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1 Introduction

Gauge theories in three dimensional space-time exhibit a variety of phenom-
ena of interest not only in Quantum Field Theory [1] but also in Condensed
Matter Physics [2].

An important feature of three dimensional kinematics concerns the pos-
sibility of giving a (topological) mass to the vector field by including an
unconventional term in the gauge field Lagrangian [3]-[5]: the Chern-Simons
(CS) secondary characteristic.

The CS term, of topological origin, violates both P and T invariances.
Since the same happens for the mass term for a (two-component) Dirac
spinor in three dimensional space-time, it is natural to expect an interesting
interplay between both masses in 3-dimensional gauge theories coupled to
fermions. Indeed, in refs.[3]-[4],[6]-[7] it was shown that if any of the two mass
terms is included in the Lagrangian, the other is then induced by radiative
corrections.

Now, in ref.[6]-[7], it was also shown that even massless fermions, when
coupled to gauge fields, generate a CS term. Originally this effect was thought
as a consequence of the introduction of a fermion mass term within the Pauli
Villars regularization procedure [7]. However, the occurrence of the CS term
was confirmed in ref.[8] (hereafter referred as I) using the ζ-function ap-
proach, where no regulating mass term is added at any stage of the calcula-
tions. In fact, the violation of parity in odd dimensions (and, consequently,
the generation of a CS term) is analogous to the non-conservation of the ax-
ial current in even dimensions: the imposition of gauge invariance produces
in both cases an anomaly for a symmetry (parity, chiral symmetry) of the
original action for any sensible regularization.

The issue of parity violation in three dimensions is relevant in different
contexts. In particular, discrepancies on overall parity breaking have arisen
in the analysis of the 2+ 1 Thirring model [9]-[12], this leading to contradic-
tory results concerning dynamical mass generation for fermions (see [13] for
a treatment of the Thirring model using the techniques described in this pa-
per). Since 3 + 1 dimensional field theories become effectively 3-dimensional
in the high temperature limit, the problem has applications also in 4 di-
mensional Physics. Also in Condensed Matter Physics, the appearence of
Chern-Simons term through parity anomaly provides an adequate ground
for testing the physics of anyons in three dimensional fermionic systems [2].
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In this respect, generation of CS term through the fermion effective action
has direct consequences on the thermodynamic properties of the system [14].

Since the generation of the CS term is a consequence of regularizing the
three dimensional fermionic ground state current, a careful analysis of the
regularization prescription is needed in order to decide whether or not parity
violation occurs. To this issue we address in the present work, extending
previous results that we have already presented in I.

Firstly, we give a mathematically rigourous scheme leading to the defini-
tion of the path-integral fermionic measure for a 3-dimensional gauge theory.
This is achieved through a careful treatment of the fermionic determinant (a
not well defined object for the unbounded Dirac operator) using the results
of Seeley [15] on complex powers of elliptic operators.

Secondly, we give the recipe for computing fermionic ground state cur-
rents. Since at this stage we already dispose of a finite expression for the
fermionic partition function Z within the ζ-function approach, this recipe
reduces to give explicit formulæ for obtaining vacuum expectation values by
using the differentiability properties of the ζ-function [16].

Finally, we apply our approach to the analysis of massive fermions thus
completing the work initiated in I on massless fermions. We think that the
present analysis clarifies the origin of the parity anomaly and, in particular,
the appearence of two contributions to parity violation, one originated in
peculiarities of calculations in odd-dimensional spaces, the other arising from
the parity violation produced, already at the classical level, by the fermion
mass in 3 dimensions.

In respect with massless fermions, the original calculation of the ground
state fermion current jµ[A] in a constant magnetic background ∗F µ,

∗Fµ =
iǫµνα∂νAα was presented in ref.[7] (we are working here in Euclidean space).
As an example, the perturbative calculation using Pauli-Villars regularization
yields for the Abelian case, in the one loop approximation [7],

jµ[A] =
m

|m|

e

4π
∗Fµ (1)

where e is the gauge coupling constant and m is a fermionic mass to be put
to zero at the end of the calculations. This current is identically conserved,
but it violates parity conservation since ∗Fµ is a pseudovector.
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From this current the effective action Γ[A] can be computed, using the
relation

δΓ[A]

δAµ

= ejµ[A]. (2)

From eqs.(1)-(2) we see that the effective action, appart from parity conserv-
ing contributions, contains a CS term,

Γ[A]Pauli−V illars =
m

|m|

e2

2
SCS[A] + SPC [A] (3)

where SCS[A] is the (Abelian) Chern-Simons action,

SCS[A] =
1

4π

∫

d3xAµ
∗Fµ (4)

and SPC [A] are parity conserving terms. We have explicitly indicated in Γ
that this result was obtained in [7] within the Pauli-Villars regularization
scheme.

