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Abstract

We calculate and analize the O(αs) one-particle inclusive cross section in polarized deep inelastic

lepton-hadron scattering, using dimensional regularization and the HVBM prescription for γ5. We

discuss the factorization of all the collinear singularities related to the process, particularly those

which are absorbed in the redefinition of the spin dependent analogue of the recently introduced

fracture functions. This is done in the usual MS scheme and in another one, called MSp, which

factorizes soft contributions and guarantees the axial current (non)conservation properties.
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Introduction

In recent years, there has been an increasing theoretical and experimental interest in semi-inclusive

deep inelastic phenomena. Specifically, the use of one-particle inclusive measurements, with polarized

targets and beams, has been indicated as an adecuate tool to unveil the spin structure of the proton,

elusive to the totally inclusive experiments (see [1, 2, 3] and references therein).

However, the available calculations [4, 5, 6] of one-particle inclusive polarized deep inelastic cross

sections do not include the full QCD next to leading order corrections, which are essential to weight

the role of the gluon polarization [7]. These calculations are also not adequate for phenomenological

purposes because they are not able to describe the full target fragmentation kinematical region [8], that,

incidentally, is expected to be favored in the foreseen experiments [1]. Higher order corrections produce

singularities in this region that are usually avoided imposing cuts in the transverse momentum allowed

for the produced particles [8, 9].

In order to cope with the problem of the target fragmentation, a new factorization approach for semi-

inclusive processes has been introduced by Trentadue and Veneziano [10], defining new unpertubative

distributions, called fracture functions. These distributions measure the probability for finding a parton

and a hadron in the target and can be measured in the proposed experiments. The use of this approach

in next to leading order one-particle inclusive unpolarized deep inelastic scattering, has been recently

shown [9] to allow a consistent factorization of the collinear singularities coming from the kinematical

region where the hadron is produced in the direction of the incoming nucleon, and which cannot be

absorbed in the redefinition of the usual distributions.

The extension of this approach to polarized phenomena using dimensional regularization [11], implies

an arbitrariness regarding the definition used for the γ5 matrix. Between the different prescriptions,

the one proposed in reference [12] (HVBM), has been proved to be fully consistent and extensible to

any order in perturbation theory. However, this prescription introduces finite soft contributions that

come from the breaking of chiral invariance and have to be substracted in the distribution functions,

withdrawing from the MS scheme [13, 14]. It is important, then, to show explicitely that the sub-

straction rule used for polarized parton distributions in totally inclusive processes factorizes the same

singularities and soft terms in those which are one-particle inclusive and can be generalised for fracture

functions in a completely consistent way.

In the following section we define the spin dependent one-particle inclusive cross section in terms of

the polarized structure and fracture functions and the unpolarized fragmentation function. In the third
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we show the results for the unsubstracted O(αs) contributions coming from the relevant diagrams using

the HVBM prescription. Finally, we discuss the factorization of collinear singularities and the rules for

the substraction of finite soft terms in the different factorization schemes.

Definitions and kinematics.

In this section we introduce the spin dependent fracture function, generalizing what has been done

in references [9, 10], and we establish our notation.

In the one photon exchange approximation for the interaction between a lepton of momentum l

and helicity λ and a nucleon N of momentum P and helicity λ′, the differential cross section for the

production of n partons can be written as:

dσλλ′

dx dy dPS(n)
= (1)

∑

i=q,q̄,g

∑

λ′′=±1

∫
dξ

ξ
Pi/N (ξ,

λ′′

λ′
)

α2

SHx

1

e2(2π)2d

[
YM (−gµν) + YL

4x2

Q2
PµPν + λYP

x

Q2
iǫµνqP

]
Hµν(λ

′′)

where

x =
Q2

2P · q
, y =

P · q

P · l
, SH = (P + l)2 (2)

being q the transfered momentum (Q2 = −q2) and dPS(n) the phase space of n final state partons in

d = 4− 2ǫ dimensions. Pi/N (ξ, λ′′/λ′) is the probability for finding a parton i with helicity λ′′ carrying

a fraction ξ of the nucleon momentum, and the kinematical factors appearing in the leptonic tensor are

YM =
1 + (1− y)2

2y2
YL =

4(1− y) + (1− y)2

2y2
YP =

2− y

y
(3)

The helicity dependent partonic tensor is defined by

Hµν(λ
′′) = Mµ(λ

′′)M †ν (λ
′′) (4)

where Mµ is the parton-photon matrix element, with the photon polarization vector factorized out.

