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Simple Summary: The genetic origins behind reproductive traits are still far from clear: this is
especially true in horses, where the lack of objective reproductive phenotypes (particularly in mares)
reduces the quantity of information available. However, in recent years, the study of genomics has
produced a notable increase in our knowledge of genetic causes of reproductive impairment in the
species. In this paper, we review the recent advances and studies analyzing genomic mechanisms
affecting the reproductive function in mares and stallions.

Abstract: Fertility is one of the key factors in the economic and productive success of the equine
industry. Despite this, studies on the genetic causes affecting reproductive performance are scarce,
especially in mares, where the genetic architecture of the reproductive traits is extremely complex.
Today, with the increasing availability of new genomic methodologies for this species, we are
presented with an interesting opportunity to understand the genetic basis of equine reproductive
disorders. These include, among others, novel techniques for detecting chromosomal abnormalities,
whose association with infertility in horses was established over 50 years ago; new sequencing
technologies permitting an accurate detection of point mutations influencing fertility, as well as the
study of inbreeding and molecular homozygosity, which has been widely suggested as one of the
main causes of low reproductive performance in horses. Finally, over the last few years, reproductive
performance has also been associated with copy number variants and candidate genes detected by
genome-wide association studies on fertility traits. However, such studies are still scarce, probably
because they depend on the existence of large and accurate phenotypic datasets of reproductive
and/or fertility traits, which are still difficult to obtain in equines.

Keywords: reproductive traits; fertility; mares; stallions; genomics; candidate genes; copy number
variations; inbreeding; genome-wide association studies

1. Introduction

Reproductive traits are genetically heterogeneous and complex, as they are usually
determined by the allelic combinations of multiple genes. They also have low heritabil-
ity [1], which makes them particularly sensitive to environmental and management factors
(e.g., age, nutrition, training, temperature at mating, and breeding season, among others)
By that reason, modeling reproductive traits from a genetic point of view is difficult. This
is particularly important in equines, whose fertility is considerably lower than that ob-
served in other domestic species. In addition, equine reproductive efficiency is limited
by their own physiology, which is characterized by single births in almost all the foalings,
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seasonality in mares, long generation intervals delaying genetic improvement, and a lack
of systematized collection of phenotypic information reproductive traits. Nevertheless, a
certain degree of genetic influence has been described and modelized from a quantitative
viewpoint, in mares and stallions. For instance, gestation length in mares is affected by
maternal lineage or inbreeding [2–4]. We also recently reported the influence of the breed
and individual in six fertility traits in mares belonging to 8 different Spanish breeds [5].
Similarly, changes in sperm traits were related to the genetic background of the individual,
lineage and breed [6–8], as well as by the inbreeding value [9,10]. However, there are very
few reports which describe the molecular mechanisms involved in such genetic influence
or which detect the candidate genes involved in the biological processes.

Today, the advent of genomics has led to the development of new methodologies for
genetic analysis in livestock animals. These techniques, which are largely employed in
humans and laboratory models, include the detection of specific mutations and/or dele-
tions (Indels), copy number structural variants (CNVs) [11], runs of molecular inbreeding
(ROHs) [12], and genome-wide association studies (GWAS) [13]. However, their use in
equines is still limited, probably due to the delay in the development of a reliable reference
genome, in comparison with most livestock species, such as pigs or cattle, but also by a
lack of reliable expected progeny differences (EPDs) and phenotypic values associated to
the variations in fertility in the species. Moreover, although the use of genomic methods
in horses has increased significantly over the past five years [14], studies focusing on
reproductive traits are still few and far between. Even less are those which aim to dissect
and quantify more accurately the influence of the genetic background and the environment
in the expression of the phenotype. Here, we aim to review the recent advances in our
understanding of some of the genomic mechanisms involved in impaired reproductive
function in horses.

