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Abstract

Using the natural curvature invariants as building blocks in a su-

perfield construction, we show that the use of a symmetric trace is

mandatory if one is to reproduce the square root structure of the

non-Abelian Dirac-Born-Infeld Lagrangian in the bosonic sector. We

also discuss the BPS relations in connection with our supersymmetry

construction.
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Dirac-Born-Infeld (DBI) type actions arise in the study of low-energy
dynamics of D-branes [1]-[5] (see [6]-[7] for a complete list of references).
In the case of superstring theory, one has to deal with a supersymmetric
extension of DBI actions and, when a number of D-branes coincide, there is a
symmetry enhancement [8] and the Abelian DBI action should be generalized
to the non-Abelian case.

Several possibilities for extending the Abelian Born-Infeld action to the
case of a non-Abelian gauge symmetry have been discussed in the literature
[9]-[17]. Basically, they differ in the way the group trace operation is defined.
In the string context, a symmetric trace operation as that advocated by
Tseytlin [12] seems to be the appropriate one. Among its advantages, one
can mention:

(i) It eliminates unwelcome odd powers of the curvature, this implying
that the field strength F (although possibly large) should be slow varying
since F 3 ∼ [D,D]F 2. With this kind of Abelian approximation (it implies
commuting F ′s) one can make contact with the tree level open string effective
action.

(ii) It is the only one leading to an action which is linearized by BPS
conditions and to equations of motion which coincide with those arising by
imposing the vanishing of the β-function for background fields in the open
superstring theory [13]-[15].

It should be mentioned, however, that there are some unsolved problems
concerning the use of a symmetric trace for the non-Abelian Born-Infeld ac-
tion. In particular, some discrepancies between the results arising from a
symmetrized non-Abelian Born Infeld theory and the spectrum to be ex-
pected in brane theories are pointed out in ref. [16].

As noticed in [15], the fact that the symmetric trace is singled out as
that leading to BPS relations should be connected with the possibility of
supersymmetrizing the Born-Infeld theory. In this respect, we construct in
this work the supersymmetric version of the non-Abelian Dirac-Born-Infeld
action and discuss the trace issue and the Bogomol’nyi structure of the re-
sulting bosonic sector.

Our analysis, close to that developed in [18], extends to the non-Abelian
case the results presented for the Abelian Supersymmetric Born-Infeld theory
in ref. [19].

As it is well-known, the basic object for constructing supersymmetric

2



gauge theories is the (non-Abelian) gauge vector superfield V which we shall
write (in d = 4 Minkowski space) in the form

V (x, θ, θ̄) = C + iθχ− iθ̄χ̄+
i

2
θθ(M + iN)−

i

2
θ̄θ̄(M − iN)−

θσµθ̄Aµ + iθθθ̄(λ̄+
i

2
/̄∂χ)− iθ̄θ̄θ(λ+

i

2
/∂χ̄) +

1

2
θθθ̄θ̄(D +

1

2
✷C) (1)

In the case of SUSY Yang-Mills theory, (generalized) gauge invariance allows
to work in the Wess-Zumino gauge, for which C, χ,M and N are all set
to zero, thus remaining a multiplet with the gauge field Aµ, the Majorana
fermion field λ and the auxiliary real field D, all taking values in the Lie
algebra of the gauge group which we take for definiteness as SU(N),

Aµ = Aa
µt

a λ = λata D = Data (2)

with ta the (hermitian) SU(N) generators,

[ta, tb] = ifabctc (3)

tr tatb = N δab (4)

It is convenient to define a chiral variable yµ in the form

yµ = xµ + iθσµθ̄ (5)

so that the usual derivatives D and D̄ can be defined as

Dα =
∂

∂θα
+ 2i

(

σµθ̄
)

