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Abstract. We propose an Artinian version of Berger’s Conjecture for curves,
concerning the module of Kähler differentials of an algebra. Our version implies
Berger’s Conjecture in characteristic 0. We establish our Artinian Berger Con-
jecture in a number of cases, and prove that Berger’s Conjecture holds for curve
singularities whose conductor ideal contains the cube of a maximal ideal.

In this paper we introduce and study a conjecture, which we call the Artinian Berger

Conjecture (or “ABC”3), about the Kähler differentials ΩA/k of a finite dimensional com-

mutative algebra A over a perfect field k. When char(k) = 0, the conjecture says this: if

A is a subalgebra of a principal ideal algebra B, and ΩA/k injects into ΩB/k, then A is a

principal ideal algebra. Here a principal ideal algebra is a finite dimensional commutative

k-algebra so that every ideal is principal, i.e., of the form (x) for some x. To state the

conjecture when char(k) 6= 0, we replace ‘principal ideal algebra’ by ‘tame principal ideal

algebra’; we will of course define ‘tame’ and restate the conjecture below.

As the name suggests, this is an Artinian version of a conjecture formulated over 30

years ago by R. Berger in [B]. Berger’s Conjecture concerns the coordinate ring R of a

reduced curve over a perfect field k, and says that ΩR/k is torsion-free if and only if R is

regular. (One direction is classical: if R is regular then ΩR/k is torsion-free, because it is

a projective R-module [W, 9.3.14].)

Main Theorem 0.1 (“ABC ⇒ BC”). If char(k) = 0, the Artinian Berger Conjecture

implies Berger’s Conjecture.
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To see the connection between the two conjectures, let R be the coordinate ring of a

singular curve over k with integral closure S and total ring of fractions F . Since ΩS/k is

torsion-free, it injects into ΩF/k = F ⊗ ΩR/k. Therefore the torsion submodule of ΩR/k is

the kernel of ΩR/k → ΩS/k. It is possible to find a nonzero ideal I of S contained in R so

that B = S/I is a principal ideal algebra but A = R/I is not. The torsion submodule of

ΩR/k maps to the kernel τ of ΩA/k → ΩB/k, where we can hope to detect it.

At present, Berger’s conjecture is known to be true if R is a complete intersection ([B]),

is graded ([S]), has analytically smoothable curve singularities ([Ba]), has multiplicity e ≤ 9

([U], [Gu], [I]), or has deviation less than or equal to 3 ([U], [HW]). We refer the reader to

[K], or to Herzog’s unpublished survey paper [H], for more details. In this paper, we will

use the ABC as a tool to prove that Berger’s Conjecture holds in four cases:

1.4 Berger’s conjecture holds for seminormal curves (in all characteristics). This folklore

result can also be proven using analytic deformation to the graded case, but we know

of no literature reference for this result.

1.6 The graded case in characteristic 0. This result is due to Scheja ([S]).

2.13 1-dimensional local rings (R, M) so that M3S ⊂ R, where S is the normalization of

R and char(k) = 0. This is a new case of Berger’s Conjecture.

2.14 Unibranch singularities (R, M) with multiplicity e <
(

m
2

)

, where m = dim(M/M2)

and char(k) = 0. This result is due to Güttes ([Gu], [I]).

Our notion of ‘tame’ (for tamely ramified) is designed to avoid a pathology in charac-

teristic p, namely: “wildly ramified” extensions of k such as k[s]/(sp) can contain subrings

A so that ΩA/k injects into ΩB/k. Here are two examples which illustrate this pathology.

Wild Examples 0.2: a) A = k[x, y]/(x3, xy, y2) is isomorphic to the subring k[s2, s3]

of B = k[s]/(s5), with x = s2 and y = s3. If char(k) = 5, then ΩA/k injects into ΩB/k.

In fact, a direct computation shows that {dx, dy, xdx, ydx} is a k-basis of ΩA, and that it

maps to the set 2sds, 3s2ds, 2s3ds, 2s4ds of linearly independent elements in ΩB
∼= Bds.

b) Embed A = k[x, y]/(x2, xy, y2) in B =
∏

k[si]/(s2
i ) by setting x = s1 + s3 and

y = s2 + s3. If char(k) = 2 then ΩA/k injects into ΩB/k. In this case the vector space

ΩA/k is 5-dimensional on basis {dx, dy, xdx, ydy, xdy = −ydx}. By inspection, these map

to linearly independent elements of the 6-dimensional vector space ΩB/k
∼= B.
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We now turn to the definition of ‘tame’ algebra. Since k is a perfect field, every

principal ideal algebra B is a finite product of truncated polynomial rings Bi = Ki[s]/(sni)

over finite field extensions Ki of k. This classification follows from Wedderburn’s Principal

Theorem ([Wdb] or [W, p. 314]).

Definition 0.3: A truncated polynomial ring B = K[s]/(sn) is said to be tame if K is

a finite field extension of k and either char(K) = 0, or else char(K) = p and p does not

divide n. We say that a principal ideal algebra B is tame if it is the product of tame

truncated polynomial rings.

Although the torsion submodule τ(R) of ΩR/k only makes sense if R is reduced, we

can formulate an Artinian analogue τ(A). Our definition is motivated by the observation,

made above for curves, that τ(R) is the kernel of ΩR/k → ΩS/k. Consider the family F

of submodules of ΩA/k which arise as the kernel of a map f∗ : ΩA/k → ΩB/k induced by

an algebra map f : A → B in which B is a tame principal ideal algebra. This family is

closed under intersection, since the product B ×B′ of two principal ideal algebras is again

a principal ideal algebra, and ΩB×B′ = ΩB × ΩB′ . Because the residue fields of A are

tame, ΩA/k ∈ F . Since ΩA/k is an Artinian module, F has a unique minimal submodule

τ .

Definition 0.4: Let τ(A) denote the unique minimal submodule of F . Thus τ(A) is in

the kernel of f∗ : ΩA/k → ΩB/k for every algebra homomorphism f : A → B in which B

is a tame principal ideal algebra, and equals ker(f∗) for some f . The submodule τ(A) is

natural in A; an algebra map A → A′ will induce a map from τ(A) to τ(A′).

Artinian Berger Conjecture (“ABC”): Let A be a finite dimensional commutative

algebra over a perfect field k. Then:

τ(A) = 0 ⇐⇒ A is a tame principal ideal algebra.

