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decemmaculatus (Pisces: Poeciliidae)

Celeste es Ruiz de Arcaute1,2
& Natalia A. Ossana2,3

& Juan Manuel Pérez-Iglesias1,2 & Sonia Soloneski1,2 &

Marcelo L. Larramendy1,2

Received: 20 December 2018 /Accepted: 11 April 2019 /Published online: 17 May 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Pesticides might increase the production of reactive oxygen species (ROS). Dicamba (DIC) and 2,4-dichlorophenoxyacetic acid
(2,4-D) are auxinic herbicides commonly applied in agroecosystems to control unwanted weeds. We analysed the oxidative
damage exerted on the fishCnesterodon decemmaculatus by an acute exposure to DIC- and 2,4-D-based herbicides formulations
Banvel® and DMA®, respectively. The Endo III- and Fpg-modified alkaline comet assay was employed for detecting DNA
damage caused by oxidative stress, whereas enzymatic and non-enzymatic biomarkers such as the activities of catalase (CAT),
glutathione-S-transferase (GST), acetylcholinesterase (AChE), and glutathione content (GSH) were used to assess antioxidant
response to these two herbicides. At the DNA level, results demonstrate that both auxinic herbicides induce oxidative damage at
purines level. An increase on CATand GSTactivities were detected in 48 h- and 96 h-treated specimens with both auxinics. GSH
content decreased in fish exposed to DIC during 48 h and to 2,4-D after 96 h of exposure. Additionally, a diminished AChE
activity in specimens treated with DIC and 2,4-D was observed only after 96 h. Total protein content decreased in fish exposed to
both auxinics during 96 h. These results represent the first evaluation of oxidative damage related to DIC and 2,4-D exposure on a
fish species as the Neotropical freshwater teleost C. decemmaculatus.
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Introduction

The effectiveness of pesticides, together with their massive
use at a global scale, has rendered these chemicals a major
issue for inducing environmental pollution (Lazartigues et al.
2013). These xenobiotics eventually reach and pollute air, soil,
and water compartments, where herbicides represent an im-
portant fraction within the aquatic environmental stressors
(Liaud et al. 2016; Meffe and de Bustamante 2014). Among

the latter group are included dicamba (DIC, 3,6-dichloro-2-
methoxybenzoic acid) and 2,4-dichlorophenoxy acetic acid
(2,4-D), auxinic chemicals extensively employed to manage
pre- and post-emergent weeds (USEPA 2017). Furthermore,
these herbicides fall within the top ten agrochemicals
employed in Argentina (CASAFE 2017).

DIC is part of the benzoic acid chemical family (USEPA
2006) and 2,4-D belongs to the phenoxy alkanoic acid
family of herbicides (USEPA 2005). Several genotoxic
studies have been performed in different biotic matrices
to assess the genotoxic effects induced by both DIC and
2,4-D. Among them, induction of sister chromatid ex-
changes (SCEs) (Arias 2007; González et al. 2006;
Madriagal-Bujaidar et al. 2001), micronuclei (MNs)
(Ateeq et al. 2002; Farah et al. 2006; González et al.
2011; Ruiz de Arcaute et al. 2014b), and DNA strand
breaks by the comet assay (Ateeq et al. 2005; Bokán
et al. 2013; González et al. 2005, 2007; Martínez-Tabche
et al. 2004; Ruiz de Arcaute et al. 2014b; Sorensen et al.
2005). Furthermore, it has been demonstrated that 2,4-D
induced chromosomal aberrations (Adhikari and Graver
1988; Amer and Aly 2001; Farah et al. 2006).
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Environmental pollutants, including herbicides among
others, are known to cause oxidative damage in exposed
organisms to them by increasing the production of reactive
oxygen species (ROS) (Atamaniuk et al. 2013; Cadet et al.
2003). Organisms have enzymatic and non-enzymatic
mechanisms to balance the production and undesirable
effects of ROS (Lushchak 2011; Valavanidis et al. 2006).
Whether natural cellular pro-oxidants exceed the antioxi-
dants cellular production could result in oxidative stress
(Cooke et al. 2006; Valko et al. 2006). Additionally, ROS
could interact with macromolecules leading to lipid perox-
idation, enzyme inactivation, hormone oxidation and jeop-
ardize DNA (Cavalcante et al. 2008; Newman and
Clements 2008).

In the last decade, the usefulness of a battery of bio-
markers to detect and quantify pesticide-induced deleteri-
ous effects on target and non-target species is a well-
documented aspect in ecotoxicological investigations.
Among them, the comet assay is a frequent and recom-
mended test to detect DNA damage in different organisms,
including fish (Bony et al. 2010; Martins and Costa 2017).
The comet assay, either in its alkaline and neutral version,
detects several DNA lesions such as single- and double-
strand breaks as well as alkaline-labile sites (Dhawan and
Anderson 2017). Nevertheless, the addition of lesion-
specific endonucleases in the methodology will introduce
DNA breaks at the damaged bases these restriction en-
zymes identify, giving information, then, about the type
of lesion induced. Consequently, the modified comet assay
could be considered as a valuable and sensitive method to
estimate oxidative damage in genotoxicological evalua-
tions (Azqueta et al. 2017; Collins and Azqueta 2012;
Pérez-Iglesias et al. 2017). Briefly, after the lysis period
of the conventional comet assay methodology, a digestion
with lesion-specific endonucleases is included. Two exam-
ples of the aforementioned endonucleases commonly
employed are the formamidopyrimidine-DNA glycosylase
(Fpg) and endonuclease III (Endo III) (Collins 2004;
Collins et al. 1996). Fpg identifies and eliminates dam-
aged purines from DNA, e.g. 8-oxoguanine, Fapy-Gua,
Fapy-Ade, and to a lesser extent 8-oxoadenine. On the
other hand, Endo III transforms oxidized pyrimidines into
strand breaks.