α

∂

∂yµ
, D̄α̇ = −

∂

∂θ̄α̇
(6)

when acting on functions of (y, θ, θ̄) and

Dα =
∂

∂θα
, D̄α̇ = −

∂

∂θ̄α̇
− 2i (θσµ)α̇

∂

∂y†µ
(7)

on functions of (y†, θ, θ̄).
Generalized gauge transformation will be written in the form

exp(2iΛ) = exp(2iΛata) (8)
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where Λ(y, θ) is a chiral left-handed superfield and Λ†(y†, θ̄) its right-handed
Hermitian conjugate,

D̄α̇Λ = DαΛ
† = 0 (9)

Explicitly,

Λ(y, θ) =
1

2
(A− iB) + θχ+ θθ

1

2
(F + iG) (10)

Here A,B, F,G are real scalar fields and χ is a Majorana spinor. Under such
a transformation, superfield V transforms as

exp(2V ) → exp(−2iΛ†) exp(2V ) exp(2iΛ) (11)

From V , the non-Abelian chiral superfield Wα can be constructed,

Wα (y, θ) =
1

8
D̄α̇D̄

α̇ exp(−2V )Dα exp(2V ) (12)

In contrast with (11), under a gauge transformation Wα transforms covari-
antly,

Wα → exp(−2iΛ)Wα exp(2iΛ) (13)

Concerning the hermitian conjugate, W̄α, it transforms as

W̄α̇ → exp(−2iΛ†)W̄α̇ exp(2iΛ
†) (14)

Written in components, Wα reads

Wα (y, θ) = iλα − θαD −
i

2
(θσµσ̄ν)α Fµν − θθ

(

6∇λ̄
)

α
(15)

with
Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (16)

and
(

6∇λ̄
)

α
= (σµ)αα̇

(

∂µλ̄
α̇ + i[Aµ, λ̄

α̇]
)

(17)

As it is well-known, the SUSY extension of N = 1 Yang-Mills theory can
be constructed from W by considering W 2 and its Hermitian conjugate W̄ 2.
Indeed, W 2 reads

W αWα = −λλ− i(θλD +Dθλ) +
1

2
(θσµσ̄νλFµν + Fµνθσ

µσ̄νλ) +

θθ
(

−iλ 6∇λ̄− i( 6∇λ̄)λ+D2 −
1

2
(FµνF

µν + iF̃µνF
µν)
)

(18)

4



with

F̃µν =
1

2
εµναβF

αβ (19)

Or, writing explicitly the SU(N) generators,

W αWα = {ta, tb}
(

−
1

2
λaλb − iθλaDb +

1

2
θσµσ̄νλaF b

µν−

iθθλaσµ(δbc∂µ + f bcdAd
µ)λ̄

c +
1

2
θθ
(

DaDb −
1

2
(F a

µνF
bµν + iF̃ a

µνF
b µν)

))

(20)

where
{ta, tb} = tatb + tbta (21)

From eq.(18) and an analogous one for W̄α̇W̄
α̇ one sees that the super-

symmetric Yang-Mills Lagrangian can be written in the form

LSYM =
1

4e2N
tr
∫

(

d2θW 2 + d2θ̄W̄ 2
)

(22)

with an on-shell purely bosonic part giving

LSYM |bos = −
1

4e2
F a
µνF

aµν (23)

We are ready now to extend the treatment in [18]-[19] and find a general
gauge invariant non-Abelian N = 1 supersymmetric Lagrangian of the DBI
type. This Lagrangian will be basically constructed in terms of W , W̄ and
exp(±2V ). It is important to note that at this stage the trace operation on
internal (SU(N)) indices to be used in order to define a scalar Lagrangian
could differ, in principle, from the ordinary trace “tr” defined in (4) and used
in eq.(22).

In order to get a DBI like Lagrangian (written as space-time determinant)
in the bosonic sector of the theory, one should include terms which cannot be
expressed in terms of FµνF

µν and FµνF̃
µν like for example those containing

F 4 ≡ F α
µ F

β
αF

γ
βF

µ
γ . Indeed, ignoring for the moment ambiguities arising in

the definition of a non-Abelian space-time determinant, one has, concerning
even powers,

− det (gµνI + Fµν)|even powers
= I +

1

2
F 2 +

1

4
(
1

2
(F 2)2 − F 4) (24)
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In the Abelian case, the F 4 term in the r.h.s. of eq.(24) can be written
in terms of F 2 and FF̃ but this is not the case in the non-Abelian case.
Moreover, odd powers of F which were absent in the former are present in
the latter case.