In order to isolate the antisymmetric part of this tensor, which leads to the polarized structure

function, we take the difference between cross sections with opposite target helicities

∆σ ≡ σλ+ − σλ− (5)

at variance with the unpolarized case where an average over beam and target helicities is taken. With

these definitions

d∆σ

dx dy dPS(n)
=

∑

i=q,q̄,g

∫
dξ

ξ
∆Pi/N (ξ)

α2

SHx

1

e2(2π)2d
λYP

x

Q2
iǫµνqP∆Hµν (6)
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where

∆Hµν ≡ Mµ(+)M †ν (+)−Mµ(−)M †ν (−) (7)

∆Pi/N (ξ) ≡ Pi/N (ξ,+)− Pi/N (ξ,−) (8)

In analogy with the unpolarized case, treted in reference [9], we write the cross section for the production

of unpolarized hadrons h of energy Eh with polarized beams and targets, differential in the variable

z = Eh/EN (1− x) as

d∆σ

dx dy dz
=

∫
du

u

∑

N

∑

j=q,q̄,g

∫
dPS(n) α2

SHx

1

e2(2π)2d
λYP

x

Q2
iǫµνqP∆Hµν



∆Mj,h/A

(
x

u
,
Eh

EA

)
(1− x) + ∆fj/A

(x
u

) ∑

iα=q,q̄,g

Dh/iα

(
Eh

Eα

)
Eh

Eα
(1− x)



 (9)

The variable u is given, as usually, by u = x/ξ. The spin dependent fracture function ∆Mj,h/N (ξ, ζ)

is the probability for finding a polarized parton j with momentum fraction ξ and a hadron h with

momentum fraction ζ in the nucleon N. Both ∆fj/N and Dh/iα are the usual spin dependent parton

distribution and fragmentation function respectively [15]. Notice that in the case of hadrons with spin,

the fragmentation function is exactly the unpolarized one due to the fact that we are summing over the

final state polarizations because they are not observed in the present experiment. For spinless hadrons,

this is also true provided the fragmentation mechanism is independent of the helicity of the parent

parton, as it is usually assumed [4, 5].

O(αs) contributions.

In the following we calculate the spin dependent cross section up to order αs. For this purpose, it is

convenient to use the same kinematical variables as in the unpolarized case but contracting the matrix

elements ∆Hµν of the relevant processes with the following projector

Pµν
pol ≡

α2

SHx

1

e2(2π)2d
x

Q2
iǫµνqP (10)

This projector picks up at tree level (Figure 1a) and after integrating over the phase space for one

particle, only contributions proportional to delta functions in the convolution variables, being the

proportionality factor

cj = 4πQ2
qj

α2

SHx
(11)
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Then,
d∆σ

dx dy dz
= λYP

∑

j=q,q̄

cj {Mj(x, (1− x)z) (1 − x) + ∆fj(x)Dj(z)} (12)

where we have dropped the indeces labelling the target and produced hadron. The virtual corrections

(Figures 1b, 1c, 1d) give the same contribution but now multiplied by the usual factor [16]

αs

2π

(
4πµ2

Q2

)
Γ(1− ǫ)

Γ(1− 2ǫ)
Cf

(
−2

1

ǫ2
− 3

1

ǫ
− 8−

π2

3

)
(13)

The results for the real gluon emission (Figure 2) and the box diagrams (Figure 3) were calculated

using the program Tracer [17] and can be found in apendix A. Notice that, as we are working in the