The most studied enzymatic and non-enzymatic antioxi-
dant biomarkers include catalase (CAT), which reduces
H2O2 to H2O and O2, and the tripeptide reduced glutathione
(GSH), a non-enzymatic antioxidant chemical capable to pre-
vent damage to different cellular constituents caused by ROS.
GSHmay act as a cofactor for ROS-detoxifying enzymes such
as glutathione-dependent peroxidases or glutathione-S-
transferases (GST). It is oxidized in the reaction that metabo-
lizes H2O2 into H2O and thus it is converted to its oxidized
form, glutathione disulphide. Once oxidized, it can be reduced

back by GSH reductase, being the relation between GSH and
oxidized glutathione, a useful parameter in the evaluation of
oxidative stress (van der Oost et al. 2003). The GST catalyses
the union of GSH to toxic compounds, increasing their solu-
bility and facilitating their excretion.

Finally, another enzyme widely employed in studies
of neurotoxicity is acetylcholinesterase (AChE), which
catalyses the breakdown of acetylcholine in cholinergic
synapses. It is known that some pesticides inhibit AChE
causing over-stimulation of the post-synaptic membrane,
mechanisms that could conclude in cellular death
(Ferrari et al. 2007; Varó et al. 2008).

Cnesterodon decemmaculatus is an endemic fish member
of the family Poeciliidae with an extensive distribution in the
Neotropical region. This is a small ovoviviparous,
microomnivorous, benthic-pelagic, dimorphic, and nonmigra-
tory fish (maximum size, ≈ 25 and 45 mm for ♂♂ and ♀♀,
respectively), with a life span of 2–4 years, and it is often the
most abundant and sometimes the only species present in
small watercourses (Menni et al. 1996; WHO 2009). Due to
several intrinsic characteristics, such as its small size, wide
range of tolerance, ability to adjust to laboratory conditions,
in addition to the fact that it is a nonmigratory species fre-
quently present in high densities, it is commonly employed
in bioassays (Soloneski and Larramendy 2017 and references
therein). Recently, it has been employed to analyse pollutants-
induced toxicity among aquatic vertebrates, including the fol-
lowing: herbicides such as glyphosate, DIC, and 2,4-D; insec-
ticides such as pirimicarb and chlorpyrifos (Soloneski and
Larramendy 2017 and references therein); as well as heavy
metals such as chromium (Vera-Candioti et al. 2011), cadmi-
um (Baudou et al. 2017; Mastrángelo and Ferrari 2013), and
zinc (Gómez et al. 1998). The use of C. decemmaculatus in in
situ studies is also well documented, mostly in relation with
the salubrity of contaminated river waters (de la Torre et al.
2005; Menéndez-Helman et al. 2015; Ossana et al. 2016).

In previous studies, the alkaline comet assay revealed the
induction of primary DNA damage in erythrocytes of
C. decemmaculatus after exposure to the commercial herbi-
cide formulations of 57.7% DIC-based Banvel® and 58.4%
2,4-D-based DMA® (Ruiz de Arcaute et al. 2014b, 2016).
Despite these results, and to the best of our knowledge, oxi-
dative stress exerted by these auxinic herbicides on
C. decemmaculatus has not been analysed so far.

The aim of the present study was to assess oxidative
damage in DIC- and 2,4-D-commercial formulations-
exposed C. decemmaculatus fish through DNA damage
and oxidative stress biomarkers. Whereas for the evalua-
tion of oxidative DNA damage, the modified version of
comet assay using the endonucleases Endo III and Fpg
was performed; the CAT, GST, GSH, and AChE activities
were employed to assess the engagement of the antioxidant
response to these two xenobiotics.
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Materials and methods

Chemicals and quality control

Banvel® (57.71% DIC) and DMA® (58.4% 2,4-D) were pro-
vided by their manufacturers, Syngenta Agro S.A. (Buenos
Aires, Argentina) and Dow AgroSciences Argentina S.A.
(Buenos Aires, Argentina), respectively. Restriction enzymes
were acquired from New England Biolabs® Inc. (Ipswich,
MA). Hydrogen peroxide (H2O2) was purchased from
Merck KGaA (Darmstadt, Germany) and dimethyl sulfoxide
as well as the rest of the reactives employed were obtained
from Sigma Chemical Co. (St. Louis, MO). Concentration
analyses of both auxinic herbicides in the test solutions were
verified by QV Chem Laboratory (La Plata, Buenos Aires,
Argentina). Concentrations assessed throughout the study rep-
resent the nominal concentrations of the analyte present within
the formulations Banvel® and DMA®.

Test species

C. decemmaculatus were collected from a stream near La
Plata City (Buenos Aires Province, Argentina), in a non-
anthropized area located in a biosphere reserve away from
agricultural areas, and immediately transferred to the labora-
tory. Acclimatization was carried out in aquariums with
dechlorinated tap water (temperature, 25.0 ± 1 °C; pH, 7.5 ±
0.1; dissolved oxygen, 6.4 ± 0.3 mg/L; conductivity, 994 ±
8.5 μS/cm; hardness, 142 ± 21.5 mg CaCO3/L) and artificial
aeration for a minimum of 20 days to 16/8 h light/dark cycle.
Fish were fed with commercial fish food (TetraFin®,
TetraWerke, Melle, Germany).