Of course, this result can be trivially generalized to the case of N flavors.
Instead of (3), one has when there are N fermion species:

Γ[A]Pauli−V illars =
N
∑

i=1

mi

|mi|

e2

2
SCS[A] + SPC [A,N ]. (5)

As in the N = 1 case, one has to put the fermion masses mi = 0 to recover
the massless case. Within this approach, one could evidently choose the
signs of mi’s in such a way that, for even N , the overall CS contribution to
Γ cancells out so that overall parity would not be violated. Now, using the
ζ-function approach, we have proven in I, without necessity of introducing a
mass-parameter, that instead of (3) one directly obtains:

Γ[A]ζ = ±
e2

2
SCS[A] + SPC[A] (6)

As it will become clear in the next section, within the ζ-function approach,
the sign ambiguity in (6) can be traced back to the choice of an integration
path Ω in the complex plane, necessary for defining the complex powers of
the Dirac operator. In odd-dimensional space-times, the choice of Ω in the
upper (lower) half plane yields to a positive (negative) sign in (6). Then, once
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a definite integration path is chosen, consistency in the definition of complex
powers implies that, when N species are present, all fermions contribute with
the same sign so that, instead of eq.(5) one gets

Γ[A]ζ = ±N
e2

2
SCS[A] + SPC[A,N ] (7)

and overall parity is always violated.
To end with the resumé of the massless case analysis, it should be stressed

that the ζ-function approach allows the calculation of the parity violating
contribution to jµ[A] for arbitrary Aµ (and not necessarily for one leading
to a constant magnetic field) in an exact form. As explained above, it was
shown in Ref.[7] that the parity violation contribution was induced from one
fermion loops and arguments were given to discard higher loop corrections.
Now, we have proven in I that the Chern-Simons contribution present in (6)
is all the parity violating contribution one has to expect for three dimensional
massless fermions since, as in the case of the chiral anomaly, the ζ-function
approach gives the exact anomalous contribution.

Let us come now to the massive fermion case. The problem was already
discussed in [3], to the one-loop order and in a constant magnetic background,
using Pauli-Villars regularization and clearly explained in [1]. The conclusion
was that when massive fermions couple to the gauge field, a CS term is
induced by fermion radiative corrections. The fact that a fermion mass term
in three dimensions violates P and T was considered at the origin of this
result. The explicit form for the effective action in the massive case was
calculated in [7]. The result coincides with (3) except that in this case m is
the physical fermion mass. Again, the conclusion was dependent on how to
regularize divergent objects [3],[18]-[19]. It is then worthwhile to analyse the
problem of massive fermions using the ζ-function approach developed in I. We
here undertake such program explaining in section 2 the mathematical tools
needed for the computation of ground state fermion currents and leaving for
section 3 the explicit calculation of jµ. A summary of results and discussions
is given in Section 4.
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2 How to compute currents

We first consider the Abelian case giving the basic formulæ to be used in the
next section.

The partition function for a massive Dirac fermion doublet in d=3 Eu-
clidean space-time dimensions is:

Z[Aµ] =
∫

Dψ̄Dψ exp[−
∫

ψ̄D[A]ψd3x] (8)

where Aµ is a background vector field and the Dirac operator D[A] is given
by1

D[A] = γµ(i∂µ + eAµ) + im. (9)

In (8), Dψ̄Dψ is some fermionic measure to be defined below. The results we
shall describe are valid for any elliptic operator L, not necessarily Hermitian,
defined on a compact manifold without boundary [16],[17]. We shall assume
however that they are also valid for R3.

The ground state current jµ[A] in the presence of the background field,

jµ[A] = 〈ψ̄(x)γµψ(x)〉A, (10)

can be calculated from Z[A] as

jµ[A] = −
1

e

δ

δAµ(x)
logZ[A]. (11)

Of course, since the Dirac operator is unbounded, Z[A] needs a regulariza-
tion,

Zreg[A] ≡ detD[A]

∣

∣

∣

∣

∣

reg

. (12)

We shall adopt in this work the ζ-function regularization method which au-
tomatically ensures local gauge invariance. We thus define as usual

ζ(D[A], s) = Tr(D−s[A]), (13)

since D[A] is invertible. From (13) we can define

Zreg[A] = exp(−
d

ds
ζ(D[A], s))

∣

∣

∣

∣

∣

s=0

(14)

1Our conventions for γ matrices are γµ = σµ with σµ (µ = 1, 2, 3) the Pauli matrices.