Let us start at this point our search for a supersymmetric extension of the
non-Abelian DBI model. To begin with, in order to get higher (even) powers
of FµνF

µν and F̃µνF
µν which necessarily arise in a DBI-like Lagrangian, we

shall have to include higher powers of W and W̄ combined in such a form
as to respect gauge-invariance. In the Abelian case, this was achieved by
combining W 2W̄ 2 with adequate powers of D2W 2 and D̄2W̄ 2 [18]-[19]. In
the present non-Abelian case, in view of transformation laws (11),(13),(14),
the situation is a little more involved . Consider then the possible gauge-
invariant superfields that can give rise to quartic terms. There are two natural
candidates,

Q1 =
∫

d2θd2θ̄W αWα exp(−2V )W̄β̇W̄
β̇ exp(2V ) (25)

Q2 =
∫

d2θd2θ̄W α exp(−2V )W̄ β̇ exp(2V )Wα exp(−2V )W̄β̇ exp(2V ) (26)

with purely bosonic components

tr Q1|bos =
1

4

(

tr(F 2)2 + tr(FF̃ )2
)

(27)

tr Q2|bos =
1

4

(

trFµνFρσF
µνF ρσ + trFµνFρσF̃

µνF̃ ρσ
)

(28)

One can see now that a particular combination of Q1 and Q2 generates the
quartic terms one expects in the expansion of a square root DBI Lagrangian,
provided this last is defined using a symmetric trace. Indeed, one has

1

24
tr (2Q1 +Q2)

∣

∣

∣

∣

bos

= Str



1−

√

1 +
1

2
(Fµν , F µν)−

1

16
(Fµν , F̃ µν)2





∣

∣

∣

∣

∣

∣

4th ord.

(29)
where

Str (t1, t2, . . . , tN ) =
1

N !

∑

π

tr
(

tπ(1)tπ(2) . . . tπ(N)

)

, (30)
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Another feature in favour of using the symmetric trace is that it gives the
natural way of resolving ambiguities arising in the definition of the DBI
Lagrangian as a determinant. Indeed, one has [2],[15],

Str



1−

√

1 +
1

2
(Fµν , F µν)−

1

16
(Fµν , F̃ µν)2



 = Str
(

1−
√

det(gµν + Fµν)
)

(31)
with the r.h.s. univoquely defined through the Str prescription.

Eq.(29) is one of the main steps in our derivation: it shows that in order
to reproduce the quartic term in the expansion of a DBI-type square root,
one has to choose a particular combinacion of the normal trace. But this
combination of normal traces corresponds precisely to the symmetric trace,
originally proposed by Tseytlin [2] for the DBI theory in order to make
contact with the low energy effective theory arising from superstring theory.
It is worthwhile to notice that the r.h.s. of (29) vanishes for F = ±iF̃ . This
will guarantee, at least at the quartic order we are discussing up to now, that
the supersymmetric Lagrangian will reduce to SUSY Yang-Mills when the
Bogomol’nyi bound (in the Euclidean version) is saturated, as it should be
[16]-[17], [20].