Experimental design

Specimens were exposed in vivo for 48 and 96 h to a
concentration equivalent to 25% of the LC5096h of each
commercial formulation Banvel® and DMA®. The
LC5096h for both herbicides were reported previously
(Ruiz de Arcaute et al. 2014b, 2016). All experimental
points were carried out employing ten individuals in a 1-
L glass aquarium and exposed for 48 and 96 h to a con-
centration of 410 mg/L DIC- or 252 mg/L 2,4-D-based
commercial formulations Banvel® and DMA®, respective-
ly. During the experiments, herbicide solutions were
renewed daily. No food supply was provided during the
experiments. Negative control (dechlorinated tap water)
was performed in simultaneous with DIC- and 2,4-D-ex-
posed fish. After 48 and 96 h of treatment, fish were anaes-
thetized by immersion in ice water (Ackerman et al. 2005;
Summerfelt and Smith 1990) and blood samples were ob-
tained for the alkaline SCGE assay following recommen-
dations previously reported (Ruiz de Arcaute et al. 2014b,

2016; Vera-Candioti et al. 2013). For positive control, after
solidification of the agarose layers and before lysis, slides
were treated with 50 μM H2O2 (4 °C, 5 min). Afterwards,
fish were subsectioned, and the body midsections—from
the operculum up to the cloaca—corresponding to the vis-
ceral tissues were stored in freezing conditions (− 80 °C)
for antioxidant biomarker determination (Menéndez-
Helman et al. 2012; Nunes et al. 2005; Varó et al. 2008).
All experiments were performed in triplicate and ran
simultaneously.

Endonuclease-modified alkaline comet assay

The alkaline endonuclease-modified comet assay was per-
formed as reported elsewhere (Collins et al. 1996;
Guilherme et al. 2012; Soloneski et al. 2017) with adjust-
ments previously published for other small aquatic verte-
brate species (Pérez-Iglesias et al. 2017). Following
Collins (2004) and Pérez-Iglesias et al. (2017), slides were
incubated at 37 °C during 45 or 30 min with 50 μL of
Endo III (0.5 U) or Fpg (0.13 U), respectively, immediate-
ly after the lysis period. After the endonuclease incubation
period, samples were processed according to the standard
comet assay method. In order to classified damage level,
nucleoids were ranked into five categories (0–I, undam-
aged nucleoids; II–IV, damaged nucleoids) following pre-
vious suggestions (Çavaş and Könen 2007). Results for
each treatment group are expressed as the mean number
of damaged nucleoids per 100 cells analysed. The genetic
damage index (GDI) was estimated as suggested by
Pitarque et al. (1999).

Antioxidant biomarkers determination

Body midsection tissues from each fish employed in the com-
et assay experiments were homogenized with a glass/teflon
homogenizer on ice at 3000 rpm and 20 strokes. The resulting
homogenate was mixed in a 1:8 w/v proportion with buffer
(0.1MNaH2PO4, 0.15MKCl, 1 mMEDTA, 1 mMDTT, and
10% v/v glycerol, pH 8) in order to obtain a post-
mitochondrial supernatant (PMS). For samples committed to
determination of AChE activity, PMS was prepared from a 1/
20 tissue w/v at pH 8.0. PMS final homogenate was centri-
fuged at 10,000×g (10 min, 4 °C). The resulting supernatant
was employed for biomarker measurements.

CAT (EC1.11.1.6) activity was measured spectrophotomet-
rically at 240 nm for 60 s (25 °C) according to the technique
proposed by Baudhuin et al. (1964). Ten to 20 μL of PMS
were mixed with 0.05 M NaH2PO4 buffer (pH 7.2) and
17.8 mM H2O2 in a final volume of 1.5 mL. Results were
expressed as micromole H2O2 consumed per minute milli-
gram protein.

Environ Sci Pollut Res (2019) 26:20485–20498 20487



GST (EC2.5.1.18) activity was measured according to the
method proposed by Habig et al. (1974) at 340 nm (25 °C)
during a period of 2 min. In a final volume of 1.3 mL, 10 μL
PMS was mixed with 0.1 M NaH2PO4 buffer (pH 6.5),
10 mM GSH, and 20 mM 1-chloro-2,4-dinitrobenzene
(CDNB). GST activity was expressed as micromole CDNB
conjugate formed per minute milligram protein.

GSH content was determined following the method-
ology of Ellman (1959). PMS and 10% trichloroacetic
acid (TCA) were mixed in the same proportion and then
centrifuged at 10,000×g for 10 min (4 °C). GSH esti-
mation was carried out using 100 μL of the resulting
supernatant and 1 mL DTNB. Results were obtained at
412 nm for 15 min (25 °C) against a GSH standard
curve. Results were express in terms of acid-soluble
thiols (AST) as micromole of soluble thiols per gram
of tissue.

AChE (E.C.3.1.1.7) determination was performed follow-
ing the methodology described by Ellman et al. (1961) at
412 nm at 8 s intervals, during 2 min. The mixture comprised
10 μL homogenate, 3 mL of 0.1 M K2HPO4 buffer (pH 8),
100μL of 5,5-dithiobis (2-nitrobenzoic acid) solution (10mM
DTNB) and 10–25 μL substrate (0.075 M acetylthiocholine
iodide). For enzyme measurements, the substrate
acetylthiocholine iodide was employed with an extinction co-
efficient of 13.6 mM/cm. Enzyme activity was expressed as
nanomole of substrate hydrolysed per minute milligram
protein.