5



where the right-hand side should be computed for complex s (with large
enough real part) and then analytically extended to s = 0. This definition
amounts in practice to the definition of the fermionic path-integral measure.
It has been proven in [16] that Z[A] written as in eq.(14) is differentiable;
then, one can easily obtain from eqs.(11),(14) a regularized expression for
jµ[A]. Indeed, one can write

∫ δ

δAµ(x)
logZreg[A]aµ(x)d

3x =
d

dt
logZreg[Aµ + taµ]

∣

∣

∣

∣

∣

t=0

. (15)

(Here aµ indicates a direction in Aµ functional space along which the deriva-
tive is taken). Now, from eq.(14) one has

∫

δ

δAµ(x)
logZreg[A]aµ(x)d

3x =
d

dt

(

−
d

ds
ζ(D[Aµ + taµ], s)

∣

∣

∣

∣

∣

s=0

) ∣

∣

∣

∣

∣

t=0

(16)

or, using eq.(13) and interchanging the order of the derivatives,

∫

δ

δAµ(x)
logZreg[A]aµ(x)d

3x =
d

ds

[

sTr(D−s−1[A]eγµaµ)
]

∣

∣

∣

∣

∣

s=0

. (17)

In eqs.(13),(17), “Tr” stands for the operator trace, which includes the matrix
trace “tr” and an integration over the space-time of the diagonal of the
operator kernel. If we denote by Ks(x, y;D[A]) the kernel of the operator
Ds[A],

Ds[A]f(x) =
∫

d3yKs(x, y;D[A])f(y) (18)

we can read from eq.(17)

δ

δAµ(x)
logZreg[A] = e

d

ds
{sTr [γµK−s−1(x, x;D[A])]}

∣

∣

∣

∣

∣

s=0

. (19)

Then, from eqs.(11)-(19), one has

jµ
reg[A] = −

d

ds
{sTr [γµK−s−1(x, x;D[A])]}

∣

∣

∣

∣

∣

s=0

. (20)

This is the key formula we shall employ to compute fermionic currents in the
ζ-function regularization scheme.
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Note that K−s−1(x, y;D[A])|s=0 is nothing but the Green function G(x, y)
of the operator D[A] when x 6= y. Correspondingly, it is singular on the
diagonal x = y. Now, for any elliptic operator L of positive order r in
a space of dimension n, the kernel of Ls is a continuous function of x, y for
Re(s) < −n/m that admits an analytic extension to the whole complex plane
s if x 6= y. On the diagonal x = y it is a meromorphic function of s that
has at most simple poles at s = (−n + j)/r, j = 0, 1, . . . [15]. For the Dirac
operator D[A] in three-dimensional Euclidean space-time, K−s−1(x, x;D[A])
has a simple pole at s = 0. It is then clear that eq.(20) gives jµ

reg as the
finite part of the Laurent series for −tr[γµK−s−1(x, x;D[A])] at s = 0, thus
providing an operative (finite) formula for −tr[γµG(x, x)]

−
d

ds
{s tr [γµK−s−1(x, x;D[A])]}

∣

∣

∣

∣

∣

s=0

= −tr[γµG
reg(x, x)]. (21)

The right hand side in (21) gives the ζ-function analogous of the usual ex-
pression that can be found in the literature [20] for the ground state current,
with the regularization procedure specified in the present approach by the
left hand side.

We see at this point that for computing jµ
reg[A] we need an explicit

formula for the kernel K−s−1(x, y;D[A]) so as to evaluate the r.h.s. of eq.(20).
For the sake of clarity and consistency, let us present some of the results of
Seeley [15] on complex powers of elliptic operators in the restricted form
needed for studying the Dirac operator.

The complex powers of the elliptic differential operator D[A] (of order 1
in a space of dimension n=3) are best described in terms of the symbol of the
operator and the symbol of its resolvent (D[A]− λ)−1. The symbol of D[A]
is a polynomial σ(D[A]) in a vector ξµ that can be thought as the Fourier
variable associated to xµ. It is obtained from D[A] by replacing −i∂µ → ξµ
and takes the form

σ(D[A])(x, ξ) = −γµξµ + eγµAµ(x) + im ≡ a1(x, ξ) + a0(x, ξ) (22)

where aj(x, ξ) (j=0,1) are homogeneous functions of degree j in ξµ.
The resolvent (D[A]− λ)−1 of the differential operator D[A] is a pseudo-

differential operator [21]. Its symbol is a generalization of the definition
above and can be properly approximated by

σ((D[A]− λ)−1)(x, ξ) =
∞
∑

j=0

b−1−j(x, ξ;λ). (23)
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Here b−1−j(x, ξ;λ) are homogeneous functions of degree −1− j in ξµ and λ.
These coefficients can be recursively evaluated for each order in ξµ from the
relation2

σ((D[A]− λ)−1) ◦ σ((D[A]− λ)) = I (24)

provided one takes λ order ξ, so that it combines with the top term a1 of the
symbol of D[A]. The recursive formula reads

b−1(a1 − λ) = I, (25)

b−1−l(a1 − λ) +
l−1
∑

j=0

l−j
∑

α=0

1

α!
(
∂

∂ξ
)~αb−1−j(−i

∂

∂x
)~αa1−l+α+j = 0, l=1,2,Dots

where ~α = (α1, α2, α3) is a vector of non negative integers, α =
∑3

i=1 αi and
( ∂
∂ξ
)~α =

∏3
µ=1(

∂
∂ξµ

)αµ , ( ∂
∂x
)~α =

∏3
µ=1(

∂
∂xµ

)αµ .

