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Abstract. Linear feature extraction is commonly applied in an all-at-
once way, meaning that a single trasformation is used for all the data
regardless of the classes. Very good results can be achieved with this ap-
proach when the classification problem involves just a few classes. Nev-
ertheless, when the number of classes grows is often difficult to find a low
dimensional subspace while preserving the error rates, due to overlapping
between the different populations. In this paper we propose an alterna-
tive method based on a collection of transformations, each involving two
of the classes in the problem. Each transformation in the collection is
estimated using an approximation to the information discriminant anal-
ysis, which is found to be equivalent to sufficient dimension reduction
for heteroscedastic Gaussian data. A regularized version of the objective
function is also introduced, allowing for simultaneous variable selection.
In this way, each reduction implies only a subset of the original variables.
A probabilistic model is build by means of a simple latent variable, so
that classification is carried out using standard Bayes decision rule. Sev-
eral real data sets are used to compare the performance of the proposed
method against similar approaches based on ensembles of binary classi-
fiers.

1 Introduction

Linear feature extraction/dimension reduction is often included in statistical
pattern recognition to lower the size of the models to estimate [1, 2]. In many
cases with finite sample data this allows for estimates with smaller variance,
which translates into better generalization capability of the classifier. In other
cases, the recognition rates are not improved but computations take place in a
much smaller feature space, a fact that can be of technological significance.

Well known methods for linear dimension reduction are principal component
analysis (PCA) [3] and Fisher’s linear discriminant analysis (LDA) [4]. PCA
actually does not take into account class information and thus can be highly
suboptimal for classification tasks. LDA is supervised by class information, but
from a theoretical point of view it is optimal only when class-conditional data
is normally distributed with constant covariance matrices across the classes [5].
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A bunch of methods have been proposed to deal with the heteroscedastic
case. The most theoretically grounded alternatives are those that care about
the amount of discriminant information available in the data before and af-
ter the transformation is applied. Information discriminant analysis (IDA) [6]
aims at finding a projetion that peserves mutual information between the fea-
tures and the labels. Despite it is stated in general terms, the proposed working
method actually assumes that observations are normally distributed given the
class. Aproximate information discriminant analysis (AIDA) is aimed to approx-
imate IDA but using matrix eigenanalysis instead of the numerical optimization
required in IDA [7]. Other methods measure the separability of the classes in
terms of the Chernoff distance, whether in the original space [8] or in the reduced
feature subspace [9].

A parallel line of research developed mostly from the statistics community is
sufficient dimension reduction (SDR) [10, 11]. The goal here is to find a transfor-
mation of the explanatory variables X that retains all the available information
about a response Y for a particular objective. For classification tasks, Y is given
just by the labels and the transformation is shown to preserve Bayes error [12].
When the observations from each class are normally distributed, an optimal es-
timator of the reduction can be found using likelihood theory and it is known as
likelihood acquired directions (LAD) [13]. This objective function, nevertheless,
comes down to be equivalent to IDA [14].

The standard practice with linear feature extraction methods is to apply
an all-at-once transformation, meaning that the data is projected into a lower
dimensional subspace using the same transformation matrix regardless of the
class. When there are many classes involved in the problem, low dimensional
projections often reduce the accuracy of the classifier significantly [15, 16]. The
reason is that the classes overlap in the reduced subspace. In such cases, in order
to preserve the error rates is often necessary to retain a number of directions
similar to the original dimensionality of the data. The effect is more evident in
small sample problems, when the estimates of covariance matrices are poor.

To overcome this limitation we propose a pairwise linear dimension reduc-
tion method. Instead of a single transformation, a collection of transformations
is estimated, each one relating two of the classes in the problem. The method is
stated under the framework of sufficient reductions, so that a probabilistic model
and a likelihood are available. We also introduce a penalized version of AIDA
which adds variable selection to the feature extraction process, so that linear
combinations in the reduced subspace include only a subset of active variables
from the original predictors. Keeping only the relevant variables helps to re-
duce computations in the classification stage and to identify the most important
information to discriminate between pairs of classes.