Tissue protein (Pr) content was determined as described by
Lowry et al. (1951) employing bovine serum albumin as
standard.

All measurements of enzymatic and non-enzymatic bio-
markers were made on the basis of average percentage nor-
malized values. Enzymatic activities were calculated in terms
of protein content of the sample and expressed as mean values
± standard error of the mean. All measurements were per-
formed in triplicate for each sample.

Statistical analysis

For results of the modified comet assay analysis and antioxi-
dant biomarkers, a one-way ANOVAwith Dunnett’s test was
performed in order to compare the effects of the treatments
and controls on each group (Zar 2010). ANOVA assumptions
were corroborated with Barlett’s test for homogeneity of var-
iances and χ2 test for normality. Herbicide-induced OD for
each antioxidant biomarker (respect buffer-enzyme) in the
modified comet assay was compared with a t test for the dif-
ference of means with equal variances (Zar 2010). A Kruskal-
Wallis test was employed in the cases that did not perform the
assumptions of normality. The level of significance chosen
was 0.05, unless indicated otherwise.

Results

Endonuclease-modified alkaline SCGE assay

Concentration analyses revealed no significant variations (P >
0.05) of the test solutions throughout the experiments (con-
centration range, 98 ± 5% recovery).

Results from the modified comet assay in circulating blood
cells of C. decemmaculatus exposed fish to 410 mg/L DIC or
252 mg/L 2,4-D are presented in Table 1 and the net OD is
illustrated in Fig. 1. The capability of Endo III and Fpg to
recognize oxidized DNA bases within our experimental pro-
tocol was achieved by incubating nucleoids with 50 μMH2O2

(positive control). H2O2-nucleoid incubation induced an en-
hancement in the frequency of damaged nucleoids, the GDI,
and OD levels in enzyme buffer-treated cells exposed to Endo
III and Fpg (P < 0.001) (Table 1; Fig. 1).

In individuals exposed to DIC herbicide formulation, GDI
value was enhanced by 4.06 and 2.54 times over negative
control values in experiments lasting 48 and 96 h, respectively
(P < 0.001; Table 1). Such differences resulted from an in-
crease in the frequency of all categories of damaged nucleoids
(types II–IV) (0.01 > P < 0.001) and a decrease in the frequen-
cy of undamaged nucleoids (types 0–I) (P < 0.001; Table 1).
Post-treatment with Fpg induced an enhancement in GDI and
in the net OD compared with enzyme buffer-treated cells in
DIC-exposed fish during both 48 h (P< 0.01) and 96 h (P
< 0.05) (Table 1; Fig. 1). Alterations in DNA damage in nu-
cleoids from fish exposed to DIC during 48 h and post-treated
with Fpg were related to an enhancement in the frequency of
type II, III, and IV nucleoids (0.05 < P < 0.01). Moreover,
after 96 h of exposure, an enhancement of type III nucleoids
was observed (P < 0.05) (Table 1). Oppositely, and despite of
the exposure time, the incubation with Endo III did not pro-
duce any significant variation in DNA damage, GDI, and,
thus, in the net OD in cells from DIC-exposed individuals
when compared to enzyme buffer-treated cells (P > 0.05)
(Table 1; Fig. 1).

When the exposure with 2,4-D-herbicide formulation was
assessed, the GDI value was enhanced 3.84- and 5.10-fold
over negative control values in experiments lasting 48 and
96 h, respectively (P< 0.001; Table 1). Such differences re-
sulted from an increase in the frequency of all categories of
damaged nucleoids (types II–IV) (0.01 > P < 0.001) and a
decreased frequency of undamaged nucleoids (type 0–I)
(P < 0.001; Table 1). Post-treatment with Fpg induced a sig-
nificant increase in both GDI as well as in the net OD com-
pared with enzyme buffer-treated cells from 2,4-D-exposed
fish during both 48 and 96 h (P < 0.01) (Table 1; Fig. 1).
Differences in DNA damage in 2,4-D-exposed fish post-
treated with Fpg for either 48 and 96 h were due to an in-
creased frequency of type II and IV nucleoids (0.05 < P <
0.001) (Table 1). On the other hand, despite the exposure time,
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post-treatment with Endo III did not modify DNA damage,
GDI, and net OD in cells from 2,4-D-exposed individuals in
relation to enzyme buffer-treated cells (Table 1; Fig. 1).

Antioxidant biomarkers determination

The results of body midsection enzyme activities are present-
ed in Table 2. The mean values of CAT activity in control fish
were 12.86 ± 2.34 and 13.52 ± 2.96 μmol H2O2 hydrolysed/
min mg protein at 48 and 96 h, respectively (P> 0.05). CAT
activity was significantly increased in fish exposed either to
DIC (P < 0.001) or 2,4-D (0.01 > P < 0.001) commercial
formulations exposed during 48 and 96 h, respectively
(Table 2).

Control GST activity was 0.04 ± 0.01 μmol CDNB conju-
gated form/min mg protein for both times of exposure
(P > 0.05). In fish treated with both DIC- or 2,4-D-herbicide
formulations, GST activity was enhanced when compared to
control values either at 48 h (0.05 > P < 0.01) or 96 h of
exposure (P < 0.001; Table 2).