From eqs.(22),(25) the coefficients of the symbol of the resolvent can be
evaluated for the Dirac operator. The first three of them are

b−1(x, ξ;λ) =
1

λ2 − ξ2
( 6ξ − λ), (26)

b−2(x, ξ;λ) = −
1

(λ2 − ξ2)2
( 6ξ − λ)(e 6A + im)( 6ξ − λ), (27)

b−3(x, ξ;λ) =
1

(λ2 − ξ2)3
( 6ξ − λ)(e 6A+ im)( 6ξ − λ)(e 6A + im)( 6ξ − λ)+

ie
∂µAν

(λ2 − ξ2)3
(2ξµ( 6ξ − λ)γν( 6ξ − λ) + (λ2 − ξ2)γµγν( 6ξ − λ)). (28)

Following Seeley [15], the complex powers Ds[A] can be defined as a
generalization of Cauchy integral representation of zs,

zs =
i

2π

∮

C

λs

z − λ
dλ. (29)

Here, the contour C must avoid a log-like cut in the complex plane λ and
encircle the pole of the integrand. For the operator D[A], one must take a

2The product of symbols is defined in such a way that that it corresponds to the symbol
of the composition of operators [21].
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Figure 1: Contours Ω for defining complex powers of D[A].

contour Ω that encircles the whole spectrum of D[A] and avoids a ray going
from the origin to infinity in a direction such that no eigenvalue of a1 lies on
it (such a ray is called a ray of minimal growth or Agmon ray). For Re(s) < 0
one can take Ω as a curve begining at ∞, passing along the ray of minimal
growth to a small circle about the origin, then clockwise around the circle,
and back to ∞ along the ray. The ray along which curve Ω is defined cannot
coincide with the real axis, since being D[A] Hermitian its eigenvalues are
real. Two possible Ω curves are illustrated in Fig. 1.

Then, for Re(s) < 0, one defines

Ds[A] =
i

2π

∫

Ω
λs(D[A]− λ)−1dλ. (30)

This definition is analytically extended to the whole complex plane through
multiplication by integer powers of D[A],

Ds[A] = Dk[A]Ds−k[A] k integer, −1 ≤ Re(s)− k < 0. (31)
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The corresponding symbol is constructed using eq.(23) and reads

σ(Ds[A])(x, ξ) =
∞
∑

j=0

i

2π

∫

Ω
λsb−1−j(x, ξ;λ)dλ ≡

∞
∑

j=0

Cj(x, ξ; s), (32)

where

Cj(x, ξ; s) =
i

2π

∫

Ω
λsb−1−j(x, ξ;λ)dλ (33)

are homogeneous functions of (complex) degree s−j. It is worthwhile noting
that, while eq.(30) is valid for Re(s) < 0, the relation between symbols
eq.(32) is valid for any value of s.

Using the tools described above we are now in conditions to write the
kernel K−s−1(x, ξ;D[A]) for the operator D−s−1[A], necessary for evaluating
the ground state current (eq.(20)). Indeed, one of the main points in Seeley’s
work [15] is that one can approximate kernel Ks through Fourier transforms
of the Cj coefficients,

Ks(x, y;D[A]) =
N
∑

j=0

∫ dξ

(2π)n
Cj(x, ξ; s)e

i(x−y).ξ +R(x, y; s). (34)

Here R(x, y; s) includes terms which will not contribute to the derivative
in eq.(20) at s = 0 if N is taken sufficiently large. Though the integral
in each term converges only for Re(s) < (−n + j) (being n the dimension
of spacetime, here n=3), this expression can be analytically extended to
arbitrary s for x 6= y. On the diagonal x = y, Ks(x, x;D[A]) is extended to a
meromorphic function with at most simple poles at s = (−n+k), k = 0, 1, . . .,
one arising from each term included in the sum in eq.(34).