The work closest to this contribution is presented in [16]. Authors also explore
pairwise dimension reduction, but their method does not allow for a probabilistic
model of the data. Beacuse of this, likelihood computation is not available, and
voting strategies are build to obtain the final label assignment after testing the
data with each of the binary classifiers. We compare our results with theirs along
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the paper. About adding variable selection in the context of sufficient dimension
reduction, we are not aware of previous work targetted to heteroscedasticity.
For homoscedastic conditions, available procedures are available from [17, 18].
Between them, only [18] preserve invariance properties of the nonregularized
methods.

The paper is organized as follows. In Section 2 we start by reviewing the
basics of sufficient dimension reduction and presenting the general idea of the
proposed pairwise transformation method. We then introduce the penalized form
of AIDA that we finally use in estimation. In Section 3 we use real datasets from
the UCI repository to illustrate the performance of the method compared to
all-at-once projections and other pairwise strategies from the literature. Finally,
as the penalized estimator of the reduction is itself a contribution, we also carry
out a simulation study to assess the accuracy of the variable selection procedure.

2 Pairwise subspace projections under sufficiency

We start this section by briefly reviewing the basics of sufficient dimension re-
duction. Then we describe the general idea behind the proposed pairwise scheme
for linear feature extraction and the estimation procedure. Special emphasis is
given to the introduction of a regularized version of approximate information
discriminant analysis that allows for simultaneous variable selection.

2.1 Basics of sufficient dimension reduction

Let X ∈ Rp be a random vector of features and let Y indicate the class labels.
The reduction βTX is said to be sufficient if and only if [11]

F (X|βTX, Y ) ∼ F (X|βTX); (1)

where F (·) and F (·|·) denote distribution and conditional distribution function,
respectively, and ∼ stands for asymptotic equivalence. In simple words, the above
definition tells that βTX has all of the information about Y that is available in
X.

Sufficient reductions preserve Bayes error [12] and allow for a deeper theo-
retical understanding of the estimators. Though the methodoly is quite general
and does not require a model for the data, throughtout this paper we will as-
sume that X|(Y = y) is normally distributed with density N (µy,∆y), where
µy = E(X|Y = y) and ∆y = Var(X|Y = y). Under this model, a likelihood
solution for the sufficient reduction is given in [13]. The corresponding objective
function is

β̂ = arg max
βTβ=I

{
log |βT Σ̂β| −

∑
y

fy log |βT ∆̂yβ|

}
, (2)

where Σ̂ is the sample marginal covariance matrix and fy is the sample estimate
of the prior probability of class y. Solution of (2) is known as the LAD estimator
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and requires numerical optimization on the Grassmann manifold [19]. Under
the heteroscedastic Gaussian model, LAD is shown to be the minimal sufficient
reduction [13]. Because it preserves Bayes error, we can build a classifier that uses

p(β̂
T
X|Y = y)p(y) instead of the full model p(X|Y = y)p(y) for the decision

rule.

2.2 Proposed method for pairwise linear dimension reduction

To derive our method, we assume a Gaussian mixture model for the class-
conditional data and set a simple latent variable model. Assume there are h
classes in the discrimination problem and let G be the latent variable. Each
state G = g indicates one out of

(
h
2

)
groups involving just two classes from

where the observaton comes. As we do not have certainty about the specific
group for a given data point X = x, the likelihood reads

p(x|Y = y) =
∑
g

p(x|Y = y,G = g)p(G = g|Y = y).

Provided βTg X is a sufficient dimension reduction for X|(Y,G = g), we can
rewrite

p(x|Y = y) =
∑
g

p(βTg x|Y = y,G = g)p(G = g|Y = y).

Given a new observation x to be classified, we then assign the class label accord-
ing to Bayes rule

ŷ = arg max
j

p(Y = j|x),

= arg max
j

p(Y = j)p(x|Y = j),

= arg max
j

{
p(Y = j)

∑
g

p(βTg x|Y = j,G = g)p(G = g|Y = j)

}
.

Thus, to build the classifier we form
(
h
2

)
groups from the training set, each

one containing the observations from two classes only. Using these datasets, we
estimate the collection of reductions {βg} using LAD. When all the transfor-
mations have been obtained, we can estimate the model parameters for each
of the h(h − 1) normal densities in the model. Then, given x we can compute
p(βTg x|Y = j,G = g) for j = 1, 2, . . . , h and g = 1, 2, . . . ,

(
h
2

)
. To estimate

p(G = g|Y = y) we first use Bayes rule

p(G = g|Y = j) =
p(Y = j|G = g)p(G = g)∑
k p(Y = j|G = k)p(G = k)

.