HVBM scheme, terms proportional to the square of the d−4 dimensional component of the momentum

of the outgoing particles, p̂2out, must be isolated [13]. Working in the photon-parton center of mass

frame, there is no need to discriminate between the two outgoing particles, because they have opposite

momenta. Furthermore, in this frame the incoming particles do not have d − 4 components of the

momentum. For fragmentation like configurations, the two-particle phase space in which the matrix

elements are integrated, is given by

dPS(2) =
1

8π

(4π)ǫ

Γ(−ǫ)

u− x

u(1− x)
dρ

∫ p̂2
max

0

dp̂2out
(
p̂2out

)−1−ǫ
(14)

with

p̂2max = Q2(1 − u)u (1− ρ)

(
ρ−

x(1 − u)

u(1− x)

)(
1− x

u− x

)2

, (15)

where the variable ρ is defined by

ρ ≡
Eα

EN (1− x)
(16)

i.e., the energy fraction of the parton α which undergoes hadronization. Due to the fact that all the

contributions can be decomposed as

Pµν
pol∆Hµν = A(u, ρ) +B(u, ρ) p̂2out , (17)

the phase space integration can be splitted into one part that is identical to the unpolarized case and

another one which is purely d − 4 dimensional. The results coming from the latter are singled out,

writing them under hats, as they contain soft contributions which have to be factorized.

Pµν
pol∆HµνdPS(2) =

1

8π

(4π)ǫ

Γ(1− ǫ)

dρ

(1− a(u))

(
Q2(1− u)

u

)−ǫ (
(1− ρ) (ρ− a(u))

(1− a(u))2

)−ǫ

[
A(u, ρ)−

ǫ

1− ǫ

(1− ρ) (ρ− a(u))

(1 − a(u))2
Q2(1− u)

u
B(u, ρ)

]
(18)

As it has been shown in reference [9], the distinctive value

ρ = a(u) ≡
x(1 − u)

u(1− x)
(19)
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represents the configuration where the hadrons are produced in the direction of the incoming nucleon,

thus giving rise to additional collinear singularities which do not show up neither in totally inclusive deep

inelastic scattering nor in electron-proton annihilation. For fracture like configurations it is convenient

to use the variable

ω ≡
1− ρ

1− a(u)
(20)

which transforms equation (14 ) into the usual two particle phase space for HVBM [13].

Adding up contributions, we finally find

d∆σ

dx dy dz
= Y pλ

∑

i=q,q̄

ci

{∫ ∫

A

du

u

dρ

ρ

{
∆qi(

x

u
)Dqi(

z

ρ
) δ(1− u)δ(1− ρ)

+ ∆qi(
x

u
)Dqi(

z

ρ
)
αs

2π

[
−
1

ǫ̂
(Pq←q(ρ)δ(1 − u) + ∆Pq←q(u)δ(1 − ρ)) + Cf∆Φqq(u, ρ)

]

+ ∆qi(
x

u
)Dg(

z

ρ
)
αs

2π

[
−
1

ǫ̂

(
Pg←q(ρ)δ(1 − u) + ∆P̂gq←q(u)δ(ρ− a)

)
+ Cf∆ΦA

qg(u, ρ)

]

+ ∆g(
x

u
)Dqi(

z

ρ
)
αs

2π

[
−
1

ǫ̂

(
∆Pq←g(u)δ(1− ρ) + ∆P̂qq̄←g(u)δ(ρ− a)

)
+ Tf∆Φgq(u, ρ)

]}

+

∫

B

du

u
(1 − x)

{
∆Mqi(

x

u
, (1− x)z)

(
δ(1− u) +

αs

2π

[
−
1

ǫ̂
∆Pq←q(u) + Cf∆Φq(u, ρ)

])

+ ∆Mg(
x

u
, (1− x)z)

αs

2π

[
−
1

ǫ̂
∆Pq←g(u) + Tf∆Φg(u, ρ)

]}}
(21)

where
1

ǫ̂
≡

1

ǫ

Γ[1− ǫ]

Γ[1− 2ǫ]

(
4πµ2

Q2

)ǫ

=
1

ǫ
− γE + log(4π) + log(

µ2

Q2
) +O(ǫ) (22)

The integration ranges for both convolutions, labelled A and B, come from the definition of the

variables and momentum conservation and can be found in appendix B. The poles proportional to

δ(1− u) correspond to final state singularities, so are multiplied by unpolarized Altarelli Parisi kernels

Pi←j(ρ) [18]. Those proportional to δ(1 − ρ), are related to the initial state singularities and are

multiplied by spin dependent kernels ∆Pi←j(u) [18]. The poles proportional to δ(ρ−a) are the collinear

divergences mentioned previously and are multiplied by unsubstracted polarized splitting functions

∆P̂ij←k(u) [19].

