing of both current derivatives
with respect to particle densities. The inset of figure 1 displays the currents of sector [0] (both
equivalent in this case), as a function of the particle density (ρ1 = ρ2), closely following the
JDDRD current discussed above. As expected, its extremum occurs very near to ρc = 2 − √

2,
namely close to x = xc.

3.4. DDRD and ASEP analogies

The above results would indicate that the long-time autocorrelations of the DDRD and ASEP
systems are similar provided that the kinematic wave in each system is stationary. Despite
the existence of jitter between site locations in the two systems, figure 2 provides a strong
indication that this might be the case provided large times are considered (t & 20). On the
other hand, the short-time differences between both systems (see inset of figure 2) can be
qualitatively understood by combining wheeling with the equal-time spatial structure, which, as
will be discussed in section 5, has a finite SS correlation length. Moreover, analogues with the
ASEP would suggest attempting a collapse of all the null sector DDRD autocorrelation data at
x 6= xc. Figure 3 shows the data collapse for the DDRD autocorrelation C(t) at representative
xs in the null sector, as a plot of ln[bt2/3C(t)] versus at . There is a convincing collapse to a
line corresponding to ln g00(s) versus s3, where g00 is the ASEP scaling function (equation (1))
in which s3 ∝ t . As for a and b, they are fitting parameters which depend on x , and their
numerical values [13] closely follow those arising from the analysis of [12, 16].
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Figure 2. Comparison of ASEP (squares) and
DDRD (triangles) autocorrelation functions at
x = 1/2 and x = xc, respectively (compensating
conditions in both systems). Above ∼20 MC
steps they both decay as ∼t−2/3 and with very
similar amplitudes. The short-time behaviour is
shown by the inset displaying the ratio R(t) =
CDDRD(t)/CX (t) which involves the wheeling
effect referred to in section 3.
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Figure 3. Data collapse of autocorrelations in
sector [0]L for non-critical regimes. They refer
respectively to L/L = 3/5 (squares), 1/5 (circles)
and 1/3 (triangles). The curvature of the ASEP
scaling function g00 (solid line, [12]) shows that
the collapse achieved through the fitting parameters
a, b is yet very far from the asymptote. The latter
is only reached above s3 = at & 200, as hinted
at by the actual behaviour of g00 exhibited in the
inset. Nevertheless, the resulting values of a and
b are understandable in terms of the analysis of g00
given in [12, 16] along with the wheeling velocity
(equation (2)). For the purposes of display, all early
time data (at . 1/2) have been pruned.

The argument s of g00(s) and the overall prefactor required to give the autocorrelation
function for the ASEP are given on dimensional grounds as functions of x in [12] and [16] (in
particular, see equations (1.3)–(1.10) in [16]), and involve U = (1 − 2x) and JX = x(1 − x)

together with t in forms consistent with the scaling variables given in section 2. There are also
numerical factors, which differ between the two papers. Our data collapse for the DDRD yields
values for a which for most x are within 1% of the corresponding theoretical ASEP values [16];
likewise for b, except for a persistent difference of a factor of 2 (possibly owing to the definition
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of g00 in [16]). Apart from this, the DDRD autocorrelations correspond in every detail to the
ASEP ones except at early times.

The data in figure 3 do not lie in the asymptotic regime where ln g00(s) is linear in s3. This
exponential decay is achieved only for s3 & 200, as displayed in upper inset; the corresponding
times are very large and the autocorrelations too small to render them numerically accessible by
direct simulation. Size dependences are then noticeable unless L3/2 is large compared to such
times, so very large system sizes are required in the MC. Further, the implied large equilibration
times mean that for large L it would not be feasible to prepare initial states by relaxation. In our
simulations, initial states are obtained via the ASEP by exploiting its product measure property,
as described above.

4. Periodic irreducible strings

In non-null sectors, the value of NB is a measure of reconstitution that occurs in that sector.
We have examined some sectors with periodic ISs and find pronounced oscillations in the
autocorrelation functions, e.g. figures 4 and 5 correspond to sectors [BCC]L/3 (y = 2/3)
and [B BC]L/3 (y = 1/3), with ISs composed of repeating units BCC and B BC , respectively.
The time periods for such periodic sectors are readily calculated, since the oscillations are due
to the alternations of ones and zeros arriving at a site.