If A is a tame principal ideal algebra, it is clear that τ(A) = 0. If A is a “wild” (not

tame) principal ideal algebra, we will see in 2.2 that τ(A) 6= 0. Therefore the ABC is

equivalent to the assertion that, if there exists a map to a tame principal ideal algebra B

so that ΩA injects into ΩB, then A is a principal ideal algebra. This formulation obviously

implies the version of the ABC stated at the outset of this paper; we will show that they

are equivalent in 2.4 below.
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The paper is organized so as to focus on Berger’s conjecture. Section 1 contains the

proof of the Main Theorem and a simple proof of Berger’s conjecture for seminormal rings.

In section 2 we establish the ABC for several classes of local Artinian algebras, including

those for which M3 = 0. We reserve section 3 for the proofs of the various technical results

about Hochschild homology that we need in sections 1 and 2. In particular, the key result

Theorem 1.2 is proven in section three.

Notation: All rings in this paper will be commutative algebras over a perfect field k.

As usual, a finite algebra is one that is finite dimensional as a vector space. If R is any

algebra, we write ΩR for the R-module of Kähler differentials ΩR/k of R over k. The terms

‘principal ideal algebra’ and ‘tame principal ideal algebra’ were defined above; note that a

principal ideal algebra is always a finite algebra.

§1. Reduction to the Artinian Case.

In this section we prove the main theorem 0.1, modulo some technical results on

relative Hochschild homology which we postpone until §3. In order to construct our key

commutative diagram (1.1), we need to review some basic definitions. We refer the reader

to [W] for a more detailed discussion of Hochschild homology.

The R-module of Kähler differentials ΩR/k of a commutative algebra R is defined by

the following presentation: there is one generator dx for every x ∈ R, with dx = 0 if x ∈ k,

subject to the usual calculus relations for d(x + y) and d(xy). On the other hand, the

Hochschild homology HH∗(R) of R is the homology of the standard Hochschild complex

of R-modules

C∗(R) : · · · R ⊗k R ⊗k R
b
→ R ⊗k R

0
→ R → 0.

b(x ⊗ y ⊗ z) = xy ⊗ z − x ⊗ yz + zx ⊗ y

(See [W, 9.1.1] for a description of the other differentials.) We shall make use of the

well-known isomorphism ΩR
∼= HH1(R) ([W, 9.2.2]) to fit ΩR into a relative homological

framework.

If I is an ideal of R, we will write HH∗(R, I) for the homology of the kernel C∗(R, I)

of the surjection C∗(R) → C∗(R/I). Our indexing is so that we have a long exact sequence

· · ·HHn+1(R/I) → HHn(R, I) → HHn(R) → HHn(R/I) · · · .
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One can check directly that HH0(R, I) = I and that HH1(R, I) is a quotient of R ⊗k I.

Suppose that f : R → S is an algebra homomorphism, mapping an ideal I of R iso-

morphically onto an ideal of S (which by abuse of notation we also write as I). We define

the double relative groups HH∗(R, S, I) to be the homology of cone(f∗)[1], the translate

of the mapping cone complex of f∗ : C∗(R, I) → C∗(S, I). As in [W, 1.5.2], these fit into

a long exact sequence

· · ·
f∗

→ HHn+1(S, I) → HHn(R, S, I) → HHn(R, I)
f∗

→ HHn(S, I) · · · .

We will see in 3.6 that HH0(R, S, I) is isomorphic to I ⊗S ΩS/R. Assembling all the above

data, we form the following commutative diagram with exact rows and an exact column.

(1.1)

HH1(R, I) → ΩR → ΩR/I → 0
↓ ↓ ↓

HH2(S/I) −→ HH1(S, I) → ΩS → ΩS/I → 0
ց ↓

I ⊗S ΩS/R

Diagram Chase 1.1.1: If the map HH2(S/I) → I ⊗S ΩS/R is onto (e.g., if ΩS/R = 0), a

diagram chase shows that there is an exact “Mayer-Vietoris” sequence

ΩR → ΩS ⊕ ΩR/I → ΩS/I → 0.

Here is the statement of our key technical result. In order to present the flow of ideas

more clearly, we shall postpone giving a self-contained proof of this result until §3.

Theorem 1.2: Suppose that an algebra map f : R → S maps an ideal I of R isomorphically

onto an ideal of S, that S is locally a principal ideal ring, and that S/I is a finite algebra.

If char(k) = 0, then the composite map HH2(S/I) → I ⊗S ΩS/R in diagram (1.1) is a

surjection.

Remark: The cyclic homology and K-theory versions of this theorem were proven for

number fields in [Wa, A.3], and our proof follows its outline. All these versions are inspired

by the Geller-Roberts excision theorem ([GR, 3.1]), which says in effect that K2(S, I) maps

onto K1(R, S, I) ∼= I ⊗S ΩS/R.
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Corollary 1.3: Suppose that an algebra map f : R → S maps an ideal I of R isomorphi-

cally onto an ideal of S, that S is locally a principal ideal ring, and that S/I is a finite

algebra. If char(k) = 0, then there is an exact sequence

ΩR → ΩS ⊕ ΩR/I → ΩS/I → 0.

Hence if ΩR injects into ΩS then ΩR/I also injects into ΩS/I .

Proof of the Main Theorem 0.1: Let R be the coordinate ring of a singular curve

over a field k of characteristic 0, and let S 6= R be the normalization of R (the integral

closure of R in its total ring of fractions F ). It is well-known that the conductor ideal

I0 = annR(S/R) has height 1, and that the intersection J of all the singular primes of R is

the radical ideal of I0. We set I = (I0)
2, and consider the finite Artinian algebras A = R/I

and B = S/I. By Nakayama’s Lemma, applied to a singular prime ideal of R, A = R/I is

not a principal ideal algebra. On the other hand B = S/I is a principal ideal algebra, since

I is a height 1 ideal in a 1-dimensional regular ring. By the ABC, ker(ΩA → ΩB) 6= 0. By

1.3, ker(ΩR → ΩS) 6= 0. But this is the torsion submodule of ΩR/k.

Here are two more applications of the diagram chase 1.1.1. The first shows that

Berger’s conjecture holds for seminormal curves in any characteristic. The second recovers

Scheja’s result—Berger’s conjecture holds for graded R in characteristic 0.

Proposition 1.4: (Folklore) If R is the coordinate ring of a seminormal singular curve

over a perfect field k, then ΩR has a non-zero torsion submodule.

Proof: Let M be a singular prime ideal of R, and T the torsoin submodule of ΩR. Since

the localization of ΩR/k at M is ΩRM /k, the localization of T at M is the torsion submodule

of ΩRM /k. Thus we may localize at M to assume that R is local.