The functions ∆Φ(u, ρ) are the finite next to leading order contributions to the cross section.

∆Φi j(u, ρ) is a i (i = quark, gluon) initiated contribution where an outgoing parton j undergoes

hadronization. ∆Φq (g)(u, ρ) are the quark (gluon) initiated corrections to the fracture processes, which

are identical to those of the totally inclusive polarized structure function. Notice that ∆Φq g(u, ρ) de-

pends explicitely on the integration subinterval and the others contain ()+ prescriptions and δ functions

which have support in certain subintervals only. The expressions for the kernels and the finite NLO

terms can be found in appendix C.
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Factorization.

Having computed the whole cross section up to next to leading order, we are now able to factorize

all the divergences and finite soft terms by means of the definition of scale dependent distributions. In

order to respect the universal character of these distributions, it is mandatory to use here the same

factorization prescriptions which were fixed in totally inclusive polarized deep inelastic scattering, for

polarized parton distributions, and in one-particle inclusive electron-positron annihilation, for fragmen-

tation functions. Provided this consistency requirement is satisfied, one can adopt any well defined

prescription.

Fixing the factorization scale equal to Q2, in the MS scheme the prescription ammounts to absorbe

only the 1/ǫ̂-terms. In the case of polarized deep inelastic scattering, it has been shown that this scheme

leaves some soft contributions unsubstracted [13]. Within the HVBM prescription for γ5 and ǫµνρσ,

these contributions can be identified because they come from the use of helicity projectors for the initial

state partons [13]. They are related with the terms coming from de d − 4 dimensional phase space

integration (hat terms). It is possible then to define a slight variation of the traditional MS scheme,

called MSp [13, 14], in order to substract the remanent soft contributions. In general, the definition of

the scale dependent quark distributions can be written as

∆qi(ξ) =

∫ 1

ξ

du

u

{[
δ(1− u) +

αs

2π

(
1

ǫ̂
∆Pq←q(u)− Cf∆f̃F

q (u)

)]
∆qi(

ξ

u
,Q2)

+
αs

2π

[
1

ǫ̂
∆Pq←g(u)− Tf∆f̃F

g (u)

]
∆g(

ξ

u
,Q2)

}
(23)

In the MSp, the finite substraction term ∆f̃F
q , is designed to absorb soft contributions coming from

real gluon emission diagrams and enforces the non-singlet axial current conservation. Conversely, the

term ∆f̃F
g , which absorbes soft contributions coming from photon-gluon fusion diagrams, leads to the

axial anomaly result for the singlet axial current [20]. In this way, the MSp definition of polarized

parton distributions guarantees the conservation of ∆Σ =
∑

i

∫ 1

0
∆qi(x,Q

2)dx, which implies the scale

independence of the net spin carried by quarks.

As there is no need to make finite substractions for unpolarized final states, the definition for the

scale dependent fragmentation functions is simply given by

Dqi(ξ) =

∫ 1

ξ

du

u

{[
δ(1− u) +

αs

2π

1

ǫ̂
Pq←q(u)

]
Dqi(

ξ

u
,Q2) +

αs

2π

1

ǫ̂
Pg←q(u)Dg(

ξ

u
,Q2)

}
(24)

which is the canonical MS prescription used in e+ e− → hX.