Additionally, mean values of GSH activity in control fish
were 3.17 ± 0.56 and 2.60 ± 0.16 μmol/g ww at 48 and 96 h,
respectively (P > 0.05). In DIC-exposed fish, GSH concentra-
tion decreased after 48 h of exposure when compared to con-
trol values (P < 0.05). However, such a difference was not
observed in 96 h-exposed fish (P > 0.05). For 2,4-D-exposed
organisms, an opposite scenario was observed. While no sig-
nificant differences were found after 48 h of exposure
(P > 0.05), a diminished GSH activity was detected in fish
exposed over 96 h (P < 0.01; Table 2).

Finally, control AChE activity was 384.71 ± 17.33 and
372.21 ± 37.25 nmol of substrate hydrolysed/min mg protein
for both 48 and 96 h (P> 0.05). A diminished AChE activity
was observed in fish exposed either to DIC- or 2,4-D-based
formulations during 96 h (P < 0.01) but not in fish analysed
after 48 h of exposure to both herbicides (P > 0.05; Table 2).

Discussion

In this investigation, oxidative stress in C. decemmaculatus
when exposed to two commercial products containing the
auxinic herbicides DIC and 2,4-D, Banvel® and DMA®, re-
spectively, was analysed using two widely employed bioas-
says such as endonuclease-modified alkaline comet assay and
the activity of several antioxidant biomarkers.

Recently, results of the acute lethal and sublethal effects
induced by DIC and 2,4-D employing C. decemmaculatus
as test organism were reported (Ruiz de Arcaute et al.
2014b, 2016). In these studies, the alkaline comet assay dem-
onstrated an increase of DNA damage in circulating blood
cells of fish continuously exposed up to 96 h to DIC- and
2,4-D-based formulations Banvel® and DMA® within theT
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410–1229 and 252–756 mg/L concentration ranges, respec-
tively. It was also observed that such an effect was indepen-
dent of the extent of the herbicide exposure period (Ruiz de
Arcaute et al. 2014b, 2016). Besides, in these studies, the
estimation of mortality, behavioural alterations, and the MN
count were assayed as lethal and other sublethal biomarkers,
respectively (Ruiz de Arcaute et al. 2014b, 2016).

Several xenobiotics, such as herbicides, can alter ROS bal-
ance via various mechanisms, such as alterations in enzymatic
and non-enzymatic antioxidant defences, membrane lipid per-
oxidation, among others, providing a mechanistic basis for
their observed toxicity (Kaya and Yigit 2012). The over pro-
duction of ROS can eventually overcome the antioxidant ca-
pacity of the cells, a situation that leads to oxidative stress and
depletion of antioxidant defence (Lushchak 2011;
Muthulakshmi et al. 2018), causing irreversible damage in
cellular macromolecules and affecting cellular function and
viability (Costantini and Verhulst 2009; Poletta et al. 2016).
Lipid damage affects a cell’s membrane structure, making

them less permeable and jeopardizing their integrity, and pro-
tein oxidation alters their conformation and could, depending
on their location and structure, compromise their function
(Hulbert et al. 2007; Poletta et al. 2016). Ultimately, this situ-
ation could lead, then, to tissue, cellular, and DNA damage as
well (Hulbert et al. 2007).

It is believed that DIC and 2,4-D could mediate jeopardiz-
ing effects on organisms associated with ROS generation
(Espandiari et al. 1998; Peixoto et al. 2008). For the auxinic
herbicide 2,4-D, evidence of its contribution in the production
of ROS has been reported (Bukowska 2003, 2006; Oruç and
Üner 2000; Romero-Puertas et al. 2004). Specifically for fish,
oxidative stress has been shown, e.g. in the goldfishCarassius
auratus (Atamaniuk et al. 2013; Kubrak et al. 2013;
Matviishyn et al. 2014), the zebrafish Danio rerio (Li et al.
2017), the European carp Cyprinus carpio (Oruç et al. 2004),
and the Nile tilapia Oreochromis niloticus (Oruç et al. 2004).
As far as we know, there is no information regarding oxidative
stress induced by DIC on fish species.

Table 2 Analysis of biomarkers in Cnesterodon decemmaculatus cells exposed to dicamba (DIC)-based formulation Banvel® and 2,4-
dichlorophenoxyacetic acid (2,4-D)-based formulation DMA®

Chemicals Exposure time (h) Biomarkers (mean ± SE)a

Pr CAT GST GSH AChE

Negative control 48 106.82 ± 13.18 12.86 ± 2.34 0.04 ± 0.01 3.17 ± 0.56 384.71 ± 17.33

DIC 98.22 ± 7.78 51.59 ± 6.40*** 0.09 ± 0.01** 1.56 ± 0.15* 343.87 ± 89.81

2,4-D 80.30 ± 8.45 68.91 ± 20.27*** 0.07 ± 0.01* 2.08 ± 0.13 267.11 ± 45.79

Negative control 96 115.58 ± 16.18 13.52 ± 2.96 0.04 ± 0.01 2.60 ± 0.16 372.21 ± 37.25

DIC 81.02 ± 7.85* 30.08 ± 3.82*** 0.07 ± 0.01*** 2.06 ± 0.25 217.48 ± 65.07**

2,4-D 57.18 ± 4.81*** 41.55 ± 6.57*** 0.10 ± 0.01*** 1.04 ± 0.03** 164.24 ± 34.54**

GST glutathione-S-transferase as micromole CDNB conjugated formed per minute milligram protein, GSH glutathione content as soluble acid thiols
micromole per gram ww, AChE nanomole of substrate hydrolysed per minute milligram protein