2. Mutations, Deletions and Genomic Rearrangements Associated with Infertility
in Horses

Deletions were first associated with reduced fertility in horses in 1995, when Pail-
houx, et al. [15] detected a deletion in the sex-determining region Y (SRY) which was
responsible for infertility in mares carrying a 64,XY chromosomal complement. This gene,
located in the Y chromosome, was later related to the initial development of the testis
(rather than ovaries) in the early pluripotential gonad, by upregulating SOX9 and SF1 and
increasing the production of anti-Müllerian hormone (AMH) (Table 1) [16]. More recently,
Raudsepp, et al. [17] determined that SRY deletion is frequent, accounting for one of four
individuals with chromosomal abnormalities. This syndrome, which is not detected in
other species, is associated in most cases with the infertile mare phenotype characterized
by different extents of ovarian and uterine dysgenesis [17–19], and it could also be related
to the distinctive organization of the Y chromosome in the horse (a single copy located in
the proximal region of the q arm of horse Y chromosome(ECAY)), which makes it more
prone to deletion.

Table 1. Candidate genes related to problems in gonadal or sexual development in equines.

Gene Name Position Approach Reference

HSD17B6 Hydroxysteroid 17-beta
dehydrogenase 6

ECA7: 3,935,674-
3,938,482 CNV [20]

SOX9 SRY-Box Transcription Factor 9 ECA11: 9,224,053-
9,229,840 Mutations/Deletions [16]

SF1 Splicing factor 1 ECA12: 28,619,898-
28,632,463 Mutations/Deletions [16]

AR Androgen receptor ECA12: 26,039,218-
26,041,649 Mutations/Deletions [21,22]
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Table 1. Cont.

Gene Name Position Approach Reference

PHYH Phytanoyl-CoA 2-Hydroxylase ECA29: 22,540,934-
22,563,145 CNV [20]

UCMA Upper zone of growth plate and
cartilage matrix associated

29: 22,681,823-
22,691,596 CNV [20]

AKR1C Aldo-keto reductase family
1 member C

ECA29: 29,700,000-
29,900,000 CNV [20,23]

CBRr Campylobacter bile resistance
regulator

ECA29: 32,837,886-
32,838,194 CNV [20]

SRY Sex determining region ECAY Mutations/Deletions [15,17,18]

ECA: Equus caballus chromosome; CNV: copy number variants.

In stallions, the identification of mutations related to fertility problems is also scarce.
Révay, et al. [24] identified a start codon mutation (c.1A > G) in the androgen receptor
(AR) gene which was linked to androgen insensitivity syndrome (AIS) (Table 1). Sev-
eral years later, a new familial androgen receptor mutation in horses was reported by
Bolzon, et al. [25], where a missense mutation (c.2042G > C) at AR exon 4 explained the
segregation of the disorders of sexual development (DSD) in a Thoroughbred horse family.
This mutation, which was expected to affect the ligand-binding domain of the AR protein,
led to complete androgen insensitivity of 64,XY SRY+ testicular DSD individuals. In 2017,
the same authors reported a 25-bp hemizygous deletion including 8 codons in exon 2
(c.1630_1654del) in 4 Warmblood mares with sex reversal genotype (64, XY) and equine
testicular feminization syndrome (AIS). More recently, two novel variants were detected
in the AR gene in horses, including a novel deletion in exon 1 and point mutation on
exon 5 [21]. These serial studies, performed over more than 8 years, demonstrated that
mutations and deletions in the AR gene are causative of equine AIS and can, therefore, be
associated with discordances between chromosomal and phenotypic sex in this species.

Autosomal mutations and rearrangements have also been related to infertility in
horses: Ghosh, et al. [20] reported, in the first screening of copy number variations (CNVs)
performed in the species, a deletion on Equus caballus chromosome ECA29 including
AKR1C gene. More recently, Ghosh, et al. [23] screened the same mutation in 622 horses
with reproductive or sex developmental problems and revealed an increased frequency
(8–9%) compared to fertile horses used as the control (Table 1). Besides, 4 out of every
5 individuals carrying a homozygous deletion were reproductively abnormal, with a
particular increase in the incidence of cryptorchidism. Similar deletions on AKR1C genes,
which are actively involved in the biosynthesis of androgens and estrogens, have previously
been linked to sexual development dysgenesis in humans [26]. Here, the authors suggested
that such deletions could be considered as a risk factor for equine reproductive disorders.
On the other hand, autosomal translocations have also been related to a reduction in fertility
in several cases [27–29]. Moreover, a de-novo balanced translocation t(12q;25) was recently
detected in a cloned Arab horse [23]. Even though all the cases showed no loss of genetic
material or genes affected, the individuals presented diminished fertility due to repeated
early embryonic losses (REELs).