For polarized fracture functions, the definition of the scale dependent distributions requires two

parts, as in the unpolarized case. One, called homogeneus, which deals with initial state singularities in

fracture like events, and another one called inhomogeneus, which has to absorb the additional collinear
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singularities related to the ρ = a(u) fragmentation configurations. In order to be able to substract the

finite soft contributions that arise along the initial state divergences in the HVBM prescription, we also

include the MSp counterterms ∆f̃MH and ∆f̃MI , so

∆Mqi(ξ, ζ) =

∫ 1

ξ

1−ζ

du

u

{[
δ(1− u) +

αs

2π

(
1

ǫ̂
∆Pq←q(u)− Cf∆f̃MH

q (u)

)]
∆Mqi(

ξ

u
, ζ,Q2)

+
αs

2π

[
1

ǫ̂
∆Pq←g(u)− Tf∆f̃MH

g (u)

]
∆Mg(

ξ

u
, ζ,Q2)

}

+

∫ ξ

ξ+ζ

ξ

du

u

u

x(1 − u)

{
αs

2π

[
1

ǫ̂
∆P̂gq←q(u)− Cf∆f̃MI

q (u)

]
∆qi(

ξ

u
,Q2)Dg(

ζu

ξ(1− u)
, Q2)

+
αs

2π

[
1

ǫ̂
∆P̂qq̄←g(u)−

αs

2π
Tf∆f̃MI

g (u)

]
∆g(

ξ

u
,Q2)Dqi(

ζu

ξ(1 − u)
, Q2)

}
(25)

For the homogeneus part, the counterterms ∆f̃MH(u) are the same as those used in polarized inclusive

DIS, because the structure of the corrections is identical. For the inhomogeneus part, the counterterms

are those associated with the ones found previously for the homogeneus part, as can be seen in the hat

terms of the finite contributions. This is so because the finite contributions and divergences come from

the same real gluon emission and quark-antiquark gluon splitting, The substracted cross section can

then be written as

d∆σ

dx dy dz
= Y pλ

∑

i=q,q̄

ci

{∫ ∫

A

du

u

dρ

ρ

{
∆qi(

x

u
,Q2)Dqi(

z

ρ
,Q2) δ(1− u)δ(1− ρ)

+ ∆qi(
x

u
,Q2)Dqi(

z

ρ
,Q2)

αs

2π
Cf

[
∆Φqq(u, ρ)−∆f̃F

q (u, ρ)
]

+ ∆qi(
x

u
,Q2)Dg(

z

ρ
,Q2)

αs

2π
Cf

[
∆ΦA

qg(u, ρ)−∆f̃MI
q (u, ρ)

]

+ ∆g(
x

u
,Q2)Dqi(

z

ρ
,Q2)

αs

2π
Tf

[
∆Φgq(u, ρ)−∆f̃F

g (u, ρ)−∆f̃MI
g (u, ρ)

]}

+

∫

B

du

u
(1 − x)

{
∆Mqi(

x

u
, (1− x)z,Q2)

(
δ(1− u) +

αs

2π
Cf

[
∆Φq(u, ρ)−∆f̃MH

q (u)
])

+ ∆Mg(
x

u
, (1− x)z,Q2)

αs

2π
Tf

[
∆Φg(u, ρ)−∆f̃MH

g (u)
]}}

(26)

where the counterterms in the MSp scheme are given by

∆f̃F
q (u, ρ) = 4(u− 1) δ(1− ρ)

∆f̃MI
q (u, ρ) = 4(u− 1) δ(ρ− a)

∆f̃MH
q (u) = 4(u− 1)

∆f̃F
g (u, ρ) = 2(1− u) δ(1− ρ)

∆f̃MI
g (u, ρ) = 2(1− u) δ(ρ− a)

∆f̃MH
g (u) = 2(1− u) (27)

in the case of the light quarks (u, d, s) and 0 for heavy quarks [14]. Notice that in the MS scheme, all

7



of these counterterms are choosen to be 0.

Conclusions.

We have calculated the O(αs) one-particle inclusive cross section in polarized deep inelastic lepton-

hadron scattering, showing that with the inclusion of polarized fracture functions it is possible to

consistently factorize all the collinear singularities that occur and that, within the HVBM prescription,

theMSp scheme can be straightforwardly applied in order to factorize unwanted finite soft contributions.