*P < 0.05; **P < 0.01; ***P < 0.001, significant differences with the control group
a Biomarkers: Pr, protein content as milligram per gram ww; CAT, catalase as micromole H2O2 consumed per minute milligram protein

Fig. 1 DIC- and 2,4-D-based commercial formulations induced DNA
damage evaluated by the Endo III (black bars)- and Fpg (grey bars)-
modified comet assay in circulating blood cells of Cnesterodon
decemmaculatus. Net oxidative damage was expressed as the

subtraction between the score obtained after incubation with the
respective enzyme or with the buffer. Hydrogen peroxide (50 μm) was
employed as a positive control. &, P < 0.05; &&, P < 0.01; significant
differences with the respective buffer-enzyme
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To elucidate the potential type of lesions that DIC and 2,4-
D induce into the DNA of the auxinic herbicide-exposed spec-
imens of C. decemmaculatus, we employed the modified
comet assay, in which a digestion with lesion-specific endo-
nucleases was included. Our current observations reveal that
post-treatment with enzyme buffer enhances, by itself, the
level of DNA damage. It is known that the enzyme buffer of
Fpg and EndoIII is able to induce DNA damage, by a mech-
anism still unknown. So far, at least two of the components
contained within the enzyme buffer formulation, i.e. ethylene-
diaminetetraacetic acid (EDTA) and 2-[4-(2-hydroxyethyl)-1-
piperazinyl]ethanesulfonic acid (HEPES), have been previ-
ously informed to induced DNA damage. Ye et al. (2012)
report that EDTA induced not only DNA damage evaluated
by alkaline comet assay but also a dose-related increase in
ROS levels in human corneal epithelial cells cultures.
Furthermore, Heindorff et al. (1983) reviewed the genetic tox-
icology of EDTA reporting its ability to induce chromosomal
damage in plants, animals, and human leucocyte cultures.
Finally, Habib and Tabata (2004) found that HEPES in the
presence of Au(III) induce oxidative damage when evaluated
by gel electrophoresis, electron spin resonance spectroscopy,
and circular dichroism spectroscopy. Our current results agree
well with previous observations stressing the capability of the
buffer to introduce damage into the nucleoid DNAs, and thus,
increasing their length (Collins and Azqueta 2012; Demir
et al. 2014; Pérez-Iglesias et al. 2017; Soloneski et al. 2016;
Soloneski et al. 2017).

Our results prove the efficacy of Fpg, in combination with
the comet assay for detecting damaged purines in the DNA of
circulating blood cells of C. decemmaculatus treated with the
auxinic herbicides DIC and 2,4-D in their commercial formu-
lations Banvel® and DMA®, respectively. On the other hand,
post-treatment with Endo III did not increase Banvel®- or
DMA®-induced damage, indicating that these auxinic formu-
lations do not induce damage through oxidative damage at
pyrimidine level. Fpg recognizes the common oxidized purine
8 - o x oGua , a n d a l s o r i n g - o p e n e d pu r i n e s , o r
formamidopyrimidines (Fapy). Finally, we cannot discard
the possibility that the high level of damage we detected with
Fpg may be over estimated due to the presence of
formamidopyrimidines in addition to 8-oxoGua.

Positive results have also been reported when employing
the Fpg-modified comet assay in the European eel (Anguilla
anguilla) treated with glyphosate present in the formulation
Roundup® (Guilherme et al. 2012) or in the in common bleak
(Alburnus alburnus) when used as biotic matrix to evaluate
the environmental risk of the water contamination of the
Velika Morava River basin (Jovanović et al. 2018). So far,
the Fpg-modified comet assay was only used by
Lajmanovich et al. (2015) in mature erythrocytes of the com-
mon American toad Rhinella arenarum exposed to 2,4-D to
assess to ability of the glycosylase to transform oxidized

purines into DNA single-strand breaks. However, no induc-
tion of DNA damage was revealed by the comet assay or by
the Fpg-modified version when the 2,4-D-based commercial
formulation Asi Max 50® (50% 2,4-D) was employed in this
anuran species (Lajmanovich et al. 2015). So far, we do not
possess a clear answer to explain the contradictory results
obtained in the common toad R. arenarum in regard to our
current observations. However, although speculative, it could
be suggested that they might most probably be related to the
employed dose of 2,4-D since negative results were reported
after employing a dose nearly 12 times lower than that
employed in our experimental design (Lajmanovich et al.
2015). As far as we know, no studies employing the Fpg-
and Endo III-modified alkaline SCGE assay on DIC- and
2,4-D-exposed fish have been reported so far. Thus, our study
demonstrates for the first time DNA oxidative damage in-
duced after exposure to a pollutant employing the
glycosylase-modified SCGE assay in an aquatic organism like
C. decemmaculatus.

In the present study, increased activities of the enzymes
CAT and GST were observed in fish exposed for 48 and
96 h to both DIC and 2,4-D. In agreement to our observations,
an enhancement in CAT activity has been previously reported
in fish exposed to several herbicides. Among them, higher
CAT levels in regard to non-exposed organisms have been
reported in the zebra fish D. rerio after treatment with
bipyridylium herbicide diquat (Wang et al. 2018), the three-
barbeled catfish Rhamdia quelen (Persch et al. 2017) and the
characin Leporinus obtusidens (Glusczak et al. 2011) exposed
to the glyphosate-based formulation Roundup® as well as in
the climbing perch Anabas testudineus and the stinging catfish
Heteropneustes fossilis as a consequence of a glyphosate-
based formulation Excel Mera 71 exposure (Samanta et al.
2014). Similar observations were also reported for the
streaked prochilod Prochilodus lineatus exposed to atrazine
(Paulino et al. 2012) and for the common carp C. carpio after
simazine treatment (Stara et al. 2012).