4.1. Steady state construction

In this new scenario the initial steady configurations were prepared by means of a slight
variation of the generating procedure described for null strings (section 3). Consider for
instance the sector [BCC]L/3. Then, we can identify two types of ‘single site holes’ B = 10
and C = 0, within an ASEP ring of L/2 + L/4 sites over which (L − L)/2 ‘monomers’
(later on recast as dimers A = 11), are randomly adsorbed. In going backwards from ASEP
to DDRD, we first christen the ASEP vacancies as B or C , in the order in which they occur in
the IS. While reconstructing the DDRD configuration, we expand out the Bs to be 10s and let
the Cs be zeros. The resulting configuration is updated by our usual stochastic rules. This was
carried out on DDRD rings of 1.2 × 105 sites and averaged typically over 3 × 104 independent
histories. Particle densities, ρ2 = 1 − L

L and ρ1 = 1 − L
2L , on even and odd sublattices,

are preserved throughout [x = (1 − L/L)/(1 + L/2L)], whereas both autocorrelations and
currents were separately computed in each sublattice. A similar SS construction and numerical
considerations apply to the [B BC]L/3 sector, with an evolution which now takes place in two
equivalent sublattices of density ρ = 1 − 3L

5L [x = (1 − L/L)/(1 + L/5L)].

4.2. Sublattice currents and wave velocities

For sectors such as the above, with periodic ISs, a full discussion is possible for currents,
compensating conditions and kinematic waves with velocities given by a density derivative of
the appropriate current in the DDRD model. The compensating condition W − U = 0 then
correspond to the vanishing of the kinematic wave velocity given by the current derivative in the
DDRD process, at which point we expect slower-than-exponential decays of autocorrelations.

In these periodic sectors one can work out analytically the current on each sublattice using
the DDRD–ASEP correspondence given in section 2, and hence obtain the critical xc and the
velocities (details can be found in [13]). If z1 and z2 = 1 − z1 are the proportions of zeros on
sublattices 1, 2, then the current associated with the movement of zeros on each sublattice is

Ji = 2xzi(1 − x)/[2 − y(1 − x)], i = 1, 2. (6)

8
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Figure 4. Autocorrelation functions of critical BCC sector (Lc/L ' √
6 − 2), for both even and

odd sublattices (dashed and solid lines respectively). In both cases, the asymptotic behaviour is
consistent with a t−2/3 relaxation. As explained in the text, the early time oscillations are due to
the periodicity of the four IS characters [1000]. The inset displays even and odd sublattice currents
(upper and lower curves respectively), as functions of their corresponding densities ρ2 = 1 − L

L ,

ρ1 = 1 − L
2L . The data are accurately described by J2 = 2ρ2(1 − ρ2)/(3 − ρ2) and J1 =

(1 − ρ1)(2ρ1 − 1)/(2 − ρ1), in agreement with equation (9). The critical condition of the main
panel corresponds to maximum currents near ρ2 = 3−√

6, and ρ1 = 2−√
3/2, namely at vanishing

wave velocities.

The corresponding DDRD sublattice kinematic wave velocities Vi are obtained from Vi = ∂ρi Ji

where ρi are sublattice particle densities (of ones) in the DDRD. So V1, V2 vanish at a common
value, xc, of the ASEP density x given by ∂x [x(1 − x)/(2 − y(1 − x))] = 0. This is a quadratic
equation for x , whose root lying between 0 and 1 is

xc = [p2(2 − y) − (2 − y)]/y. (7)

Thus, xc is a monotonic decreasing function of y in the range 0 6 y 6 1, varying between 0.5
and

√
2 − 1. As a check on the result for xc, for the null sector we have y = 1, which implies

xc = √
2 − 1.

It is easy to obtain the Vi from the Ji by relating the ρi to the particle density ρ(x) in the
full DDRD (from both sublattices), and thence to x (in terms of which we have Ji ). The result
is

Vi = 2 − 4x − y(1 − x)2, (8)

independent of sublattice label i , implying that the two sublattice velocities are the same, as
well as the xc at which they vanish. For comparison with MC results (equation (5)), we can
obtain similarly, in any sector with a periodic IS, the current on sublattice i of the DDRD in
terms of the particle density ρi on sublattice i :

Ji = (1 − ρi )[2zi − (2 − y)(1 − ρi )]/[2zi + y(1 − ρi)]. (9)

The analytical results for [BCC]L/3 and [B BC]L/3, obtained by inserting their respective
y and zi , are the full lines in the insets in figures 4 and 5, respectively (skewed parabolas as
functions of sublattice densities). Like the null string currents discussed in section 3 (inset of
figure 1), they agree closely with the data points resulting from the simulations. The sublattice
autocorrelation functions shown in the corresponding main panels are at the densities of the
maxima of the respective sublattice currents, and each show a t−2/3 power law long-time decay,
verifying in turn that they are at the critical density. Moreover, in analogy to null string cases,

9



J. Phys.: Condens. Matter 19 (2007) 065112 M Barma et al

 0.001

 0.01

 100  1000
steps

|C(t)|

 0

 0.05

 0.1

 0.4  0.6  0.8  1

ρ

J

Figure 5. Autocorrelations of critical B BC string with length density Lc/L ' √
30 − 5. The

large-time behaviour follows closely a t−2/3 power law decay (denoted by the rightmost lower
dashed line). As in figure 4, the initial oscillations can be accounted for by the periodicity of the
IS elements [10100]. The inset contains the steady currents (equivalent in both sublattices), which
follow entirely their analytical counterparts J = (ρ−1)(5ρ−2)/(ρ−4), in equation (9). The wave
velocity vanishes at the current maximum, on approaching the main panel regime at ρ = 4−3

√
6/5.