3. Copy Number Abnormalities and Fertility: the Role of the Sex Chromosome Pair

Genomic abnormalities characterized by a variation in the number of copies of a
particular sequence from one individual in comparison with the reference genome of the
species are known as copy number alterations [30]. The most common of these are changes
in the chromosomal number of an individual compared with the standard karyotype of
the species, known as copy number aberrations (CNA). In horses, CNAs are particularly
relevant, as shown by the greater number of cases reported than in the rest of domestic
animals [31]. CNAs were first related to infertility in horses nearly 50 years ago [32,33].
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Fifteen years later, Power [34] reported up to 400 individuals carrying CNAs, of which
over 95% were related to fertility problems. Thirty years later, it became clear that ECAX
monosomy, in its true (63,X; [35]) or 64,XX/63,X mosaic [36] forms, together with 64,XYdsd
sex reversal mares [19], are the most common presentations in the species. Both cases
are associated with a normal mare phenotype with a lack of development of the internal
reproductive organs [37]. However, two more syndromes were also widely reported: 64,
XXdsd (sex reversal or pseudohermaphrodite males) and 64,XX/64,XY (sex chimerism).
The former cases are usually associated with ambiguous genitalia, fused vulva and an
enlarged clitoris, and are, therefore, easily detected [37,38]. Conversely, sex pair chimerism
was associated with normal [39] and abnormal [40] phenotypes, which results in a much
lower detection rate. Finally, some abnormal complex karyotypes, including sex-pair [41]
and autosomal [28] chromosomes, were also related to lack of fertility in the species.
This increased prevalence observed, in comparison with other livestock species, is quite
remarkable and mainly due to the complexity of the horse karyotype and the lack of
availability of equine cytogenetic laboratories in several countries [42]. However, new
genomic technology, based on short tandem repeats (STRs) [43], droplet digital PCR
(ddPCR) [44], and, more recently, single nucleotide polymorphism (SNP) genotyping
array [45], is being constantly developed. There is, therefore, likely to be an increase in the
number and complexity of chromosomal syndromes associated with infertility detected in
horses in the near future.

4. Copy Number Variants: A New Field for Horse Genomics and Fertility

Several years ago, the existence of submicroscopic changes (including deletions, inser-
tions, duplications, and complex multi-site variants) of DNA segments across the genome
of all the individuals was described [46]. These variations are characterized by reduced
size, ranging from kilobases (kb) to megabases (Mb), which can, therefore, affect the
number of copies of a particular gene (or region) without affecting an individual’s kary-
otype. However, small changes of this kind cannot be detected by classic or molecular
cytogenetic techniques. In humans, copy number variations constitute a structural poly-
morphism which has great functional relevance as it is an important source of phenotypic
and genotypic variation. They have also been associated with diseases and failures in
sexual development and reproduction [47]. In horses, studies describing CNVs at the
genome-wide level are relatively novel and scarce, especially those related to fertility. It
was in 2012 when the first report of copy number variation in horses was published, which
suggested that CNVs are common in the horse genome and may modulate the biological
processes underlying different traits [48]. In particular, the authors detected a CNV gain
(duplication) overlapping the bone morphogenetic protein receptor-1B gene (BMPR1B),
which had previously been associated with fecundity in small ruminants. However, it was
only proposed as a candidate gene involved in the regulation of ovulation rate, since the
small number of samples evaluated did not allow them to make a conclusive association.