The analysis above was made for the purely bosonic sector. It is then
natural to extend it by considering the complete superfield combination 2Q1+
Q2 with a trace that again accomodates in the form of a symmetric trace

1

3
(2trQ1 + trQ2) =

Str
(

W α,Wα, exp(−2V )W̄β̇ exp(2V ), exp(−2V )W̄ β̇ exp(2V )
)

(32)

Now, in order to construct higher powers of F 2 and FF̃ , necessary to
obtain the DBI Lagrangian, we define, extending the treatment in [19], su-
perfields X and Y ,

X =
1

16

(

D̄2
(

exp(−2V )W̄α̇W̄
α̇ exp(2V )

)

+

exp(−2V )D2 (exp(2V )W αWα exp(−2V )) exp(2V )
)

(33)

Y =
i

32

(

D̄2
(

exp(−2V )W̄α̇W̄
α̇ exp(2V )

)

−

exp(−2V ) D2 (exp(2V )W αWα exp(−2V )) exp(2V )
)

(34)
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Both fields transform like Wα under generalized gauge transformations

X → exp(−2iΛ)X exp(2iΛ) , Y → exp(−2iΛ)Y exp(2iΛ) (35)

and their θ = 0 component give, as in the Abelian case, the two basic invari-
ants

X|θ=0 =
1

4
FµνF

µν , Y |θ=0 =
1

8
F̃µνF

µν (36)

Inspired in the result (32) obtained in order to reproduce the adequate
quartic power in F and F̃ , we propose the following supersymmetric non-
Abelian Lagrangian as a candidate to reproduce the DBI dynamics in its
bosonic sector,

LS = LSYM +

(

∑

n,m

Cnm

∫

d4θStr (W α,Wα,

exp(−2V )W̄β̇ exp(2V ), exp(−2V )W̄ β̇ exp(2V ), Xn, Y m
)

+ h.c.
)

(37)

The arbitrary coefficients Cnm remain to be determined. One should retain
at this point that expression (37) gives a general Lagrangian corresponding
to the supersymmetric extension of a bosonic gauge invariant Lagrangian
depending on the field strength F through the algebraic invariants FµνF

µν

and F̃µνF
µν , in certain combinations constrained by supersymmetry. The

Abelian version of (37) was engeneered in [18]-[19] so that the Dirac-Born-
Infeld Lagrangian could be reproduced by an appropriate choice of coefficients
Cnm. The same happens in the non-Abelian case: a particular choice of Cnm

corresponds to the non-Abelian Born-Infeld theory,

C0 0 =
1

8

Cn−2m 2m = (−1)m
m
∑

j=0

(

n+ 2− j
j

)

qn+1−j

Cn 2m+1 = 0 , (38)

q0 = −
1

2

qn =
(−1)n+1

4n

(2n− 1)!

(n+ 1)!(n− 1)!
for n ≥ 1 (39)
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With this choice one has for the purely bosonic part of Lagrangian (37),

LS|bos = Str
(

1−
√

− det(gµν + Fµν)
)

(40)

This is the non-Abelian Dirac-Born-Infeld Lagrangian in the form originally
proposed in ref.[2].

As in the Abelian case, there are other choices of coefficients Cmn which
also give consistent causal supersymmetric gauge theories with non-poly-
nomial gauge-field dynamics. In particular, the alternative proposal for a
SO(N) DBI action recently presented in [21] should correspond to one of
such choices.

We have then been able to construct a N = 1 supersymmetric Lagrangian
(eq.(37)) within the superfields formalism, with a bosonic part expressed in
terms of the square root of det(gµν + Fµν). We have employed the natural
curvature invariants as building blocks in the superfield construction arriving
to a Lagrangian which, in its bosonic sector, depends only on the invariants
FµνF

µν and FµνF̃
µν and can be expressed in terms of the symmetric trace

of a determinant. Odd powers of the field strength F were excluded in our
treatment due to the fact that it is not possible to construct a superfield
functional of W (W̄ ) and DW (D̄W̄ ) containing F 3 terms in its higher θ
component.

As mentioned above, the trace structure of the non-Abelian Born-Infeld
theory was fixed in [15] by demanding the action to be linearized by BPS-
like configurations (instantons, monopoles, vortices). In the present work
we have seen that the symmetric trace naturally arises in the superfield for-
malism in the route to the construction of the square root Dirac-Born-Infeld
Lagrangian. This confluence of results is nothing but the manifestation of the
well-known connection between supersymmetry and BPS relations. Then, in
order to complete our work, we shall now describe the BPS aspects in the
model.