Since R is seminormal and 1-dimensional, it is well-known that the integral closure

S of R satisfies MS = M ⊆ R, and that K = S/M is a finite product of fields (see [T,

1.3]). It follows that ΩS/R = Ω(S/M)/(R/M) = ΩK/k, and that ΩK/k = 0. By the diagram

chase 1.1.1, the torsion submodule of ΩR/k maps onto the kernel of (ΩR/I → ΩS/I) for

every ideal I, including I = M2. Suppose that {x1, . . . , xm} is a basis (over R/M) of

M/M2, with m ≥ 2. If char(k) 6= 2, then the
(

m
2

)

differentials xidxj with i < j are linearly

independent in ΩR/M2 but vanish in ΩS/M2 . If char(k) = 2, then the
(

m+1
2

)

differentials

xidxj with i ≤ j are linearly independent in ΩR/M2 but map to the m-dimensional vector
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space MΩS/M2 , and therefore some nonzero linear combination of the xidxj must vanish

in ΩS/M2 . (In fact, we will see in 2.6 below that the xidxj form a basis of τ(R/M2) in

both cases.)

Proposition 1.5: Let A = k ⊕ A1 ⊕ . . . be a graded subalgebra of B =
∏

k[si]/(sni

i ),

char(k) = 0. If A is not a principal ideal algebra then ΩA does not inject into ΩB.

Proof: If the maximal ideal M of A is not principal we can pick homogeneous elements

x ∈ Me, y ∈ Mf in M which are linearly independent modulo M2. The Euler differential

ω = ex dy − fy dx in ΩA is nonzero, because its image in ΩA/M2 is (e + f)x dy 6= 0. But

by direct computation ω vanishes in each factor Ωk[s]/(sn) of ΩB.

Corollary 1.6: (Scheja [S]) Let R = k ⊕ R1 ⊕ . . . be a graded reduced 1-dimensional

algebra of finite type over a field k of characteristic zero. If R 6= k[t] then (ΩR)tor 6= 0.

Proof: In this case the normalization S is also graded. By base change we can assume all

the residue fields of S are k. If the homogeneous maximal ideal M of R is principal, then

R = k[t]. Let I be the ideal J2, J = annR(S/R); as M is the only associated prime of the

graded S/R, I has height 1. We now quote Proposition 1.5 with A = R/I and B = S/I

and use 1.3 to complete the proof.

§2. Evidence for the truth of ABC.

In this section we develop some tools for detecting τ(A), and show that the ABC holds

for several classes of finite algebras A. We also show that τ(A) is a subspace of the cyclic

homology group HC1(A) = ΩA/dA when char(k) = 0 and describe the quotient space.

We start with some reductions. The next lemma says that we can always assume, without

loss of generality, that k is algebraically closed and that A is local.

Lemma 2.0: Let A be a finite commutative k-algebra.

(a) If K is a finite field extension of k, then under the canonical isomorphism

ΩA⊗kK
∼= ΩA ⊗k K we have τ(A ⊗k K) ∼= τ(A) ⊗k K.

(b) If A = A1 × · · · × An then the decomposition ΩA = ⊕ΩAi
induces a

decomposition τ(A) = ⊕τ(Ai).

Proof: Let f : A → B be a homomorphism with τ(A) = ker(f∗). Then A ⊗ K → B ⊗ K
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induces a map ΩA⊗K → ΩB⊗K with kernel τ(A)⊗K. Hence τ(A⊗K) ⊆ τ(A)⊗K. But

τ(A) ⊆ τ(A⊗K) by naturality, so we have equality in (a). If A =
∏

Ai then by naturality

each τ(Ai) (and hence the subspace ⊕τ(Ai) of ΩA) lies in τ(A). To see equality, choose

fi: Ai → Bi with τ(Ai) = ker(fi∗); ⊕τ(Ai) is the kernel of (
∏

fi)∗: ΩA → ΩB1×···×Bn
.

Lemma 2.1: Let B be a tame principal ideal algebra. If an element x ∈ B satisfies xi = 0,

then xi−1dx = 0 in ΩB/k.

Proof: This is clear if i 6= 0 in k: xi−1dx = d(xi/i). Suppose that i = 0 in k and that s

is a parameter of some truncated polynomial ring which is a factor of B. If si = 0 then

si−1 = 0, and si−1ds = −s
(i−1)

d(si−1) = 0. In general, if the leading term of x is αse, then

sei = 0 and hence xi−1dx = (αie + . . .)sei−1ds = 0.

Corollary 2.2: If A is the wild principal ideal algebra K[x]/(xnp) then τ(A) = K xnp−1dx.

Thus τ(A) 6= 0 for every wildly ramified principal ideal algebra A.

Proof: Embed A in K[s]/(snp(p+1)−1) by x 7→ sp+1. Then xi−1dx maps to si(p+1)−1ds,

which is nonzero for i < np. Thus τ(A) ⊆ K xnp−1dx. But xnp−1dx ∈ τ(A) by 2.1.

In order to simplify our computations we next show that we may restrict our attention

to subalgebras A of tame principal ideal algebras.

Definition: We say that a finite k-algebra A is embeddable if it is isomorphic to a

subalgebra of some tame principal ideal algebra. For example, if A = k ⊕ M and M2 =

0 then A is embeddable into a product of dimk(M) truncated polynomial rings. Wild

principal ideal algebras may also be embeddable, as the proof of 2.2 shows.

Lemma 2.3: Every finite k-algebra A has a maximal embeddable quotient Ā, and τ(A)

maps onto τ(Ā). Moreover, Ā is not a principal ideal algebra unless A is.

Proof: Let A be a finite k-algebra, and consider the family F of all ideals I of A so

that A/I is embeddable. This is not the empty set, because we have seen that M2 ∈ F

for every maximal ideal M of A. If I1 and I2 are in F , then I1 ∩ I2 ∈ F , because

A/(I1 ∩ I2) →֒ A/I1 × A/I2 →֒ B1 × B2. By the descending chain condition, there is a

unique minimal ideal Imin in F . By construction, Ā = A/Imin is embeddable. Moreover,

any map f from A to a tame principal ideal algebra B must factor through Ā, because

ker(f) ∈ F . Thus there is a one-one correspondence between homomorphisms f : A → B

and homomorphisms f̄ : Ā → B. It follows that the surjection ΩA → ΩĀ maps τ(A) onto
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τ(Ā). Finally, if A is not a principal ideal algebra, then some maximal ideal M of A is not

principal. Since Imin ⊆ M2, Nakayama’s lemma implies that A/Imin is not a principal

ideal algebra.