Two years later, Ghosh et al. [20] analyzed CNVs in 40 individuals of 16 breeds, in-
cluding two Przewalski horses, reporting CNV regions overlapping with several genes
associated with the reproductive system. Among these, BMPR1B and zona pellucida
binding protein (ZPBP), associated with oocyte quality (Table 2) and sperm-oocyte in-
teraction, respectively, were affected (Table 3). The same study revealed CNV regions
overlapping several genes involved in the steroid metabolism, including HSD17B6, CBRr,
PHYH, and UCMA, among others, suggesting that they could be partially involved in
variations in the sexual development of the individuals (Table 1). Finally, the same study
determined that CNV losses also overlapped with several well-known genes involved in
different processes of sperm biology, such as spermatogenesis (IFT81, ZNF331) (Table 4),
sperm capacitation and binding to the oocyte (ELSPBP1, SP-1, BSP2, BSPH1, SULT2A1)
(Table 3), and maturation and fertilization capacity (L1TD1, ADAM20) (Table 4). Finally,
the largest study assessing CNVs in horses (1755 individuals belonging to 8 European
breeds) was recently published by Sole, et al. [49]. The authors identified several regions
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of CNVRs which overlapped candidate genes previously associated with steroidogenesis
(LCN6), spermatogenesis (FKBP6 and SOHLH1), sperm movement (DNAH7) (Table 4),
sperm-oocyte binding ability (MFGE8) (Table 3), and stallion fertility [50–53], suggesting
that CNVs could be a source of fertility variation among individuals. However, none
of the candidate genes detected by this methodology were further validated by specific
studies; therefore, the association between copy number variants and fertility still needs to
be analyzed in greater depth.

Table 2. Genes related to oocyte development in equines.

Gene Name Position Approach Reference

BMPR1B Bone morphogenetic protein receptor-1B ECA3: 44,402,722-
44,692,141 CNV [20,48]

ADCY1 Adenylate cyclase 1 ECA4: 16,027,025-
16,171,067 ROH [54]

PRKACA Protein kinase cAMP-activated catalytic subunit alpha ECA7: 46,048,251-
46,065,141 ROH [54]

ANAPC5 Anaphase promoting complex subunit 5 ECA8: 24,310,740-
24,348,719 ROH [54]

ANAPC7 Anaphase promoting complex subunit 7 ECA8: 23,907,492-
23,927,512 ROH [54]

LRRC6 Leucine rich repeat containing 6 ECA9: 75,402,662-
75,588,283 Candidate gene [50]

ATP6V1E2 ATPase H+ transporting V1 subunit E2 ECA15: 53,416,247-
53,416,927 Candidate gene [50]

CNV: Copy number variation, ROH: runs of homozygosity.

Table 3. Genes related to gametic interaction and embryo development in equines.

Gene Name Position Approach Reference

MFGE8
Milk fat globule EGF and factor V/VIII domain

containing
ECA1:95,221,735-

95,253,405
CNV [49]

Candidate gene [50]

FRAS1 Fraser extracellular matrix complex subunit 1 ECA3: 59,404,529-
59,818,746 ROH [55]

ZPBP Zona pellucida binding protein ECA4: 19,776,870-
19,907,352

CNV [20,49]

ROH [56]

LY49B Killer cell lectin-like receptor ECA 6: 39,335,921-
39,347,553 ROH [57]

UBBP4 Ubiquitin B pseudogene 4 ECA8: 24,467,333-
24,468,548 CNV [49]

SP-1 Sp1 transcription factor ECA10: 14,480,982-
14,485,022 CNV [20]

BSP2 Binder of sperm 2 ECA10: 14,481,079-
14,506,004 CNV [20]

SULT2A1
Sulfotransferase family, cytosolic, 2A,

dehydroepiandrosterone (DHEA)-preferring,
member 1

ECA10: 18,124,115-
18,322,483 CNV [20]

BSPH1 Binder of sperm protein homolog 1 ECA10: 18,375,988-
18,377,065 CNV [20]

ELSPBP1 Epididymal Sperm Binding Protein 1 ECA10: 18,397,898-
18,416,427 CNV [20]

PLOD3 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 ECA13: 9,454,913-
9,462,562 CNV [49]

KITLG KIT ligand ECA28: 15,726,503-
15,807,871

ROH [55]

Candidate gene [58]

CNV: Copy number variation, ROH: runs of homozygosity.
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Table 4. Genes related to sperm quality traits in equines.