In this way, the MSp scheme guarantees the conservation of the non-singlet axial current and the

non-conservation of the singlet one, as dictated by the anomaly result. This requirement allows the

definition of polarized parton and fracture distributions intimately related to the fraction of the nucleon

spin carried by partons.

Having defined an universal and physically meaningfull factorization scheme for both current and

target fragmentation, consistent with those used in totally inclusive spin dependent deep inelastic scat-

tering and unpolarized electron proton annihiliation, it will be possible to perform an unanmbiguous

O(αs) analysis of forthcoming inclusive experiments.
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Appendix A.

The projection of the real gluon emission matrix element, within the HVBM prescription, is given

by

Pµν
pol∆Hµν = −4π

αs

2π
Q2

q2π
α2

SHx
Cf

(
4πµ2

Q2

)ǫ
u

Q2
(28)

×

[
4 (1 + ǫ) (sig − siq) sqg

sig
+

4 (−1 + ǫ) sig (sig + siq)

sqg
− 8 ǫ sig

−
8 siq

(
sig

2 +Q2 siq + sig siq
)

sig sqg
−

8 (sig + siq)
2
(−sig + ǫ sig − sqg − ǫ sqg) p̂

2
out

sig2 sqg

]

where sAB = 2 pA ·pB . The labels q and g take the values 1 and 2, respectively, for quark fragmentation,

or 2 and 1 for gluon fragmentation.

For photon gluon fusion

Pµν
pol∆Hµν = 4π

αs

2π
Q2

q2π
α2

SHx
Tf

(
4πµ2

Q2

)ǫ

(29)

×

[
−4

(
−2Q2 + siq + siq̄

) (
siq

2 + siq̄
2
)
u

Q2 siq siq̄
+

8 (siq + siq̄)
2 (

siq
2 + siq̄

2
)
u p̂2out

Q2 siq2 siq̄2

]

The expression for sAB in terms of the variables ρ, u and ω can be found in reference [9].

Appendix B.

The integration range A is splitted into two subintervals

A1 : u ∈

[
x ,

x

x+ (1− x)z

]
, ρ ∈ [a(u) , 1] (30)

and

A2 : u ∈

[
x

x+ (1 − x)z
, 1

]
, ρ ∈ [z , 1] (31)

while B is given by

B : u ∈

[
x

x− (1− x)z
, 1

]
(32)

Appendix C.
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The splitting functions are given by [18, 19]

∆Pq←q(u) = Cf

[
2

(
1

1− u

)

+

+
3

2
δ(1− u)− 1− u

]

∆Pq←g(u) = Tf [2u− 1]

∆P̂gq←q(u) = Cf

[
1 + u2

1− u

]

Pq←q(u) = Cf

[
2

(
1

1− u

)

+

+
3

2
δ(1− u)− 1− u

]

Pg←q(u) = Cf

[
2
1

u
− 2 + u

]

∆P̂qq̄←g(u) = Tf [2u− 1] (33)

The finite next to leading order contributions are

∆Φqq(u, ρ) =

− 8 δ(1− r)δ(1 − u) +

[
(1− r) +

1 + r2

1− r
log(r) − (1 + r) log(1− r) + 2

(
log(1 − r)

(1− r)

)

+

]
δ(1− u)

+

[
−(1− u) +

1 + u2

1− u
log(

1− x

u− x
)− (1 + u) log(1− u) + 2

(
log(1 − u)

(1− u)

)

+

− 2 ̂(1− u)

]
δ(1− r)

+ 2

(
1

1− r

)

+

(
1

1− u

)

+

−

(
1

1− r

)

+

(1 + u)−

(
1

1− u

)

+

(1 + r) −
2 (1− u) u (1− x)

u− x

−
(1− r) (1− u+ (1− x) (−1 + u (1 + 2 u) (1− x)− x))

(u− x)
2 +

4 u (1− x)

u− x
−

2 x

u− x
(34)

∆ΦA=1
qg (u, ρ) = δ(ρ− a)