In order to compute jµ
reg in eq.(20) one uses eq.(34) to evaluate the finite

part of the simple pole of Ks(x, x;D[A]) at s = −1. To this end, we shall
use the following proposition (proven in I and adapted here to the case of
the Dirac operator):

Proposition: For the elliptic invertible first order operator D[A] on a 3-
dimensional compact manifold M without boundary, the following identity
holds:

d

ds
(sKs−1(x, x;D[A]))

∣

∣

∣

∣

∣

s=0

=

10



lim
y→x

{

G(x, y)−
∫ d3ξ

(2π)3
C1(x, ξ/|ξ|;−1)|ξ|−2eiξ.(x−y)

−
∫

d3ξ

(2π)3
C0(x, ξ/|ξ|;−1)|ξ|−1eiξ.(x−y) −

∫

|ξ|≥1

d3ξ

(2π)3
C2(x, ξ;−1)eiξ.(x−y)

}

−
∫

|ξ|=1

d

ds
C2(x, ξ; s)

∣

∣

∣

∣

∣

s=−1

d2ξ

(2π)3
(35)

where G(x, y) is the Green function of D[A]. (The interested reader can find
the proof in I.)

The last term between brackets in eq.(35) can be conveniently rewritten
as [22] (see I)

∫

|ξ|≥1

d3ξ

(2π)3
C2(x, ξ;−1)eiξ.(x−y) =

h0(x, x− y) +M(x)(log |x− y|+ C(x− y)) (36)

where h0(x, z) is a homogeneous function of degree zero defined as

h0(x, z) =
∫

d3ξ

(2π)3
P.V.[C2(x, ξ/|ξ|;−1)−M(x)]|ξ|−3eiξ.z, (37)

M(x) is defined as

M(x) =
1

ω

∫

|ξ|=1
C2(x, ξ;−1)d2ξ (38)

and finally

ω(log |z|+ C(z)) = −
∫

|ξ|≥1

d3ξ

(2π)3
|ξ|−3e−iξ.z (39)

where C(z) is a regular function in the neighborhood of z = 0. All Fourier
transforms are taken in the sense of distributions and P.V. means principal
value.

The interpretation of eq.(35) is as follows: The last three terms between
brackets substract the singularities of G(x, y) on the diagonal x = y. Con-
cerning the last term in eq.(35), it is a local regular term generated through
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the regularization procedure that adds to the regular part of G(x, x). In view
of this interpretation we rewrite the result in eq.(35) in the form

d

ds
(sKs−1(x, x;D[A]))

∣

∣

∣

∣

∣

s=0

= Greg(x, x) = G(subst)(x) +G(local)(x) (40)

where

G(subst)(x) = lim
y→x

{

G(x, y)−
∫ d3ξ

(2π)3
C1(x, ξ/|ξ|;−1)|ξ|−2eiξ.(x−y) (41)

−
∫

d3ξ

(2π)3
C0(x, ξ/|ξ|;−1)|ξ|−1eiξ.(x−y) −

∫

|ξ|≥1

d3ξ

(2π)3
C2(x, ξ;−1)eiξ.(x−y)

}

and

G(local)(x) = −
∫

|ξ|=1

d

ds
C2(x, ξ; s)

∣

∣

∣

∣

∣

s=−1

d2ξ

(2π)3
(42)

In spite of its apparent complexity, the result in eq.(35) can be used
with great simplicity for evaluating ground state currents for arbitrary gauge
background fields. This will be seen in the next section, where we shall employ
eqs.(20),(35) to compute the parity violating terms of jµ

reg[A].

3 The current for massive fermions

Formula (35) is at the root of the ζ function regularization prescription for
the calculation of ground state fermion currents. Using this approach, parity
violating contribution to the ground state current was evaluated in I for the
case of massless fermions. In this section the analysis is extended to the case
of massive fermions with partition function given by eq.(8).

Let us start by understanding why parity violating terms should be ex-
pected in a 2+1 fermionic theory. First, note that a 3-dimensional fermion
mass term constructed from two-component spinors violates parity and time-
inversion. Indeed, under parity transformation the vector and fermion fields
behave as

PA0(x)P
−1 = A0(x

′)

PA1(x)P
−1 = −A1(x

′)

12



PA2(x)P
−1 = A2(x

′)

Pψ(x)P−1 = σ1ψ(x′) (43)

with

x = (x0, x1, x2)

x′ = (x0,−x1, x2), (44)

so that the fermion mass term changes sign under parity,

Pmψ̄(x)ψ(x)P−1 = −mψ̄(x′)ψ(x′). (45)

The same happens with time inversion. Analogous results can be derived for
any odd dimensional fermionic fields [23].

Using eqs.(43)-(44) one can easily show that the Dirac operator Green
function changes under parity as follows

PG(m)(x, y)P
−1 = −σ1G(−m)(x

′, y′)σ1 (46)

This formula (46) is only meaningful for x 6= y, where the Green function is
well-defined (we indicate with the subscript (m) the fact we are considering
the massive Dirac operator case). Let us now define the object J µ

(m)(x, y),

J µ
(m)(x, y) = trγµG(m)(x, y) (47)

Again, this object is well-defined whenever x 6= y. At x = y, precisely where
it gives the ground state current (see eq.(21)), it has to be regulated since,
appart from regular terms, it has divergent contributions.