Criterion 2.3.1: In a truncated polynomial ring any solution to x2 = y2 = 0 must

satisfy xy = 0. Equivalently, if xy 6= 0 then either x2 6= 0 or y2 6= 0. This gives

a simple test for non-embeddability. For example, the algebra A = k[x, y]/(x2, y2) is not

embeddable. In this case M2 = (xy), so the maximal embeddable quotient is Ā = A/M2 =

k[x, y]/(x2, xy, y2).

Proposition 2.4: The Artinian Berger Conjecture is equivalent to the assertion:

if A is a subalgebra of a tame principal ideal algebra B so that ΩA →֒ ΩB ,

then A is a tame principal ideal algebra.

Proof: Since ΩA →֒ ΩB implies that τ(A) = 0, the ABC implies the displayed assertion.

If A is a principal ideal algebra, then 2.2 shows that τ(A) = 0 iff A is tame. We must show

that if A is not a principal ideal algebra then τ(A) 6= 0. By Lemma 2.3, we may replace

A by Ā to suppose that there exists an embedding of A into some tame principal ideal

algebra B′. By construction, τ(A) is the kernel of (ΩA → ΩB′′) for some homomorphism

A → B′′ with B′′ tame. Then A embeds into B = B′ × B′′, and the minimality of τ(A)

implies that τ(A) = ker(ΩA → ΩB). Since A is not a principal ideal algebra, the displayed

assertion implies that τ(A) 6= 0, as desired.

Here is a criterion for an element of ΩA to lie in τ(A); Lemma 2.1 is a special case.

Lemma 2.5: Let A be a finite local k-algebra. Suppose that x, y ∈ A satisfy xy = 0.

Then x dy ∈ τ(A).

Proof: It suffices to show that x dy vanishes in ΩB for every map g: A → B in which

B = k[s]/(sn) is a tame truncated polynomial ring. There are nonzero constants α, β ∈ k

so that g(x) = αse + use+1 and g(y) = βsf + vsf+1 with u, v ∈ B. Since xy = 0, we

have se+f = 0 in B. Then the image of xdy in ΩB is (αse + use+1)d(βsdf + vsf+1) =

αβfse+f−1ds, which is zero by Lemma 2.1.

Seminormal Example 2.5.1: Let A be the subalgebra of B =
∏

k[si]/(sni

i ) generated

by {s1, ..., sm}, i.e., A ∼= k[s1, . . . , sm]/(sni

i , sisj for i 6= j). A straightforward calculation

shows that the kernel of ΩA → ΩB has for a basis the set of all si dsj , i < j. If B is tame,

2.5 shows that they form a basis for τ(A).
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Proposition 2.6: Suppose that A = K ⊕ M with M2 = 0, where K is a finite extension

of k, and let {x̄1, . . . , x̄m} be a K-basis of M/M2. Then ΩA/τ(A) ∼= M , and:

If char(k) 6= 2 then dimK τ(A) =
(

m
2

)

, and the xi dxj, i < j, form a basis of τ(A).

If char(k) = 2 then dimK τ(A) =
(

m+1
2

)

, and the xi dxj, i ≤ j, form a basis of τ(A).

Proof: Since ΩA/k = ΩA/K , we may assume that K = k. We use the calculation of ΩA

given below in 3.2. Suppose first that char(k) 6= 2. Map A to the tame B =
∏

k[xi]/(x2
i )

in the obvious way. The map from ΩA to ΩB
∼= M is the map µ of 3.2. Hence τ(A) lies in

ker(µ), which by 3.2 is isomorphic to Λ2M and has the xi dxj as a basis. But xidxj ∈ τ(A)

by 2.5.

If char(k) = 2, we map A to the tame B =
∏

k[si]/(s5
i ) by sending xi to s3

i . Again,

the image of ΩA in ΩB is isomorphic to M , and by 3.2 the kernel is isomorphic to the

vector space Λ̃2M spanned by the xi dxj , i ≤ j. These differentials are in τ(A) by 2.5.

Corollary 2.7: Let A be a finite local k-algebra with maximal ideal M . Suppose xy = 0

for two elements x, y ∈ M which are linearly independent mod M2. Then x dy is a nonzero

element of τ(A).

Proof: We have x dy ∈ τ(A) by 2.5, and it is nonzero because 0 6= x̄ dȳ ∈ ΩA/M2 .

Application 2.8: The socle I = annA(M) is a nonzero ideal in any Artinian local ring

A (except a field), and there is a map I ⊗A M → ΩA/k sending x ⊗ y to xdy. The image

VA of this map is a submodule of τ(A) by 2.5, so A will satisfy the ABC whenever VA 6= 0.

This happens, for example, in the following two cases.

a) If the socle is not contained in M2, and dim M/M2 6= 1, then τ(A) 6= 0.

b) If A = k[x1, ..., xm]/(x1, ..., xm)3 and char(k) 6= 3, the socle I = M2 has dimension
(

m+1
2

)

. Since ΩA is the quotient of the free A-module on {dxi} by the
(

m+2
3

)

relations

d(xixjxk) = 0, it is straightforward to see that VA has dimension 2
(

m+1
3

)

= 2
(

m
3

)

+2
(

m
2

)

=

m
(

m+1
2

)

−
(

m+2
3

)

. In fact τ(A) = VA, as one can verify using embeddings A → k[t]/(t3n)

with n large.

Our next result establishes the ABC for the family of algebras

Am = k[x, y]/(xm, x2y, y2).
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Proposition 2.9: Let A be a finite local algebra which is not a principal ideal algebra. If

there exists a y ∈ A so that A/yA is a principal ideal algebra and that dim yA ≤ 2, then

τ(A) 6= 0.

Proof: We may assume the residue field of A is k. Since A/yA is local, A/yA ∼= k[x]/(xm)

for some x ∈ A and m ≥ 2. Since M 6= xA, Nakayama’s Lemma gives y 6∈ M2. If xy = 0

we are done by 2.7, so we may assume that xy 6= 0. Thus {y, xy} forms a basis of yA.

Write y2 = αxy and xm = βxy. Since y(y − αx) = x(βy − xm−1) = 0 in A, we are again

done by 2.7 unless α = β = 0, i.e., A = Am for some m ≥ 2. If m = 2 then A2 is not

embeddable; we saw in 2.3.1 that Ā2 = k ⊕ (M/M2). Since τ(Ā2) 6= 0 by 2.6, we have

τ(A) 6= 0 by 2.3.