The priors p(G = g) are estimated from the whole training sample, whereas
p(Y = y|G = g) are estimated from the training subset corresponding to each
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group. With the estimates obtained in the training phase, classification of a new
observation x is carried out using:

ŷ = arg max
j

∑
g

p(βTg x|Y = y,G = g)p(Y = y|G = g)p(G = g).

One can argue that computing all the projections {βTi X} can be computationally
too expensive. In the next subsections we propose alternatives to reduce the
computations and to include variable selection into the reduction process.

2.3 Dimension reduction as an eigenvalue problem

The LAD estimator, albeit its optimal properties under conditional normality,
requieres numerical optimization to compute the projection. In addition, as the
likelihood function is not convex, it requires the computation of a suitable initial
estimate to start the iterative process. Despite the final estimate is found to
be stable under different initializations provided they are consistent estimators
[13], it is clear that the total amount of time needed to get the projection is
considerably larger than when using methods based in eigendecomposition of
a symmetric matrix. Thus, one way to reduce the computational cost at the
training stage is to use a simple estimation for the reduction that does not require
numerical optimization. In this sense, many dimension reduction methods have
been proposed where the projection is obtained from eigenanalysis of a suitable
matrix. Among them, AIDA can can be thought of as a quadratic approximation
to LAD when it is stated in terms of EY (∆y)−1/2X instead of the original
random vectors X. The objective function is

β̂ = arg max
βTβ=I

tr(βTSAIDAβ), (3)

with

SAIDA = log(Σ̂)−
∑
y

fy log(∆y).

Though it is not the optimal estimator, it is found to perform remarkably well
in most situations with real data [14]. Notice that replacing LAD with AIDA
reduces the computation time at the training stage, but there are no gains at
the classification stage.

2.4 Variable selection within groups

In common linear dimension reduction methods, all the original coordinates in
X are included in the linear combinations. Nevertheless, because we are deal-
ing with transformations involving two classes only, we can expect some of the
original variables to be irrelevant for a particular transformation, although im-
portant for other ones. Adding variable selection to the dimension reduction
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process helps to identify the subset of the predictors that is relevant to discrimi-
nate between classes in a specific group. The resulting βgs have only a subset of
active coordinates, thus computations at the classification stage are also reduced.

For a given estimation method, variable selection is commonly achieved pe-
nalizing the original objective function. This regularization is a challenging prob-
lem for the LAD estimator, since the likelihood function is not convex. Never-
theless, the trace operator in AIDA is convex and therefore it is a more friendly
alternative to penalize terms for variable selection. In addition, it is desirable to
preserve the invariance properties of the original estimator [7]. It must be noticed
that this goal cannot be achieved using common regularization methods based
on the `1 norm as in LASSO [20]. To account for this invariance, the method
we use here is an extension to heteroscedastic data of the method introduced in
[18]. As a first step, it is showed in [17] that many SDR methods can be cast in
the form of a generalized eigenvalue problem

Mnδni = λiNnδni. (4)

In these expressions, the subscript n refers to the sample version of the quantity.
Under certain conditions, the set (δn1δn2 . . . δnd), corresponding to the d largest
eigenvalues λi form a basis for the smallest reduction subspace. In [18], authors
introduced a coordinate-independent method that finds a sparse sufficient dimen-
sion reduction for problems that can be written in this way. Their development,
however, extents only to homoscedastic data. It is easy to show that we can
obtain a sparse estimator in this framework from AIDA. Let ∆n =

∑
y
ny

n ∆y

with (ny/n) the fraction of observations from population y in the sample. Set

Nn = ∆n and Mn = ∆1/2
n SAIDA∆

1/2
n and let zi = ∆1/2

n δni. Then

∆1/2
n SAIDA∆

1/2
n δni = λi∆nδni

∆1/2
n SAIDAzi = λi∆

1/2
n zi

Premultiplying both sides with ∆−1/2n we get SAIDAzi = λizi. Thus, the zi are
eigenvectors of SAIDA and the basis matrix for the smallest reduction subspace is
∆−1/2n (z1, z2, . . . , zd). This result allows us to use results from [18] to achive joint
variable selection and dimension reduction by optimizing the objective function

β̂ = arg min
β
{− tr(βTSAIDAβ) + ρ(∆−1/2β)},

with

ρ(v1,v2, . . . ,vd) =

p∑
i=1

θi||vi||2.