Eq.(46) shows that only for m = 0 J µ
(m)(x, y) behaves as a vector

PJ 0
(0)(x, y)P

−1 = J 0
(0)(x

′, y′)

PJ 1
(0)(x, y)P

−1 = −J 1
(0)(x

′, y′)

PJ 2
(0)(x, y)P

−1 = J 2
(0)(x

′, y′) (48)

(Again, identities (48) make sense only for x 6= y). Then, as argued in I, par-
ity violating contributions to the ground state current for massless fermions
cannot arise from regular terms in J µ

(0)(x, x) since these terms should satisfy
transformation law (48). Only additional regular terms generated by the
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ζ-function prescription in the process of giving meaning to J µ
(m)(x, x) can

break in this case parity invariance: they are not subject to (48) but just to
respect gauge invariance. This is the reason why we were able to compute
in I the complete parity violating contribution to jµ(x) for arbitrary Aµ: it
was not necessary to have a complete knowledge of G(0)(x, y) for arbitrary
Aµ but just the behavior of the additional regular terms introduced by the
ζ-function prescription. One should interpret this parity anomalous contri-
bution present even for massless fermions as a consequence of regularization
in odd dimensional space-time.

It is clear from eq.(47) that the massive case is more involved: appart
from the additional terms generated by the ζ-function regularization, regular
terms which are already present in G(m)(x, x) (and a fortiori in J µ

(m)(x, x))
may in principle contribute to parity violation since they are not constrained
to satisfy vector-like parity transformations. This in turn implies that, in the
massive case, one needs a more detailed knowledge of G(m)(x, y). For that
reason we shall have to limit the validity of ours results to the domain of a
perturbative expansion. With this in mind, we rewrite eq.(20) as

jµ
reg[A] = −tr

[

γµ
d

ds
(sKs−1(x, x;D[A]))

∣

∣

∣

∣

∣

s=0

]

(49)

and use the proposition presented in the previous section in the form given
by (40)-(42).

We start analysing the regular term in eq.(40) generated by the ζ-function
method,

G(local)(x) = −
∫

|ξ|=1

d

ds
C2(x, ξ; s)

∣

∣

∣

∣

∣

s=−1

d2ξ

(2π)3
. (50)

Using the definition for C2 we have, after differentiating,

G(local)(x) = −
i

2π

∫

|ξ|=1

[

∫

Ω

lnλ

λ
b−3(x, ξ;λ)]dλ

]

d2ξ

(2π)3
. (51)

As the ξ-integral is extended to S2, one can see that only terms even in ξ
will give non vanishing contributions to G(local)(x). After some algebra one
gets from eq.(28)

G(local)(x) = −
i

2π

∫

|ξ|=1

d2ξ

(2π)3

∫

Ω
dλ

lnλ

λ(λ2 − 1)3

14



[

λ(e2A2 − 4e2AµAνξµξν + 3m2 + 2iem 6A− 8iemAµξµ 6ξ

+ie∂µAν(−4ξµξν + δµν + iǫµναγα))

+λ3(−e2A2 − 2iem 6A +m2 − ie∂µAν(δµν + iǫµναγα))
]

(52)

We have at this point to choose a curve Ω in order to perform the λ integral,
this choice determining the branch for the log function in eq.(52). Let us
first consider the curve Ω(+) depicted in Fig. 1 and call

I(+)[p, q] =
∫

Ω(+)

λq lnλ

(λ2 − 1)p
dλ. (53)

It is easy to see that the integration along the small circle around the origin
vanishes for q ≥ 0 as its radius goes to zero while the integrals along the ray
sum up to give

I(+)[p, q] = iq(−1)pπB(
q + 1

2
, p−

q + 1

2
) (54)

where B(m,n) is the β function (Euler’s integral of the first kind) [24] defined
as

B(m,n) =
∫ ∞

0

tm−1

(1 + t)m+n
dt. (55)

The β functions can be evaluated in terms of Γ functions to give

I(+)[p, q] = iq(−1)pπ
Γ( q+1

2
)Γ(p− q+1

2
)

Γ(p)
. (56)

Using this result and performing the remaining ξ integral one gets

G
(local)
(+) (x) = −

ie

8π
ǫµνα∂µAνγα +

i

4π
m2 (57)

where the subscript (+) indicates that we have used the Ω(+) contour. The
corresponding contribution to the fermionic current (49) is

j(local)µ(+)
= −tr[γµG

(local)
(+) (x)] =

ie

4π
ǫαβµ∂αAβ . (58)

If instead one chooses the curve Ω− (see Fig. 1) one gets the same ex-
pression but with the opposite sign so we finally have for the regular term
generated by the ζ-function method

j(local)µ±
= ±

ie

4π
ǫαβµ∂αAβ . (59)
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Let us first discuss in more detail the origin of the sign ambiguity in (59).
As discussed in I, IΩ[p, q] in eq.(53) satisfies

IΩ(−)
[p, q] = (−1)q+1IΩ(+)

[p, q] (60)

where Ω(+) is any curve that avoids a ray of minimal growth of D[A] on
the upper half-plane and Ω(−) is any other curve that avoids such a ray on
the lower half-plane. Now, for odd dimensional spaces, only even values
for q arise. In the present d = 3 case q = 0, 2. On the other hand, for
even dimensional spaces q = 2k + 1. This is the reason why there are sign
ambiguities in computing anomalies in odd dimensional spaces (according to
the choice of curves Ω), which are not present for even dimensions.