1 5 9  13
r

 (
-1

) 
   

   
 C

 (
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Figure 6. Spatial pair correlations of sector [0]L for L/L = 1/2 (triangles), 1/3 (circles), 1/5
(squares) and 1/10 (rhomboids). The solid lines are fitted with slopes (inverse correlation length)
ξ−1 = ln(

1+L/L
1−L/L ), in agreement with equations (10) and (11). The actual oscillations of C(r) also

follow the behaviour predicted in section 5.

it was found that on departing from these critical conditions the observed power law decay
changes abruptly to exponential.
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5. Spatial correlations in null sectors

In the null sector [0]L=NC with an even number of particles the correlation function in the dimer
problem can be evaluated exactly (below) using the isomorphism to non-reconstituting dimers
together with the DE representation introduced in section 3. Since the presence of a D particle
at site i implies and is implied by the presence of an E particle at site (i +1), the (unsubtracted)
particle–particle correlation function can be reduced to

hn(i)n(i + r)i = 2E(r) + E(r − 1) + E(r + 1), (10)

where E(r) is the (unsubtracted) correlation function obtained from all configurations having
an E particle at each of sites i and i + r . The weight of each such a configuration can be
found by mapping it to the corresponding configuration in the equivalent ASEP. Allowing for
the weights of the Es at i and i + r and those of m dimers and (r − 2 − 2m) holes between,
and for multiplicities, and summing over m (from 0 to the integer part of (r − 2)/2 ) provides
the required E(r). After reductions it becomes

E(r) = [x2/(1 + x)2][1 − (−x)r−1], (11)

(for details, see [13]). Inserting into equation (10) above, and subtracting hni2 = [2x/(1 + x)]2

provides the subtracted pair correlation function C(r). This is oscillatory, and has a decaying
envelope with correlation length ξ = [ln(1/x)]−1. Figure 6 shows MC results for the
(subtracted) spatial correlations C(r) in the null sector for various x . The actual C(r)s show
the predicted oscillation (−1)r , and the correlation lengths agree closely with the theory.

6. Concluding discussion

This investigation of the simplest model combining strongly broken ergodicity with driving
has uncovered a wealth of properties, some expected and others not foreseen. In particular the
model shows an interesting interplay between the collective (and scaling) kinetics of the basic
driven model (the ASEP) and effects of the invariant IS which characterizes the sector in the
DDRD. Monte Carlo simulations shows many of these features in striking fashion.

Despite the richness and complexity of the combined model, much has been understood
analytically for sectors with null or periodic ISs. The scaling behaviour seen so far appears
to be in the universality class of the ASEP. The relationships of non-universal variables, like
currents, densities (including critical densities) and velocities, have been largely understood.

There are, however, certain important generalizations which have not been discussed here,
which we now briefly mention: additional special sectors, alternative boundary conditions and
k-mer generalizations.

We can expect, following the discussion of [6] for the DRD, new effects in sectors having
ISs with various types of structural correlation. Provided critical conditions (xcs) exist in which
autocorrelations show power law time decay, the power law for such sectors need no longer be
related simply to the ASEP exponents. One would then have different decay patterns, according
to sector (‘dynamic diversity’). The combination of the methods developed here with those
of [6] might well allow analytical treatment of such effects.

Changing from periodic boundary conditions to open ones with boundary injection could
strongly alter the behaviour. For the ASEP, that change produces non-trivial spatial correlations
and dynamics and, most important of all, a steady state non-equilibrium phase transition.
Density profiles, correlations and dynamics differ in the different phases. We would expect
all these features to occur in the corresponding boundary-driven version of the DDRD, in cases
like injection/ejection of dimers, so long as the injection and ejection processes keep the IS
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intact. Again, the detailed properties would vary from sector to sector, and the methods used
here should prove useful in this generalized situation.

Finally, generalizations from reconstituting dimers to k-mers, deserve consideration. As
with dimers, the problem of non-reconstituting k-mers which is of current interest [10, 11] is
contained in null sectors of the general problem. The sector-wise mapping to the ASEP still
holds, but the number of sectors is much larger for larger k, as multiplicities in the types of
ASEP holes increase with k. The sector-wise study of the dynamics remains to be explored
systematically.
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