Gene Name Position Approach Reference

HERC4 HECT and RLD domain containing E3 ubiquitin
protein ligase 4

ECA1: 56,815,617-
56,954,039 Candidate gene [50]

MFGE8
Milk fat globule EGF and factor V/VIII domain

containing
ECA1:95,221,735-

95,253,405

CNV [49]

Candidate gene [50]

SPATA48 Spermatogenesis associated 48 ECA4: 19,909,625-
19,963,732 ROH [56]

MIER1 MIER1 transcriptional regulator ECA5: 91,061,840-
91,119,716 Candidate gene [50]

L1TD1 LINE1 type transposase domain containing ECA5: 95,020,437-
95,025,347 CNV [20]

IFT81 Intraflagellar transport protein 81 homolog ECA8: 24,053,812-
24,132,668 CNV [20]

YES1 YES proto-oncogene 1, Src family tyrosine kinase ECA8: 44,273,501-
44,304,857 ROH [55]

FKBP6 FKBP prolyl isomerase 6 ECA13: 11,350,401-
11,378,073

CNV [49]

Candidate gene [52,59]

DNAH7 Dynein axonemal heavy chain 7 ECA18: 71,435,145-
71,669,919 CNV [49]

ZNF331 Zinc finger protein 331 ECA20: 28,318,795-
28,329,094 CNV [20]

CRISP3 Cysteine-rich secretory protein 2 ECA20: 48,708,574-
48,761,076 Candidate gene [50,60,61]

CRISP1 Cysteine rich secretory protein 1 ECA20: 48,856,838-
48,887,485 Candidate gene [50]

SPATA25 Spermatogenesis associated 25 ECA22: 35,747,531-
35,748,590 ROH [55]

ADAM20 ADAM metallopeptidase domain 20 ECA24: 16,539,958-
16,547,675 CNV [20]

SOHLH1 Spermatogenesis and oogenesis specific basic
helix-loop-helix 1

ECA25: 38,791,446-
38,797,028 CNV [49]

GLIPR1L1 GLIPR1 like 1 ECA28: 4,284,550-
4,323,990 Candidate gene [50]

CNV: Copy number variation; ROH: runs of homozygosity.

Overall, horses seem to be particularly affected by structural changes across the
genome. However, large scales studies associating fertility and genomic structural varia-
tions are still scarce in comparison with other domestic animals, such as pigs or cattle [22,62].
We, therefore, believe that the association between specific copy number variants and re-
production is an interesting field to explore, in which there are more genetic mechanisms
associated with fertility traits in horses to be unveiled.

5. Inbreeding, Molecular Homozygosity and Reproduction in Horses

Inbreeding is the reduction in genetic variability in a particular individual or popu-
lation driven by the mating of related individuals. Their phenotypic effect is a decrease
in biological fitness, known as inbreeding depression. From a genetic point of view, in-
breeding increases the homozygosity of the individuals (and populations) triggering the
phenotypic expression of recessive deleterious mutations [63]. By this reason, it has also
been pointed out as one of the most important causes of reduced fertility in wildlife [64], as
well as livestock populations [65,66]. In horses, inbreeding rates are normally higher in
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comparison with other livestock species for several reasons, such as the existence of breeds
with very small effective population sizes [67,68] or the development of breeding schemes
focused mainly on morphological traits [69] or athletic performance [70,71], or the lack of
genetic control of mating [72].

During the last 10 years, different approaches and methodologies have been devel-
oped to analyze the effect of inbreeding at the genomic level. Of these, the most important
approach employed has been the detection of large homozygous genomic regions known
as runs of homozygosity (ROH). The use of these techniques, originally developed for
studying the genomic basis of diseases in humans [73], has rapidly spread to livestock
animals due to the increased accuracy and reliability of the inbreeding estimations pro-
vided [74,75]. Besides, this methodology has allowed us to determine genomic regions at
the population level, as well as metabolic pathways associated with individuals sharing
common phenotypes, and is viable even in traits with unknown, complex genetic architec-
tures, such as those related to reproduction and fertility [76]. However, despite the proven
link between inbreeding and reproduction in livestock species, the ROH studies focused
on fertility traits were performed in horses.