Another important lesson learnt in this calculation is that this result is
identical to that corresponding to massless fermions. Indeed, no new terms
arise from G

(local)
(±) due to the presence of the mass term since, as it happens

when computing the chiral anomaly [17], the trace in (49) makes all the terms
proportional to m and m2 vanish.

We thus see that the contribution to parity violation in jµ
reg[A] arising

from the regular term generated by the ζ-function method is independent of
whether the fermions are massless or massive (even if the mass is a regulating
mass that should be taken to zero at the end of the calculation). Its origin can
be traced back to gauge invariant regularization in odd dimensional spaces
and it is present both in the massless and massive case.

We have now to consider regular terms coming from the brackets in
eq.(35), that is, the regular part of G(m)(x, x) remaining once the adequated
substractions are performed. As stated above, there was no contribution to
parity violation from these terms in the massless case due to the transforma-
tion law (46) obeyed by G(0)(x, x): parity was respected at the classical level
so that violations cannot arise in the process of substracting singular terms
to G(0)(x, x). On the contrary, there may be parity violating contributions
in the case of the massive Green function since already at the classical level
parity is violated by the massive Dirac operator. Should these contribuitions
exist, they will be the product of parity non-invariance introduced in the La-
grangian through the fermionic mass term. To see whether this happens, we
are faced to the necessity of making some sort of approximation to compute
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G(m)(x, y) at x = y and, from it, the regular part of G(m)(x, x) defined by
G(subst)(x) in eq.(41).

Of course, for Aµ = 0 the Green function can be computed closely,

G(m)(x, y;Aµ = 0) =
1

4π
(i6∂ − im)

e−|m||x−y|

|x− y|
. (61)

It is then natural to seek for a perturbative expansion in powers of the cou-
pling constant e,

G(m)(x, y;Aµ) = G(m)(x, y;Aµ = 0)

−e
∫

d3wG(m)(x, w;Aµ = 0) 6A(w)G(m)(w, y;Aµ = 0) +O(e2) (62)

We will keep only the first order in the perturbative expansion, but a sys-
tematic perturbative calculation can be straightforwardly implemented. In
order to analyse an arbitrary gauge field configuration, we will make a Taylor
expansion of Aµ(w) around x. This leads to a derivative expansion which
for dimensional analysis takes the form of a ∂/m expansion [25]. Up to
first derivatives the Green function can be expressed as a Laurent expansion
in zµ = yµ − xµ as

G(m)(x, y;Aµ) =
1

4π

{

i
6z

|z|3
− im

1

|z|
−
im2

2

6z

|z|
+ im|m|

+eAα(x)
zα 6z

|z|3
− emAα(x)

zα
|z|

(63)

−
ie

2

m

|m|
ǫµνα∂µAν(x)γα +

ie

2
ǫµνα∂µAν(x)

zα
|z|

+
e

2
∂µAν(x)

zµzν 6z

|z|3

}

+O(z).

As expected, non-regular terms do appear on the diagonal of the Green
function (zµ → 0). According to Proposition (35) these terms should be can-
celled by the substractions. Indeed, the explicit values of these substractions
are

∫

d3ξ

(2π)3
C1(x, ξ/|ξ|;−1)|ξ|−2eiξ.(x−y) =

1

4π
i
6z

|z|3
, (64)

∫ d3ξ

(2π)3
C0(x, ξ/|ξ|;−1)|ξ|−1eiξ.(x−y) =

1

4π

{

−im
1

|z|
+ eAα(x)

zα 6z

|z|3

}

, (65)
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and

∫

|ξ|≥1

d3ξ

(2π)3
C2(x, ξ;−1)eiξ.(x−y) =

1

4π

{

−
im2

2

6z

|z|
− emAα(x)

zα
|z|

+
ie

2

m

|m|
ǫµνα∂µAν(x)

zα
|z|

+
e

2
∂µAν(x)

zµzν 6z

|z|3

}

+O(e2). (66)

so that using (35) non-regular terms are exactly cancelled. In the last ex-
pression we used eqs.(36)-(38) where M(x) = 0; by O(e2) we just mean some
non-regular terms proportional to e2. One can check that each substrac-
tion corresponds to non-regular terms homogeneous of degree -2, -1 and 0
respectively in zµ.