[
−2 ̂(1− u)− (1 − u) +

1 + u2

1− u
log

(
(1− x)(1 − u)

(u− x)

)]

+

(
1

ρ− a

)

+

1 + u2

1− u
−

ρ u2 (1− x)
2

(u− x)
2 +

ρ u3 (1− x)
2

(1− u) (u− x)
2

−
2 u3 (1− x)

(1− u) (u− x)
+

u (1− x) x

(u− x)
2 −

2 u2 (1− x) x

(u− x)
2 (35)

∆ΦA=2
qg (u, ρ) = δ(1 − u)

[
ρ+

(
ρ+

2

ρ
− 2

)
log (ρ(1− ρ))

]
+

(
1

1− u

)

+

(
ρ+

2

ρ
− 2

)

−
2 (1− ρ)

2

ρ (1− u)
+

1− u

r − a
−

2 (1− u) u (1− x)

u− x
+

2 (1− ρ)
2
u3 (1− x)

2

(ρ− a) (1− u) (u− x)
2

+
(1− ρ) u (1− x) x

(u− x)
2 +

(2− ρ) x

u− x
(36)

∆Φgq(u, ρ) = (δ(1− ρ) + δ(ρ− a))

[
2 ̂(1− u) + (2u− 1) log

(
(1 − x)(1 − u)

(u− x)

)]

+(2u− 1)

[(
1

1− ρ

)

+

+

(
1

ρ− a

)

+

− 2u
1− x

u− x

]
(37)
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∆Φq(u, ρ) = −
1 + u2

1− u
log(u)− (1 + u) log(1 − u) + 2

(
log(1 − u)

(1− u)

)

+

−
3

2

(
1

1− u

)

+

+3u+
7

2
δ(1− u)− 2 ̂(1− u) (38)

∆Φg(u, ρ) = 2 ̂(1− u) + (2u− 1) log

(
(1 − u)

u
− 1

)
(39)
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Figure Captions

Figure 1 a) Lowest order parton-photon graph ; b),c) and d) virtual gluon correction graphs to a).

Figure 2 Real gluon emission corrections to 1a).

Figure 3 Gluon contribution at order αs

13



✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡
✡

q

pi

�
�

�
�

�
�

�
��

pq

a)

✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡
✡
�

�
�✏✏✁✄✂

✠✄✂ ✟
✑✑✂

✄�
✡✄�✠✒✒✄�✁

�
�

�
�

�
� b)

✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡
✡ ✠✄✂ ✟

✑✑✂
✄�

✡✄�✠✒✒✄�✁
☛�✁✡ ✠✄✂ ✟

✑✑✂
✄�

✡✄�✠
�

�
�

�
�

�
�

�� c)

✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡
✡ ✏✏✁✄✂

✠✄✂ ✟
✑✑✂

✄�
✡✄�✠✒✒✄�✁

☛�✁✡
�

�
�

�
�

�
�

�� d)

Figure 1

14



✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡
✡

q

�
�

�
��✟✟✟✟✟✟✟✟✟✟✂✁ ✂✁ ✂✁ ✂✁ ✂✁ ✂✁ ✂✁ ✂✁ ✂✁ ✂✁☛☛☛☛☛☛☛☛☛☛

�
�

�
��

pi

pq

pg

✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡
✡
�

�
�

�
�

�
�

��

✓✓✓✓✓✓✓✓

� � � � � � �

✂✁✂✁
✂✁✂✁

✂✁✂✁
✂✁

q

pi

pq

pg

✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡

✑✑✑✑✑✑✑✑

✂✂✂✂✂✂✂

✄�✄�✄�✄�✄�✄�✄�
pi

q

pq

pq̄

✟
✟

✟
✟

✟
✟

✡
✡

✡
✡

✡

✑✑✑✑✑✑✑✑

✂✂✂✂✂✂✂

✄�✄�✄�✄�✄�✄�✄�

❅
❅
❅
❅
❅
❅
❅
❅

�
�
�
�
�
�
�
�

pi

q

pq

pq̄

Figure 3

Figure 2

15