To our knowledge, the first report assessing molecular homozygosity and reproductive
parameters in stallions was published in 2003, although no significant correlations were
found [77]. However, it was performed using information from 11 STR markers, thus
reducing the possibility of finding significant associations. Twelve years later, Metzger,
et al. [55] reported the first study based on the detection of ROH regions in six selectively-
bred and non-bred horse breeds, in which a significant increase of inbreeding was detected
in the genomic regions comprising 139 genes. Among these, two regions located on
ECA22 and ECA8 included SPATA25 and YES1 genes (Table 4), which were associated with
obstructive azoospermia and self-defensive mechanisms in spermatocytes, respectively.
Similarly, a region located on ECA3 included FRAS1 (Table 3), which had previously been
associated with impaired embryonic development of internal organs in mice. Another
ROH-enriched region located on ECA28 (14,656,676–14,778,472) was also found to include
the KIT ligand gene (KITLG) (Table 3), associated with gametogenesis and embryonic
development in humans and mice. This gene has been associated with the dominant white
coat color locus (W) which produces lethal disorders in the very early stages of gestation
(W/W-genotype) [58], thus affecting fertility by indirect pathways. Similarly, recently,
Velie, et al. [78] identified a negative effect of inbreeding on ECA1 quantitative trait loci
(QTL) in a large population of Norwegian-Swedish Coldblooded trotters. However, the
same region was previously reported by Gottschalk et al. [50] in association with the
number of motile sperm, suggesting that the reduction in fertility from inbreeding could
be partially mediated by a reduction in sperm quality (Table 4). This is in agreement with
our preliminary results, in which we detected a reduction in total and progressive motility
in 94 Pura Raza Español (PRE) stallions triggered by an increase of inbreeding levels
(FROH) beyond a certain threshold [9]. In addition, we recently reported the first negative
association between SNP-based inbreeding values (FROH) and the foaling number expected
breeding value (EBVFN) in 243 PRE mares [79]. However, our results also showed that the
increase in ECAX homozygosity (FROHX) was even more closely associated with a reduction
in the EBVFN than the homozygosity observed in the rest of the genome. All these studies
point to the existence of specific pathways in which the decreased intra-loci variability of
specific genes could be a partial cause of decreased fertility in horses. However, further
validations are still needed.

Using a similar approach, two recent studies have also given an interesting overview
of an indirect pathway by which inbreeding could affect fertility in horses. In 2019, Or-
lando and Librado [80] reported an increased load of deleterious mutations in horses with
increased inbreeding levels. Those mutations were associated with cerebellar abiotrophy
(ECA2), hydrocephalus (ECA1), and congenital liver fibrosis (ECA20), among other dis-
orders. Similarly, Todd, et al. [57] identified a lethal embryonic haplotype in the LY49B
gene on ECA6 which also showed high frequencies of heterozygotes in thoroughbreds,
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Norwegian-Swedish Coldblooded Trotters and Swedish Warmbloods (Table 3). Both
studies indicate, from a genomic point of view, the importance of the partial dominance
hypothesis [81], in which an increase in the expression of deleterious recessive alleles
due to increased inbreeding could trigger a reduction in fertility by increasing embryonic
lethality. These findings also are supported by the fact that the usual breeding practices
employed in horses do not take into account the fertility of the individuals, thus favoring
the permanency of deleterious genes and reducing the inbreeding purge over time [82].

Finally, two recent studies were recently published using a FROH-based approach
in combination with the detection of selection sweeps detecting candidate genes related
to fertility. In the first of these, Ablondi, et al. [56] analyzed the outcome of selective
pressures acting on 382 horses bred for different purposes in a short evolutionary time.
The authors detected distinctive genomic footprints among the groups, some of which
were related to genes with a proven reproductive effect, such as the ZPBP gene on ECA4
(Table 3), which has recently been related to sexual development in cattle [83]. Similarly,
Gurgul, et al. [54] detected several genes involved in the fertility of mares which were
differentially affected among breeds, including processes related to oocyte maturation
(PRKACA, ANAPC5, ANAPC7), oocyte meiosis (ANAPC5, ANAPC7, ADCY1) and ovarian
steroidogenesis (ADCY1) (Table 2). Despite the fact that the results obtained in both
cases were not validated, the detection of candidate genes related to fertility traits showing
differences among populations, together with combined approaches, could be an interesting
alternative to explore in the future.

Overall, the existing reports strongly suggest the existence of a negative effect pro-
duced by increased homozygosity in certain regions of the genome on reproductive traits
in mares and stallions. However, the information available is still scarce, particularly
in mares, in comparison with other livestock populations. Therefore, genomic-based in-
breeding studies are undoubtedly an interesting field to explore further to achieve a better
understanding of the genomic architecture of horse fertility traits.