We have reduced to the case A = Am, m ≥ 3. A direct calculation shows that

{xidx| i = 0, 1, ..., m− 2} ∪ {dy, xdy, ydx, xydx} is a linearly independent subset of ΩAm
,

and forms a basis if char(k) 6 | 2m. In this case the socle contains xy, so xy dx ∈ τ(Am) by

2.8. Hence τ(Am) is nonzero.

Remark 2.9.1: The kernel of ΩA3
→ ΩB depends upon the choice of B, even when

we restrict to graded algebra maps. If we embed A3 into B1 = k[s]/(s6) by setting

x = s2, y = s3, then w1 = 2xdy − 3ydx and xydx form a basis of ker(ΩA3
→ ΩB). But if

we embed A3 into B2 = k[t]/(t9) by setting x = t3, y = t5, then w2 = 3xdy − 5ydx and

xydx form a basis of ker(ΩA3
→ ΩB). This shows that τ(A) is generated by xydx.

Our next result handles subrings A of a product B =
∏

k[si]/(s3
i ). The following

definition will be useful.

Definition 2.10.0: Given an algebra map π: A → B = k[s]/(sn), we define the function

ν: A → {0, 1, ..., n− 1,∞} by: ν(a) = e when π(a) = αse +wse+1 ∈ Bi for some 0 6= α ∈ k

and w ∈ B; we set ν(a) = ∞ if π(a) = 0.

Proposition 2.10: Let A be a finite local k-algebra which is not a principal ideal algebra.

Suppose that dimπ(M2) ≤ 1 for every map π : A → k[s]/(sn) into a tame truncated

polynomial algebra. Then τ(A) 6= 0.

Proof: We first show that ω = x dy − y dx ∈ ΩA belongs to τ(A) whenever x, y ∈ M .

For this it suffices to show that π(ω) = 0 in ΩB for every tame B = k[s]/(sn) and every

map π: A → B. Proceeding as in the proof of 2.5, we write π(x) = αse + use+1 and

11



π(y) = βsf + vsf+1, where 0 6= α, β ∈ k and u, v ∈ B. If π(xy) = 0 then (as in 2.5) we

have π(x dy) = π(y dx) = 0, and hence π(ω) = 0 in ΩB . If π(xy) 6= 0, our hypothesis forces

π(x2) and π(y2) to be scalar multiples of π(xy), and hence e = f . Write π(x2) = λπ(xy);

we see that

s2e(α + us)2 = λs2e(α + us)(β + vs).

Since α + us is invertible in B this yields seπ(x) = λseπ(y). Thus the polynomial h =

π(λy − x) satisfies seh = 0. By Lemma 2.5, π(y) dh = h dπ(y) = 0, whence in ΩB we have

π(x dy) = λπ(y dy) = π(y dx), or π(ω) = 0. Therefore ω ∈ τ(A).

If char(k) 6= 2 this proves that τ(A) 6= 0, because if x, y are linearly independent mod

M2 then ω 6= 0. Indeed, the image of ω in ΩA/M2 is 2x̄ dȳ, which is nonzero by 2.6.

It remains to prove the result when char(k) = 2. By Lemma 2.3, we may replace A

by Ā if necessary in order to assume that A is embeddable into some tame principal ideal

algebra B =
∏

Bi, Bi = k[si]/(sni

i ). By 2.7 we may assume that xy 6= 0 for every x, y ∈ M

which are linearly independent mod M2. By Lemma 2.10.1 below, we can find x1, ..., xm

mapping to a basis of M/M2 so that A has the presentation (2.10.2). Since 0 6= xixj ∈ V

for every i < j, the final assertion in 2.10.1 is that each ω = d(xixj) 6= 0 in ΩA. Since we

have seen above that ω ∈ τ(A), we are done.

Lemma 2.10.1: Suppose that A is an embeddable algebra satisfying the hypotheses of

2.10. Suppose moreover that xy 6= 0 for every x, y ∈ M which are linearly independent

mod M2. Then there exist xi ∈ M and cijℓ ∈ k so that

(2.10.2) A ∼= k[x1, ..., xm]/I, I = (x1, ..., xm)3 +
(

∑

i<j

cijℓxixj , k = 1, ..., N
)

.

If V denotes the subspace of M2 spanned by {xixj | i < j} then d: V → ΩA is an injection.

Proof: We first claim that x2 6= 0 for every x ∈ M − M2. To see this, choose y with

xy 6= 0 and find a homomorphism f : A → k[s]/(sn) with f(xy) 6= 0. Then ν(xy) =

ν(x)+ν(y) < ∞. If ν(x) < ν(y) then ν(x2) = 2ν(x) < ν(xy), contradicting the assumption

that dim f(M2) = 1. Similarly, we cannot have ν(y) < ν(x). Hence ν(y) = ν(x) and

ν(x2) = ν(xy) < ∞, which implies that x2 6= 0.

Second, we shall see that M3 = 0. Since A is embeddable, it suffices to show that

f(M3) = 0 for every map f : A → k[s]/(sn). Choose x ∈ M of minimum valuation e > 0.

12



Suppose that f(M3) 6= 0. Since f(M3) ⊆ s3eS we have ν(x2) = 2e < 3e = ν(x3) < ∞.

But this contradicts the assumption that dim f(M2) ≤ 1.

Next we observe that for each x ∈ M − M2 there is a surjection π: A → k[s]/(s3)

sending x to s. To see this, choose a homomorphism f : A → k[t]/(tn) in which f(x2) 6= 0.

Since dim f(M2) = 1, e = ν(x) = min{ν(m)|m ∈ M} and we can choose t2, ..., tm ∈ M

with ν(ti) > e for all i so that {x, t2, ..., tm} maps to a basis of M/M2. Since ν(ti) > e, we

have f(tiM) = 0 for all i. Hence for I = ker(f) + (t2, ..., tm) we have A/I ∼= k[x]/(x3), as

claimed.

Proceeding inductively for m ≤ dim(M/M2), we construct a sequence x1, ..., xm of

elements in M which are linearly independent mod M2 and a map fm: A →
∏m

i=1 k[si]/(s3
i )

with fm(xi) = si for all i. For the inductive step, choose xm ∈ ker(fm−1) and construct

π: A → k[sm]/(s3
m) as above; if π(xi) = αism + βis

2
m we replace xi by xi − αixm − βix

2
m

to get π(xi) = 0 and arrange that fm = fm−1 × π satisfies fm(xi) = si.