For definiteness we shall concentrate on instanton configurations in d = 4
dimensional space-time. In the Wess-Zumino gauge, the N = 1 supersym-
metry vector multiplet is (Aµ, λ,D), with λ a Majorana fermion. Now, in
order to look for BPS relations, we should consider a N = 2 supersymmetric
model which includes, appart from these fields, those belonging to a chiral
scalar multiplet. Indeed, in analogy with what was done to obtain the N = 1
general supersymmetric Lagrangian (37), one can construct a general N = 2
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SUSY Lagrangian by adding to the vector multiplet a chiral multiplet as
in the N = 2 SUSY Yang-Mills Lagrangian case. We shall not detail this
construction here but just consider the relevant N = 2 SUSY transformation
laws in order to derive BPS relations.

A complete N = 2 vector multiplet can be accomodated in terms of
the fields described above in the form (Aµ, λ, φ,D, F ) with λ now a Dirac
fermion, λ = (λ1, λ2), φ a complex scalar, φ = M + iN , D and F auxiliary
real fields. The gaugino supersymmetric transformation law reads (we call
ξ = (ξ1, ξ2) the N = 2 transformation parameter)

δλi = (ΓµνFµν + γ5D)ξi + iεij(F + γµ∇µ(M + γ5N))ξj (41)

where

Γµν =
i

4
[γµ, γν ] (42)

Instanton configurations correspond toD = F = φ = 0 so that (41) simplifies
to

δλ = ΓµνFµνξ (43)

or

δλ =
1

2
Γµν(Fµν + iγ5F̃µν)ξ (44)

In order to look for BPS relations one imposes as usual δλ = 0 thus obtaining

(Fµν + iF̃µν)ξ1 = 0

(Fµν − iF̃µν)ξ2 = 0 (45)

In Euclidean space, eqs.(45) become

(Fµν + F̃µν)ξ1 = 0

(Fµν − F̃µν)ξ2 = 0 (46)

with ξ1 and ξ2 two Euclidean Weyl fermion independent parameters. As
usual, these conditions lead to instanton or anti-instanton self-dual equations

Fµν = ±F̃µν (47)

each one of its solutions breaking half of the supersymmetries.
The fact that Yang-Mills self-dual equations arise also when the dynamics

of the gauge field is governed by a non-Abelian Born-Infeld Lagrangian was
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already observed in [13]-[17]. In the context of supersymmetry, this can be
understood following [20] where it is shown how the supersymmetry transfor-
mation law for the gaugino (and for the Higgsino in the case of the example
discussed in [20]), together with the (algebraic) equation of motion for the
auxiliary fields, make the BPS relations remain unchanged irrespectively of
the specific choice for the gauge field Lagrangian. Moreover, one can see that
the N = 2 SUSY charges for a general non-polynomial theory, obtained via
the Noether construction, coincide, on shell, with those arising in Maxwell
or Yang-Mills theories.

In summary, using the superfield formalism, we have derived a supersym-
metric non-Abelian Dirac-Born-Infeld Lagrangian which shows the expected
BPS structure, namely that of the (normal) Yang-Mills theory. In our con-
struction, we have seen that the natural superfield functionals from which
supersymmetric non-Abelian gauge theories are usually built, combine in the
adequate, square root DBI form in such a way that the symmetric trace is
singled out as the one to use in defining a scalar superfield Lagrangian. It
should be stressed that the fact that the purely bosonic Lagrangian depends
on the basic invariants F 2 and FF̃ and not on odd powers of F is not the
result of the choice of a symmetric trace but the consequence of using W
and DW as building blocks for the supersymmetric Lagrangian. Finally, let
us mention that not only the supersymmetric DBI Lagrangian but a whole
family of non-polynomial Lagrangians are then included in our main result,
eq.(37) and all of them are linearised by BPS configurations which coincide
with those of the normal Yang-Mills theory.
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