6. Association Studies and Fertility in Horses

Genomic association studies are a fundamental tool to detect the genes and mecha-
nisms involved in the regulation of a specific trait or biological process [84]. They aim to
associate a certain allelic combination of a single locus or group of loci with a percentage of
the variation observed in the respective phenotypes. However, they are based on previous
findings to determine which gene or region should be tested against a particular phenotype.
In contrast, genome-wide association studies (GWAS) [13] are based upon the principle
of non-random association between alleles at different loci (linkage disequilibrium) and a
particular phenotype at the population level and, therefore, could be used to scan the entire
genome in the search of causative variants. This technique has been successfully employed
to detect candidate genes associated with fertility traits in several livestock species, such as
cattle [85] or sheep [86]. However, their use in horses has been delayed, probably until the
development of high-density SNP genotyping arrays based on accurate reference genomes,
which could provide a certain degree of reliability in the candidate genes detected.

In stallions, one of the first associations between a candidate and fertility (CRISP3)
(Table 4) was described nearly 20 years ago [60], and was further validated with proven
certainty by the same group five years later [61]. Thereafter, more than 60 candidate genes
have been described in horses, mostly related to stallion fertility, including SPATA1, INHBA,
ACE, SP17, FSHB, PRLR [87–90], PLCz1 [51], and FKBP6 [52,59] (Table 5).
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Table 5. Genes related to fertility trait in equines.

Gene Name Position Approach Reference

GJA4 Gap junction protein alpha 4 ECA2:
22,443,340-22,444,341 Candidate gene [91]

CXCL2 Chemokine (C-X-C motif) ligand 1 (melanoma
growth stimulating activity, alpha)

ECA3:
63,470,014-63,586,176 Candidate gene [91]

INHBA Inhibin subunit beta A ECA4:
12,760,757-12,808,658 Candidate gene [90]

CFTR CF transmembrane conductance regulator ECA4:
74,741,421-74,918,780 Candidate gene [53]

PTGS2 Prostaglandin-endoperoxide synthase 2 ECA5:
20,490,127-20,497,264 Candidate gene [91]

S100A8 S100 calcium binding protein A8 ECA5:
40,744,248-40,744,667 Candidate gene [91]

S100A9 S100 calcium binding protein A9 ECA5:
40,778,743-40,821,668 Candidate gene [91]

OVGP1 Oviductal glycoprotein 1 ECA5:53,508,181-
53,522,618 Candidate gene [53]

SPATA1 Spermatogenesis associated 1 ECA5:
76,122,099-76,165,463 Candidate gene [87]

PTGER3 Prostaglandin E receptor 3 ECA5:
87,780,622-87,951,028 Candidate gene [91]

PLCz1 Phospholipase C zeta 1 ECA6:
46,812,109-46,852,694 Candidate gene [51]

RETN Resistin ECA7:
5,460,957-5,462,512 Candidate gene [91]

MMP1 Matrix metallopeptidase 1 ECA7:
13,098,650-13,176,364 Candidate gene [91]

SP17 Sperm autoantigenic protein 17 ECA7:
34,254,555-34,264,346 Candidate gene [88]

RLN Relaxin 3 RLN 3 ECA7:
46,105,165-46,106,720 Candidate gene [91]

FSHB Follicle stimulating hormone beta subunit ECA7:
98,422,248-98,424,267 Candidate gene [88]

FBXO43 F-box protein 43 ECA9:45,973,733-
45,985,463 Candidate gene [53]

ACE Angiotensin I converting enzyme ECA11:
15,802,359-15,822,526 Candidate gene [88]

FKBP6 FKBP prolyl isomerase 6 ECA13:
11,350,401-11,378,073 Candidate gene [52,59]

PKD1 Polycystin 1, transient receptor potential channel
interacting

ECA13:
41,880,905-41,926,116 Candidate gene [53]

FOXP1 Forkhead box P1 ECA16:
20,353,146-20,717,328 Candidate gene [53]

TCP11 T-complex 11 ECA20:
36,147,583-36,279,044 Candidate gene [53]

TSSK6 Testis specific serine kinase ECA21:
4,554,495-4,555,316 Candidate gene [53]
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Table 5. Cont.