When m = dim(M/M2) the sequence x1, ..., xm maps to a basis of M/M2, so A is a

quotient of k[x1, ..., xm]/(x1, ..., xm)3. If any quadratic relation
∑

cijxixj = 0 holds in A

then by applying fm we see that cii = 0 for all i. This gives the presentation of A.

Now ΩA is the quotient of the free A-module on the dxi by relations d(xyz) = 0 of

degree three and the quadratic relations
∑

cijd(xixj) = 0. Hence d(V ) is the vector space

generated by the symbols d(xixj) with the quadratic relations. It follows that the vector

spaces V and d(V ) are isomorphic.

We now prove that the ABC holds whenever M3 = 0. (The case M2 = 0 is covered

by Proposition 2.6.) This will give us a new case of Berger’s conjecture.

Theorem 2.11: Let (A, M) be a finite local k-algebra satisfying M3 = 0. If A is not a

principal ideal algebra then τ(A) 6= 0.

Proof: By theorem 2.10 we may assume that there exists a map π: A → k[s]/(sn) with

dim π(M2) ≥ 2. Let 0 < e < f be the lowest values in the set ν(A) of 2.10.0, and choose

x, y ∈ M with ν(x) = e, ν(y) = f , and y 6∈ M2. (Since M3 = 0 and dim π(M2) ≥ 2, we

have f < 2e.) Then choose z3, ..., zm ∈ M with ν(zj) > f so that {x, y, z3, ..., zm} maps to

a basis of M/M2. Setting I = {a ∈ M2| ν(a) > e + f}, we have arranged that Mzj ⊆ I

for j = 3, ..., m, and dim(M2/I) = 2. Thus A/(I + (z3, ..., zm)A) is isomorphic to the ring

A3 = k[x, y]/(x3, y2, x2y) of 2.9. With these choices, xy dx ∈ τ(A) by 2.5, and it is nonzero

because it maps to xy dx 6= 0 in ΩA3
.
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Remark 2.11.1: In summary, if (A, M) is embeddable and M3 = 0 then either:

1) There exists a map π: A → k[s]/(sn) with dim π(M2) ≥ 2, or

2) The complement of 1).

In case 1), there exist x, y ∈ M such that 0 6= xy dx ∈ τ(A); in case 2) ω = x dy − y dx ∈

τ(A) for all x, y ∈ M , and ω 6= 0 whenever x, y are linearly independent mod M2.

Corollary 2.12: Suppose that char(k) = 0. Let A be a finite local k-algebra with maximal

ideal M . Suppose that A embeds in a principal ideal algebra B so that M3B lies in A,

yet A is not a principal ideal algebra. Then ΩA → ΩB is not injective.

Proof: If A/M3B is not a principal ideal algebra, Theorem 2.11 and Corollary 1.3 imply

that τ(A) 6= 0. If A/M3B ∼= k[x]/(xi), choose J⊂M3B maximal so that J =JB and A/J

is not a principal ideal algebra. Then A/J ∼= k[x, y]/(xn, xy, y2) for some n and y. Since

y is in the socle of A/J , Application 2.8(a) and Corollary 1.3 imply that τ(A) 6= 0.

If we use Corollary 2.12 in conjunction with Corollary 1.3 and the proof of the Main

Theorem 0.1, still with I = (I0)
2, we get the following result.

Theorem 2.13 (Berger’s Conjecture if M3 is in the conductor): Let char(k) = 0.

Suppose that (R, M) is the local ring of a curve, and that S is the normalization of R.

If M3 is contained in the conductor of S/R (i.e., if M3S ⊂ R), then Berger’s conjecture

holds for R.

As another application of Lemma 2.5, we give a new proof of a theorem of Güttes

([Gu],[I]) relating the embedding dimension m = dim(M/M2) to the multiplicity e of a

unibranch singularity.

Proposition 2.14: Let A be a subalgebra of B = k[s]/(sn). Assume that the maximal

ideal M of A has embedding dimension m = dimA/M (M/M2), and let e ≥ 1 be maximal

so that M ⊆ seB. If e <
(

m
2

)

then the kernel of ΩA → ΩB is nonzero.

Proof: Choose x ∈ M not in se+1B, and set I = M2 + xA. Since ΩA/xΩA surjects onto

ΩA/I , the calculation of 3.2 (cited in 2.6) shows that, as a vector space,

dim(ΩA/xΩA) ≥ dim(ΩA/I) ≥

(

m − 1

2

)

+ (m − 1) =

(

m

2

)

.

On the other hand, the k[x]-module ΩB has e generators. Writing k[x] = k[X ]/(Xℓ), we

can invoke the general theory of finitely generated torsion modules over the principal ideal
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domain k[X ], and conclude that any k[x]-submodule L of ΩB
∼= B/(nsn−1) can have at

most e generators, i.e., e ≥ dim(L/xL). If ΩA → ΩB were injective, this would yield the

inequality

e ≥ dim(ΩA/xΩA) ≥

(

m

2

)

.

Remark 2.14.1: More generally, if A is a subalgebra of B = K[s]/(sn), where K is

a finite separable extension of k (and hence of the field ℓ = A/M), then the proof of

proposition 2.14 yields the following result. Let m and e be the embedding dimension and

multiplicity of A (as in 2.14). If e <
(

m
2

)

/[K : ℓ] then the kernel of ΩA → ΩB is nonzero.

This observation is due to the referee.

Corollary 2.15: (Güttes ([Gu, Satz 5])) Let k be algebraically closed of characteristic

zero. If (R, M) is the local ring of a unibranch curve whose multiplicity e and embedding

dimension m = dim(M/M2) satisfy e <
(

m
2

)

, then the torsion submodule τ(R) of ΩR is

nonzero.

Proof: The unibranch hypothesis means that the integral closure S of R is local, say

with parameter s. The multiplicity of R is the largest integer e so that M ⊆ seS, i.e., the

integer such that MS = seS; we have e(M, R) = e(M, S) = dim S/MS = e by [BH, 4.6.9].

Choose an ideal of the form I = snS contained in M2. Then A = R/I ⊂ B = S/I satisfy

the hypotheses of 2.14, and τ(R) maps onto ker(ΩA → ΩB) by Corollary 1.3.