This form of regularization is known as group lasso [21] Implementation uses ac-

tually a local quadratic approximation for ρ(∆−1/2β). The procedure is iterative.

Let β̂
k

i be the i-th row of β̂ at iteration k and let Hk = diag( θ1

||β̂
k

1 ||
, . . . ,

θp

||β̂
k

p||
).
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At each iteration we solve

Γ̂ = arg min
Γ TΓ=I

Γ T (−N−1/2n MnN−1/2n +
1

2
N−1/2n HkN−1/2n )Γ (5)

and get β̂
k+1

= N
−1/2
n Γ k. If ||β̂

k

i || < ε, the i-th variable of the original dataset
is removed and procedure is repeated until convergence. We will refer to this
method as pairwise penalized approximate information discriminant analysis
(PPAIDA).

3 Experiments

3.1 Penalized version vs all predictors

To illustrate the performance of the method proposed in Section 2, we take as
example the classification of the letter recognition dataset from the UCI machine
learning repository. 10-fold cross validation is used to compare the obtained error
rates using the penalized method versus those obtained from multiple projec-
tions without variable selection and from single-step projection using LAD. The
experiment was carried out using ε = 10−4, though it can be further tunned us-
ing cross validation. Obtained results are shown in Figure 1. It can be seen that
the multiple-projection scheme consistently outperfoms the all-at-once transfor-
mation. Furthermore, the penalized version of the algortihm gives results almost
identical to the non-penalized version, which uses all the original variables to
form the linear combinations (note that curves overlap). This parameter can be
further tunned using cross validation. The right panel in the figure shows the
fraction of variables that are found active in the selection process, averaged over
all the estimated reductions. It is clearly seen that the fraction of retained vari-
ables increases with the dimension of the reduced subspace. Despite the figure
is for the pendigits dataset, the picture is quite descriptive of the general trend
with all the tested data sets.

3.2 Comparison with other pairwise heteroscedastic approaches

We now assess the performance of the proposed method for classification of sev-
eral real data sets taken from the UCI machine learning database. In particular,
we want to compare results with the scores reported in [16] which uses other
strategies for multiclass pairwise linear dimension reduction. There, final class
assignment is decided upon a voting strategy or through a decision tree. For a di-
rect comparison of results, we chose the same datasets:; Iris, Pendigits, Thyroid,
Wine and the Vowel recognition database. We also took a 10-fold cross-validation
design for the experiment and the dimension of βi is assumed to be the same
across i. Obtained results are shown in Table 1. SV stands for the simple voting
strategy in [16], WV for the wighted voting strategy, and DT for the decision
rule based on decision trees. The Iris, Thyroid and Wine data sets are standard
easy classification tasks comprising only three classes. In such settings, there is
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Fig. 1. Comparison of the error rates for classification of the letter recognition data
set obtained with multiple subspace projections using penalized estimators against: i)
multiple projections without variable selection; ii) single projection using LAD. The
right panel shows the average fraction of active variables selected as a function of the
dimension d of the retained feature subspace.

not much to be gained from the pairwise scheme. Even with that, it can be seen
that the proposed method does not degrade the performance of the all-at-once
transformation, which gets excellent results. The proposed method also achieves
slightly better error rates that ones reported in [16], though thay are of little
significance and can be due to variability in the cross validation procedure.

The vowel recognition and the pendigits datasets are of greater interest.
Results for the vowels recognition dataset show that obtained error rates are
smaller when using the multiple subspace projections approach. In this case, the
proposed method outperforms the pairwise methods proposed in [16], although
the best score occurs at a subspace that is larger (d = 6 vs d = 4). It is fair to
say, nevertheless, that even for the all-at-once projection approach, AIDA gets a
better score than the all-at-once version of the heteroscedastic methods used in
[16] (0.26 vs 0.30). Although this can have some influence on the results from the
pairwise methods, it seems clear from the overall experiment that the proposed
method performs at least as good as the existing pairwise alternatives which are
paired with more complex decision rules.