Gene Name Position Approach Reference

PRLR Prolactin receptor ECA21:
31,054,801-31,107,331 Candidate gene [89]

P53 P53 and DNA damage regulated 1 ECA22:
23,560,441-23,566,500 Candidate gene [92]

PI3 Peptidase inhibitor 3 ECA22:
35,155,086-35,157,165 Candidate gene [91]

NOTCH1 Notch receptor 1 ECA25:
38,056,617-38,104,337 Candidate gene [53]

APOBEC3Z1B Apolipoprotein B mRNA-editing enzyme-catalytic
polypeptide-like 3Z1b

ECA28:
37,062,159-37,065,847 Candidate gene [91]

However, it was not until 5 years ago that Schrimpf et al. [53] performed the only
genome-wide scanning study in horses, in which several candidate genes associated with
fertility traits in stallions were reported (Table 5). Among these, the most important
finding was an association between an SNP and NOTCH1 (g.37,453,246G > C) which
produced a significant effect mediated by disruption on a splicing site. However, the
same study reported 7 additional loci with harboring variants with a deleterious effect
on stallion fertility, including CFTR, OVGP1, FBXO43, TSSK6, PKD1, FOXP1, and TCP11
genes. Nevertheless, all these results should be taken with caution, since the analysis
was only performed in Hannoverian horses; therefore, their validation on other breeds or
equine populations is still pendant.

In mares, de Leon, et al. [92], reported an association between variants on the P53 gene
and abortion after analyzing 105 Thoroughbred individuals, demonstrating the existence of
candidate genes with a proven relationship with reproductive efficiency in mares (Table 5).
More recently, El-Sheikh Ali, et al. [91] reported 12 genes differentially expressed in mares
with placentitis (Table 5). Even though both cases were focused on reproductive diseases,
and the latter was performed using a transcriptomic approach, those results suggest that
differences in non-infectious abortions could be partially mediated by genetic mutations.
Meanwhile, GWAS studies performed on reproductive traits are still lacking in mares.
While there could be several causes for this lack of experimental results, it is highly likely
that the difficulty in obtaining large-scale, accurate phenotypic datasets and the difficulty of
modeling the environmental effects on such traits in the species are the most important [5].

Overall, the number of single association or GWAS studies focused on horse repro-
duction is still extremely small in comparison with other livestock species. This situation
gives us an interesting opportunity to determine more accurately the genetic basis of horse
reproduction, which is of great importance in a species which is well-known for reduced
fertility. However, we believe that the lack of phenotype traits is still a major problem to be
solved before large-scale dissemination of association studies in horses is possible.

7. Conclusions and New Approaches for Studying the Genes Involved in Equine
Reproductive Problems

Horse genomics is currently undergoing an exponential expansion, not least due to the
adaptation of new genomic methodologies to the species, the existence of a new, accurate
reference genome [93], and the exponential increase in the number of equines which have
been genotyped [94]. It is, therefore, highly likely that our knowledge of the reproductive
architecture of horses will grow considerably over the next few years. However, large-scale
datasets of reproductive phenotypes are still scarce in horses, probably due to the lack
of availability of reliable reproductive phenotypes (particularly in mares). Therefore, the
development of new phenotypes to measure reproductive fitness more objectively and
their systematic use by breeder associations are essential to allow a more in-depth study of
the reproductive function in horses.
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In addition, the search for candidate genes is a highly promising methodology to
obtain a better understanding of the processes involved in horse fertility. They not onlycan
help to elucidate which physiological functions could be affected by a specific genotype,
but also to predict which genotypes could be more affected by environmental challenges,
and they can be integrated into breeding programs to detect, even at very young ages, the
potential fertility (increased, normal, or decreased) of a given mare or stallion. In addition,
the lack of consistency observed in the candidate genes associated with fertility detected
in different breeds or populations of horses, (most of them detected by a single study; see
Tables 1–5) will be only reduced with an increase in the volume of evidence gathered. In
this sense, only 11 genes reviewed in this manuscript were detected by two or more studies,
and only 5 were detected using more than one approach. It has recently been demonstrated
that combined genomic approaches in the same study can increase accuracy and reliability
in detecting candidate genes [95,96]. However, no combined studies have yet been reported
in horses. Such combined approaches would constitute the best approach in our search for
a better, more reliable understanding of genetic effects on horse fertility.
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