We conclude this section with a final piece of evidence for the ABC. Recall that the

derivative d : A → ΩA is a k-linear map whose kernel is the de Rham cohomology group

H0
dR(A) and whose cokernel ΩA/dA is the cyclic homology group HC1(A). The following

result shows that HC1(A) is an upper bound for τ(A).

Proposition 2.16: Let A be a finite algebra over a field k of characteristic 0. Then

i) A is a principal ideal algebra ⇐⇒ HC1(A) = 0.

ii) If A is a subalgebra of a principal ideal algebra B then H0
dR(A) ∼= Ared, and the

nilradical nil(A) of A injects into ΩA. Furthermore integration (
∫

) with respect to

the parameters si of B defines an exact sequence of vector spaces:

0 → ker(ΩA → ΩB) → HC1(A)

∫

→ nilB/nilA → ΩB/image(ΩA) → 0.
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Proof: Suppose first that A is a principal ideal algebra. The usual integration formulas

applied to its factors Ki[s]/(sni) show that H0
dR(A) =

∏

Ki
∼= Ared, and HC1(A) = 0.

If A is not a principal ideal algebra, some maximal ideal M is not principal. But then

HC1(A) maps onto HC1(A/M2), and part (i) follows from the consequence HC1(A/M2) ∼=

Λ2(M/M2) 6= 0 of the calculation of ΩA/M2 in 3.2.

Now suppose that A is a subalgebra of a principal ideal algebra B. The following

diagram commutes and has exact rows by the definition of H0
dR and HC1.

0 → H0
dR(A) → A

d
→ ΩA → HC1(A) → 0

↓ ↓ ↓ ↓
0 → H0

dR(B) → B
d
→ ΩB → HC1(B) → 0

Since HC1(B) = 0, integration gives a map ΩB → B and hence a map from HC1(A)

to B/A. The nilradical nil(A) of A lies inside the nilradical of B, which injects into ΩB

by part (i). Thus nil(A) injects into ΩA. Since A is a product of Artin local rings, each

containing a coefficient field Ki, we have
∏

Ki
∼= Ared and a vector space decomposition

A =
∏

Ki ⊕ nil(A). Since each Ki is separable over k, we have dKi = 0 for all i. Hence
∏

Ki = H0
dR(A). The exact sequence follows from the snake lemma.

§3. Relative Hochschild Homology

This is the technical section in which we prove Theorem 1.2 as well as several other

assertions about the Hochschild homology and the relative homologies, HH1(R, I) and

HH0(R, S, I), used in this paper. All rings in this section will be commutative algebras

over a fixed field k, which need not be perfect, and we shall adopt the notation that ⊗

denotes ⊗k.

We start with a description of the relative term HH1(R, I). Since the kernel of

R ⊗ R → R/I ⊗ R/I is R ⊗ I + I ⊗ R, it follows from the definition (given in §1) that

HH1(R, I) is the cokernel of the Hochschild boundary map

b: R ⊗ R ⊗ I + R ⊗ I ⊗ R + I ⊗ R ⊗ R −→ R ⊗ I + I ⊗ R(3.0)

b(x ⊗ y ⊗ z) = xy ⊗ z − x ⊗ yz + zx ⊗ y

The submodule I ⊗ k of I ⊗ R is the image under b of the ‘degenerate’ terms (those

with y or z in k), so it maps to zero in HH1(R, I). Thus if M is a maximal ideal of R
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with R/M = k we may ignore degeneracies by replacing the source and target of b by

R ⊗ M ⊗ I + R ⊗ I ⊗ M + I ⊗ M ⊗ M and R ⊗ I + I ⊗ M , respectively.

Proposition 3.1: Suppose that M is a maximal ideal of R with R/M = k. If I ⊆ M is

an ideal with IM = 0, then there is an exact sequence of R-modules

I ⊗k I
η
→ I ⊗k (M/M2)

ι
→ HH1(R, I)

µ
→ I → 0

where η(x ⊗ y) = x ⊗ ȳ + y ⊗ x̄, ι(x ⊗ ȳ) = x ⊗ y, and µ(x ⊗ y) = xy.

Proof: The R-linear surjection µ : R⊗I +I ⊗M → I defined by µ(x⊗y) = xy has kernel

M ⊗I +I⊗M . Since µb vanishes on R⊗M ⊗I +R⊗I⊗M +I⊗M ⊗M , µ induces a well-

defined map from HH1(R, I) onto I. If x ∈ I and z ∈ M then b(x⊗y⊗z) = xy⊗z−x⊗yz,

so I⊗M → HH1(R, I) factors through a map ι from I⊗RM = I⊗R(M/M2) = I⊗kM/M2

to HH1(R, I). This finishes the construction of the sequence. The following formula shows

that the sequence is exact at HH1(R, I), and that ιη = 0.

b(1 ⊗ x ⊗ y) = x ⊗ y + y ⊗ x, x ∈ I, y ∈ M.

To establish exactness at I ⊗ (M/M2), observe that the formulas

f(x ⊗ y) = −f(y ⊗ x) = x ⊗ y, x ∈ I, y ∈ M

agree on I ⊗ I, and determine a k-linear map f from M ⊗ I + I ⊗M to coker(η). If x ∈ I

and y, z ∈ M , then

fb(x ⊗ y ⊗ z) = fb(y ⊗ x ⊗ z) = fb(y ⊗ z ⊗ x) = −x ⊗ yz = 0.

Thus f induces a well-defined map from ker(HH1(R, I) → I) to coker(η). By definition,

the composition fι is the natural projection from I ⊗ (M/M2) to coker(η). This means

that the sequence is exact at I ⊗ (M/M2).

Remark 3.1.1: If we relax the hypothesis about the residue field to say that K = R/M

is a finite separable extension of k, the exact sequence becomes

I ⊗K I
η
→ I ⊗K (M/M2)

ι
→ HH1(R, I)

µ
→ I → 0.

This follows from étale descent ([WG]) applied to a version of 3.1 for localizations of R⊗K

and I ⊗ K over the field K. Since we will not need this result, we omit the details.
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When R/M = k, there is an isomorphism ΩR/k
∼= HH1(R) ∼= HH1(R, M). This

yields the following corollary, in which Λ̃2M denotes M ⊗k M/({x⊗y+y⊗x | x, y ∈ M}).

Note that if char(k) 6= 2 then Λ̃2M is the usual exterior product Λ2M .

Corollary 3.2: If M2 = 0 and R/M = k, there is a short exact sequence of R-modules

0 → Λ̃2M
ι
→ ΩR/k

µ
→ M → 0.