For the pendigits dataset, the lowest error rate achieved by all the methods
is the same (0.02). Nevertheless, this minimum occours at a smaller subspace for
PPAIDA. It is important to note that performance may be improved by allowing
different dimensions for the subspaces spanned by each βi. Such relaxation,
however, would require testing the most likely dimension for each pair of classes.

Results commented above show that that the proposed method obtains recog-
nition rates similar to those reported in [16]. Unlike those methods, PPAIDA
provides a probabilistic model for the data. This is an advantage when the re-
duction has to be embedded in likelihood-based approaches; in addition, it allows
for simple methods based on information criteria to make inference about the
dimensions of the reduced subspaces.
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Dataset AIDA PPAIDA SV WV DT
h p error d error d error d eror d error d

Iris 3 4 0.02 1 0.02 1 0.02 1 0.02 1 0.02 1
Thyroid 3 5 0.04 1 0.03 1 0.04 1 0.04 1 0.04 1
Wine 3 13 0 5 0 5 0.01 7 0.01 7 0.01 7
Vowel 11 10 0.26 6 0.21 6 0.29 4 0.28 4 0.28 4
Pendigits 10 16 0.02 15 0.02 10 0.02 15 0.02 15 0.02 15

Table 1. Performance of the proposed method compared to all-at-once AIDA and the
pairwise transformation methods proposed in [16]. Shown scores are the best average
error rate obtained with the corresponding method and the dimension d at which it
occurs. h is the number of classes in the problem and p the original dimension of the
data.

3.3 Assessment of the variable selection procedure

As the addition of variable selection to the dimension reduction task is a con-
tribution in its own right, it is fair to assess its performance more deeply. With
this aim, we carried out a simple simulation experiment to study the accuracy
of the procedure in choosing the right active variables. For simplicity we ran a
regression experiment with data generated according to

Y = 4a(βT1 X)2 + 0.75sin(βT2 X).

Notice that β = (β1β2) is a basis matrix for the smallest dimension reduction
subspace. The dimension of the data was set to p = 20 and the columns of β
were generated so that the first three rows were nonzero in α1, and the first
row and the last two were nonzero in β2 . All the other elements are null. The
number of actives variables is then five out of twenty. To assess the performance
of the selection procedure, we used the following measures proposed in [18]: r1,

the average fraction of nonzero rows in β̂ corresponding to relevant variables;
r2, the average fraction of zero rows in β̂ corresponding to nonrelevant variables;
r3, the average fraction of perfect variable selection. Obtained results over 200
replicates of the experiment are shown in Table 2. It can be seen that the method
does an excellent job in identifying the irrelevant variables (r2) and just misses
some relevant variables in a few times (r1). The fraction of times it distinguishes
perfectly between the actives and irrelevant variables is always equal or greater
than 94%.

4 Conclusions

We have presented a method for linear feature extraction based on a collection
of projections for pairs of classes. The method is motivated for the approach of
model-based sufficient dimension reductions, which allows to build a probabilis-
tic model for the data using a latent variable. Unlike previous multiple subspace
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measure a
1 3 5 7 9 11 13

r1 1 0.97 0.77 0.78 0.78 0.81 0.80
r2 0.98 0.98 1 1 1 1 1
r3 0.98 0.98 0.94 0.94 0.95 0.95 0.95

Table 2. Accuracy of the proposed method for joint variable selection and dimension
reduction.

projection approaches based on pairwise transformations, evaluation of a like-
lihood allows for class assignment using simple Bayes rule instead of voting
strategies or decision trees. As a by-product of this contribution, a regularized
version of AIDA have been derived, which allows for simultaneous dimension
reduction and variable selection preserving the equivariance property of AIDA.
Experiments with real data sets have shown that the proposed pairwise method
outperforms the all-at-once approach when the number of classes grows and that
its performance is at least as good as that from existing alternatives based on
pairwise linear dimension reduction.
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