As observed for CAT, GSTactivity was also increased after
48 and 96 h treatment with DIC- and 2,4-D-herbicide formu-
lations. An increased activity of GST could expose disorders
related to an oxidative stress situation, as has been previously
confirmed in the Nile tilapiaO. niloticus and the common carp
C.carpio exposed to a formulated product containing 2,4-D
(trade name not specified), to the azinphosmethyl-based for-
mulation Guthion 20 EC (Oruç et al. 2004; Oruç and Üner
2002), and to the triazine compounds terbuthylazine and
metribuzin (Hostovsky et al. 2012). Besides, and in agreement
with our observations, similar raised GST activity has also
reportedly occurred, among others, in the hybrid fish jundiara
Leiarius marmoratus × Pseudoplatystoma reticulatum ex-
posed to the glyphosate-based formulation Roundup
Original® (de Moura et al. 2017) as well as in the streaked
prochilod P. lineatus exposed to atrazine (Paulino et al. 2012).
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Therefore, it could be assumed that the increased CAT and
GST activity could help to prevent oxidative damage caused
in the specimens of C. decemmaculatus exposed to both aux-
inic herbicides.

Additionally, to the aforementioned altered markers for ox-
idative stress, a decrease of GSH was registered in specimens
treated for 48 and 96 h with either DIC- or 2,4-D-herbicide
formulations. GSH is part of the first defence of organisms
against oxidative stress (Finkel and Holbrook 2000).
Xenobiotics that make contact with the cells are removed by
conjugation with GSH or by means of GST, a process that
decreases GSH levels (Elia et al. 2003). In agreement to our
results, a similar diminished GSH activity has been reported
after exposure to other herbicides in different fish species such
as the Delta smelt Hypomesus transpacificus exposed to the
fluridone-based formulation Sonar® AS and to the
glyphosate-based formulated product Roundup® Custom
(Jin et al. 2018) as well as the rainbow trout Oncorhynchus
mykiss exposed to commercial linuron (formulation not spec-
ified) (Topal et al. 2017), among others. The diminished GSH
activity reported in our results could be due to either a high
intracellular demand of GSH associated with the endobiotic
detoxification processes of DIC and 2,4-D or by an increased
production of ROS exerted by the herbicides raising the gen-
eral oxidative potential required for these processes (Mela
et al. 2013; Pamela and Richard 1994). Previous investiga-
tions have reported that GSH conjugates with environmental
contaminants either by a spontaneous manner or catalysed by
GST enzyme detoxification (Elia et al. 2003). Our results
agree with the pattern reported previously by Elia et al.
(2003) in the black bullhead catfish Ameiurus melas as a con-
sequence of mercury exposure. Authors observed an en-
hanced GST level and a concomitant decrease in the GSH
content, a similar si tuation to what we found in
C. decemmaculatus after both auxinic herbicide treatments
reported in the current study.

Considering the diminished activity of AChE in auxinic
herbicide-exposed fish we observed, enzyme inhibition could
be proposed as a possible mechanism through which DIC- and
2,4-D-herbicide formulations could induce oxidative stress.
Although speculative, a plausible explanation for these find-
ings could be suggested. The inhibition of AChE leads to an
over stimulation of an organism’s nervous system, pointing
out, thus, the potential neurotoxic effects of the auxinic herbi-
cides employed in this study as anticholinergic compounds.
Several investigations confirmed that AChE is a sensitive pa-
rameter for neurotoxicity exerted by other xenobiotics such as
pyrethroids and herbicides rather than that very well-known
neurotoxic agents such as carbamates and organophosphorus
pesticides (Kumar et al. 2009). Extending this concept, it has
been reported a dose-dependent decrease in the levels of
AChE in the spotted snakehead Channa punctatus exposed
to the insecticides λ-cyhalothrin-based formulation Colt® 25

as well as to the cypermethrin-based formulation REEVA-5,
the former being more potent than the latter (Kumar et al.
2009). Specifically, similar results have been found after ex-
posure of the characin L. obtusidens exposed to the herbicide
glyphosate-based formulation Roundup® (Glusczak et al.
2011; Salbego et al. 2010) and the Delta smelt Hypomesus
transpacificus exposed to the fluridone-based formulation
Sonar® AS, to the penoxsulam-based formulated product
Galleon® SC, or to Clearcast®, an imazamox-based herbicide
formulation (Jin et al. 2018). In fish, AChE activity is impor-
tant in motion capacity, predation, and social interactions
(Rodríguez-Fuentes et al. 2015). In addition, AChE alteration
could alter early development as informed by Behra et al.
(2002). In agreement, we have previously observed the ap-
pearance of behavioural changes in C. decemmaculatus spec-
imens after auxinic herbicide exposure to sublethal concentra-
tions (Ruiz de Arcaute et al. 2014b, 2016).

