Supporting Information

Chemical stability of mesoporous oxide thin film electrodes under electrochemical cycling: from dissolution to stabilization

Sebastián Alberti^{1,2}, Paula Y. Steinberg¹, Gustavo Giménez³, Heinz Amenitsch⁴, Gabriel Ybarra⁵, Omar Azzaroni², Paula C. Angelomé¹ and Galo J. A. A. Soler-Illia⁶

¹ Gerencia Química – Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, (1650) San Martín, Buenos Aires, Argentina
 ² Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Universidad Nacional de La Plata – CONICET, CC 16 Suc. 4 (1900) La Plata, Buenos

Aires, Argentina ³ Centro de Micro y Nanoelectrónica del Bicentenario, INTI-CMNB, Instituto Nacional de Tecnología Industrial, San Martín, Buenos Aires, Argentina

⁴ Institute for Inorganic Chemistry, Graz University of Technology, Stremayergasse 9/IV, 8010 Graz, Austria

⁵ Unidad Técnica Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, San Martín, Buenos Aires, Argentina

⁶ Instituto de Nanosistemas, UNSAM, CONICET Av. 25 de Mayo 1021, (1650) San Martín, Buenos Aires, Argentina

Thickness (nm) without cycling	0	Fe(CN) ₆ ³⁻ 10 h	Fe(CN) ₆ ³⁻ 24 h	Fe(CN) ₆ ³⁻ 48 h	Ru(NH ₃) ₆ ³⁺ 10 h	Ru(NH ₃) ₆ ³⁺ 24 h	Ru(NH ₃) ₆ ³⁺ 48 h	KCl 10 h	KCl 24h
SiO ₂	135 ± 7	146 ± 7	150 ± 8	53 ± 3	136 ± 7	152	40 ± 2	150 ± 8	99 ± 5
TiO ₂	251 ± 13						261 ± 13		
Thickness (nm)	0	Fe(CN) ₆ ³⁻	Fe(CN) ₆ ³⁻	Ru(NH ₃) ₆ ³⁺	$Ru(NH_3)_6^{3+}$	Ru(NH ₃) ₆ ³⁺ 7 h			
under		1 11	5 11	0.5 11	1 11	7 11			
under cycling SiO ₂	165 ± 8	140 ± 7		60 ± 3	20 ± 1				
under cycling SiO ₂ TiO ₂	165 ± 8 226 ± 11	140 ± 7	 197 ± 10	60 ± 3	20 ± 1	 211 ± 11			

Table S1 Film thicknesses as a function of time, obtained by ellipsometry, for the systems immersed in different solutions under and without electrochemical cycling.

Figure S1 Voltamograms of $Ru(NH_3)_6^{3+}$ adsorbed onto SiO₂ MTF measured in KCl solution without $Ru(NH_3)_6^{3+}$.

Figure S2 Peak current as a function of time for SiO_2 MTF obtained at 300 mV s⁻¹ in the presence of 1 mM Ru(NH₃)₆³⁺ and KCl 0.1 M (a) and 1 M (b).

Figure S3 (a) Pore and neck size distributions obtained by means of EEP for SiO₂ MTF as prepared (black) and after applying electrochemical cycling for 30 min in the presence of 1 mM Ru(NH₃)₆³⁺ (0.1 M KCl) (red), and for 80 min in the presence of 1 mM Fe(CN)₆³⁻ (0.1 M KCl) (green). (b) Appearance of the film after the experiments: the upper circle was the zone exposed to Ru(NH₃)₆³⁺ and the lower circle was the zone exposed to Fe(CN)₆³⁻.

Figure S4 Voltammograms obtained at a scan rate of 300 mV s⁻¹ for bare ITO and for nonmesoporous SiO₂, at different times in the presence of $Ru(NH_3)_6^{3+}$.

Figure S5 (a) Pore and (b) neck size distributions obtained by means of EEP for TiO₂ MTF before and after 48 h immersion in 1 mM $Ru(NH_3)_6^{3+}$ (0.1 M KCl).

Figure S6 Peak current density as a function of time for TiO_2 MTF, obtained at 50 mV s⁻¹ in the presence of $Fe(CN)_6^{3-}$.

Figure S7 SEM image of $Si_{0.9}Zr_{0.1}O_2$ MOTF surface over gold electrode before (**a**) and after (**b**) electrochemical cycling in Ru(NH₃)₆³⁺ (0.1 M KCl) solution.