Corollary 3.3: If IM = 0, R/M = k, and I ⊆ M2, then there is a short exact sequence

0 → I ⊗k (M/M2)
ι
→ HH1(R, I)

µ
→ I → 0.

Corollary 3.4: Suppose that R/M = k, I ∼= kt, and IM = 0. Then HH1(R, I) is

isomorphic to the R-module R/(M2, 2t) on generator dt = 1 ⊗ t.

Next we turn to the double-relative group HH0(R, S, I). We will work in the generality

in which it is defined, writing ΩR/I for Ω(R/I)/k.

Lemma 3.5: The map I⊗R
1⊗d
→ I⊗R ΩR/I induces a surjection HH1(R, I) → I⊗R ΩR/I .

Proof: Define a map from I ⊗ R + R ⊗ I to I ⊗R ΩR/I by sending x ⊗ r to x ⊗ dr and

r ⊗ x to −x ⊗ dr (x ∈ I, r ∈ R). This map vanishes on I ⊗ I and is clearly onto. Using

the presentation (3.0), we see that it factors through HH1(R, I).

Theorem 3.6: Suppose f : R → S is a map of commutative algebras which sends an ideal

I of R isomorphically onto an ideal of S. Then the map HH1(S, I) → I ⊗S Ω(S/I)/k of 3.5

induces an isomorphism of R-modules

HH0(R, S, I) ∼= I ⊗S ΩS/R
∼= (I/I2) ⊗S/I Ω(S/I)/(R/I).

Proof: Since R and S are commutative, HH0(R, I) = HH0(S, I) = I. Therefore

HH0(R, S, I) is the cokernel of the map HH1(R, I) → HH1(S, I). The presentation (3.0)

of HH1(S, I) shows that HH0(R, S, I) is the quotient of (S⊗I+I⊗S)/(R⊗I+I⊗R) by the

boundary of S⊗S⊗I+S⊗I⊗S+I⊗S⊗S. Using b(1⊗x⊗y) = x⊗y−1⊗xy+y⊗x for x ∈ I
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and y ∈ S, we can eliminate the terms coming from I ⊗S. The image of S⊗ I2 vanishes in

HH0(R, S, I) because, for x ∈ S and y, z ∈ I, we have b(x⊗y⊗z) ≡ −x⊗yz (mod R⊗I).

Elementary manipulations now show that

HH0(R, S, I) =
I/I2 ⊗k S/R

b(I ⊗ S ⊗ S)
.

From here the result is a straightforward calculation, the details of which are given in

[GW1], 4.1.2 and 4.3.

We need one final observation before we can prove Theorem 1.2. Consider the principal

ideal algebra B = K[s]/(sn), with K a finite separable extension of k. Set

(3.7.1) η = 1 ⊗ sn−1 ⊗ s + s ⊗ sn−2 ⊗ s + · · ·+ si−1 ⊗ sn−i ⊗ s + · · ·+ sn−2 ⊗ s ⊗ s.

This is an element of B ⊗B ⊗B whose Hochschild boundary is n sn−1 ⊗ s. Thus if m > 0

the element smη is a cycle representing an element of HH2(B).

Although we do not use the following result, it helps put (3.7.1) into perspective. It

may be proven in many ways, for example by brute force or symbolic manipulation; our

proof here is by citation.

Proposition 3.7: Let B = K[s]/(sn), where K is a finite separable extension of k. Then

HH2(B) =

{

K[s]/(sn−1) on generator t = sη if 1
n ∈ k

K[s]/(sn) on generator t = η if n = 0 in k

Proof: By the Künneth formula ([W, Prop. 9.4.1]), there is no loss of generality in

assuming that K = k. If char(k) = 0, this is exactly the calculation of [GRW, 1.10]. If

char(k) = p > 0, the method of loc. cit. carries over to yield the result cited. The only

subtle point is that if we consider B as a DGA with s in degree 2, then the Eilenberg-Moore

spectral sequence degenerates to yield the calculation of [GRW, 2.3]:

HH∗

DG(B; K) ∼= H∗(ΩCPn−1; K) ∼= K[u, t].

These isomorphisms are independent of the characteristic of K because CPn−1 is a formal

space ([W, 9.9.12]).
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Proof of Theorem 1.2: (Cf. [Wa, p.193].) Since S is locally a principal ideal ring,

there are integers ni so that S/I is a finite product of truncated polynomial rings Bi =

Ki[s̄i]/(s̄ni

i ). Lift the s̄i to elements si ∈ S; each sni

i is in I since s̄ni

i = 0 in S/I. Form

the elements ηi = 1 ⊗ sni−1
i ⊗ si + · · · of S ⊗ S ⊗ S corresponding to the elements η̄i of

Bi ⊗ Bi ⊗ Bi described in (3.7.1). Applying the Hochschild boundary in C∗(S) to sm
i ηi,

we see that

b(sm
i ηi) = ni(s

m+ni−1
i ⊗ si) − sm

i ⊗ sni

i .

This element lies in I ⊗ S + S ⊗ I if m ≥ 1 (and m = 0 if ni = 0 in k), and represents the

image of sm
i η̄i under HH2(S/I) → HH1(S, I). Passing to I ⊗S ΩS/I as in Lemma 3.5, we

obtain the elements

(m + ni)s
m+ni−1
i ⊗ dsi ∈ I ⊗S ΩS/I = (I/I2) ⊗S/I ΩS/I .

Because of our choices of si, the Bi-component of I ⊗S ΩS/I is generated by sni

i ⊗ dsi.

Thus a Ki-basis of this component is the set of all sm+ni

i ⊗ dsi with 0 ≤ m ≤ ni − 2 (and

m = ni − 1 if ni = 0 in k). When char(k) = 0, these are all in the image of HH2(S/I).

Now pass to the quotient ΩS/R of Ω(S/I)/k, and apply Theorem 3.6.

Porism 3.8: When k is a perfect field of characteristic p 6= 0, the proof shows that

the cokernel of HH2(S/I) → I ⊗S ΩS/I is the sum of all terms Ki(s
a−1
i ⊗ dsi) so that

a ≡ 0 (mod p) and ni + 1 ≤ a ≤ 2ni − 1 (and the term Ki(s
2ni−1
i ⊗ dsi) if ni = 0 in k).

Thus the map HH2(S/I) → I ⊗S Ω(S/I)/k is onto if and only if p > 2ni for all i. Since

ΩS/R is a quotient of Ω(S/I)/k, having p > 2ni is a sufficient, but not necessary, condition

for the conclusion of 1.2 to hold.
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