The regular part of G(m)(x, x) remaining after substractions and the limit
y → x are performed is

G(subst)(x) =
1

4π
{im|m| −

ie

2

m

|m|
ǫµνα∂µAν(x)γα}. (67)

The corresponding contribution to the current reads

jµ
(subst)[A] = −tr[γµG

(subst)(x)] =
ie

4π

m

|m|
ǫµνα∂νAα(x). (68)

The complete expression for the the fermionic current (up to order e and
up to first derivatives of the gauge field) can now be obtained by adding
j(local)µ in eq.(59) and j(subst)µ in eq.(68). The answer reads

jµ
reg =

ie

4π
(±1 +

m

|m|
)ǫµνα∂νAα(x). (69)

In order to compare this result with those obtained in previous works,
let us first briefly insist on its domain of validity. Original works showing
parity violation and the consequent emergence of a CS term for massless and
massive fermions were one-loop calculations performed in a constant Fµν

background. For massless fermions we were able in I, trough the ζ-function
approach, to evaluate the complete parity violation contribution for arbitrary
Fµν background. This contribution reappears now in the massive case and
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corresponds to the first term in eq.(69). Again this contribution corresponds
to an exact result (not just a one-loop contribution) valid for arbitrary Aµ.
Now, in the massive case one has also to consider the contribution given by
G(subst)(x), i.e. the parity violation coming from the fermion mass term. This,
we were not able to evaluate in a closed form due to the impossibility of calcu-
lating the Dirac Green function in an arbitrary background. For that reason,
we had to appeal to some sort of approximation. We choosed a perturbative
calculation still valid for arbitrary Fµν and we stopped at the first order in
e. We also neglected O(∂2/m2) in a derivative expansion. Of course our
perturbative expansion can be systematically employed to calculate higher
order contributions to the second term in eq.(67). Although we made the
explicit calculations for Abelian gauge fields, the ζ-function approach can be
used with no further modifications in the non-Abelian case.

Eq.(69) is the main result in our paper and we shall devote the next
section to the discussion of its origin and implicancies.

4 Discussion

Through the presence of a term proportional to the Levi-Civita pseudo-tensor
in the ground state fermionic current, eq.(69) shows that parity is violated
when massive fermions are considered in three dimensional space time. This
in turn produces a Chern-Simons term in the effective action for the gauge
field.

A first important point to remark in formula (69) concerns the existence
of two clearly differenciated sources of parity violation: one is related with
the fact that a mass term neccesary violates P and T in 3 dimensions. This
fact leads to the second term in (69). In contrast, the first term in (69) is
originated in peculiarities of regularization in odd-dimensional space-times
and has nothing to do with the fermion mass. It is a pure ultraviolet effect
(it arises from the necessity of making regular the singular behavior of the
Green function at x = y) while the second term in (69) can be interpreted
as an infrared contribution which cannot be naively extended to the m = 0
case. In fact, we proved in I that this term is absent if one starts with m = 0.

Once one gets the ζ-function answer to the parity violation term in the
fermionic current, it is natural to try to understand the disagreement of the
corresponding result with those obtained in refs.[6]-[7]. First, we note that
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for m = 0 there is no disagreement at all, except for the interpretation of
the origin of the anomaly. Indeed, quantitatively, the answer in [6]-[7] and
in I was the same. Now, while the double sign origin was traced back in the
former references to the necessity of introducing regulating mass, it was clear
in the ζ-function approach, where no mass terms is introduced by hand, that
it arises from properties of odd dimensional spaces.

When the fermions are massive, there are quantitave discrepancies ap-
part from interpretation differences. Indeed, the ζ-function answer contains
an additional contribution not taken into account for example in [7]. This sit-
uation much resembles what happens in even dimensional spaces concerning
gauge anomalies: also in that case different regularization schemes lead to
two different results for the anomaly in the gauge current conservation equa-
tion. One is known as the covariant anomaly, the other one as the consistent
anomaly (the ζ-function approach leading automatically to the covariant re-
sult; a particular heat-kernel approach leading for example to the consistent
one [17]). As explained in [26] it is on physical grounds that one should
decide to which result attach or, in other words, which regularization scheme
one has to adopt.

Keeping this analogy in mind, we conclude that the particular physical
situation will determine which result one should use for the parity anomaly.
We think that our treatment has shown, however, the unnaturalness of those
proposals in which, starting with an even number of fermions and then choos-
ing half the masses with one sign, half with the other, parity conservation is
achieved: there is a parity violating effect which is intrinsic to odd dimen-
sions and which cannot be accomodated, in our opinion, by a clever choice
of mass signs. It is there to remain and it should serve as a guide even when
other regularization prescriptions are adopted.
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