Diminished protein content was detected in exposed spec-
imens, indicating that the auxinic herbicides employed caused
alterations in the protein metabolism of exposed
C. decemmaculatus. The pesticide-induced inhibitory effect
on protein level is a very well-documented aspect in toxico-
logical studies when fish are employed as a biotic matrix (Lal
et al. 2013; Naqvi et al. 2017; Samanta et al. 2014). Our results
agree with several observations previously reported on several
fish species exposed to a wide variety of different active in-
gredients of pesticides, including insecticides, e.g. fenvalerate
(Tripathi and Verma 2004b), chlorpyrifos (Naqvi et al. 2017),
malathion (Lal et al. 2013; Naqvi et al. 2017),α-cypermethrin
(Tripathi and Singh 2013), cypermethrin (Kumar et al. 2009;
Naqvi et al. 2017; Ullah et al. 2014), λ-cyhalothrin (Kumar
et al. 2009; Naqvi et al. 2017), permethrin (Sapana Devi and
Gupta 2014), σ-methrin (Sapana Devi and Gupta 2014), feni-
trothion (Katsiadaki et al. 2006; Sancho et al. 1997), diazinon
(Ozcan Oruç et al. 2006), endosulfan (Tripathi and Verma
2004a), and herbicides, e.g. atrazine (Persch et al. 2017),
linuron (Katsiadaki et al. 2006), benthiocarb (Rao et al.
1987; Seshagiri et al. 1987), glyphosate (Glusczak et al.
2011; Persch et al. 2017; Samanta et al. 2014), quinclorac
(Persch et al. 2017), among others. It is worth mentioning that
similar results on total protein content were observed recently
in the Mozambique tilapia O. mossambicus after exposure to
several commercially available products (formulations not
specified) based on organophosphate and synthetic pyrethroid
insecticides and herbicides (Naqvi et al. 2017). These authors
proposed several alternatives to explain the diminution of pro-
tein content. Among them, a physiological response of the
organism to compensate xenobiotic-induced stress, an en-
hanced proteolytic activity or reduced protein synthesis, hor-
monal imbalances affecting normal tissue protein levels, cel-
lular necrosis, and/or altered enzymatic activities due to DNA
damage (Naqvi et al. 2017). So far, we do not possess clear
evidence allowing us to accept or reject any of the
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aforementioned plausible explanations. However, our current
results clearly highlight that inhibition of protein increased in
both DIC- and 2,4-D-exposed fish during 96 h as compared to
48 h and that a stronger effect was achieved in 2,4-D-exposed
C. decemmaculatus than that exerted by DIC.

It is worth mentioning that in the present study, a DIC-
based herbicide containing 57.7% of the active ingredient
within the formulation Banvel® as well as a 2,4-D-based her-
bicide containing 58.4% of the active ingredient within the
formulation DMA® were assayed. It is known that in a pesti-
cide formulated product, the active ingredient is combined
with organic solvents, emulsifying and wetting agents to
achieve an optimal penetration and performance (WHO
2009). Although additive compounds involve part of a com-
mercial pesticide formulation, they are not usually included in
the discussion of the effects on living non-target organisms,
and their adverse effects can go beyond those of the active
principle. In agreement, several authors agree and have dem-
onstrated that the excipients present in pesticide commercial
products are able to induce both toxicity and cellular damage
by themselves rather than the pure compound either in vitro or
in vivo (Mann and Bidwell 1999; Mansano et al. 2016a,
2016b; Molinari et al. 2013; Nikoloff et al. 2014; Pérez-
Iglesias et al. 2014; Ruiz de Arcaute et al. 2014a; Soloneski
and Larramendy 2010). Regrettably, the identities of the addi-
tive compounds present in the formulations Banvel® and
DMA® were not made available to us by the manufacturers.
According to the Argentinean administration, excipients pres-
ent in any agrochemical are not obligatory for listing on agro-
chemical data sheets and can be kept as a Btrade secret.^
Further studies should be required to reveal whether the sub-
lethal damage exerted by these auxinic formulations results
from the presence of xenobiotic(s) with oxidative damage
properties included in the formulated products.

The physico-chemical properties of DIC and 2,4-D make
these herbicides highly mobile in soil and thereby often pres-
ent in the aquatic environment (Glozier et al. 2012; Li et al.
2009). Previous observations indicate that these auxinics have
been detected in urban and peri-urban sites as well as in
agroecosystems (Félix-Cañedo et al. 2013; Glozier et al.
2012; Loos et al. 2010; Tagert et al. 2014). Environmental
concentrations of these auxinic herbicides have been reported
in countries such as USA, Canada, andMexico in ranges from
0.04 up to 24 μg/L. In Argentina, only one study reports a 2,4-
D concentration of 0.99 μg/L found in El Crespo River in
Buenos Aires Province. As far as we know, there is no infor-
mation available on the environmental concentrations of DIC
in Argentina. Although treatments in this study comprise one
concentration of DIC (410 mg/L) and 2,4-D (252 mg/L), they
represent a relatively high end of the threshold values found in
the environment of both herbicides and reported so far. Thus,
it could be assumed that the concentrations of the auxinic
herbicides assayed in the present study would be almost

improbable to be found in the biosphere, possibly only after
specific incidents, such as direct application, accidental dis-
charge, and treatment of application residues, among others.
Due to the aforementioned situations, we cannot discard the
possibility that piscine populations of C. decemmaculatus, as
well as others living species, could be exposed to the auxinic
herbicides employed at these concentrations.

The present findings demonstrate that both auxinics DIC and
2,4-D in their formulated products Banvel® and DMA®, re-
spectively, act as oxidizing agents on non-target species such
as the Neotropical fish C. decemmaculatus. Furthermore, our
results emphasize that the biomarkers assayed are valuable for
evaluating contaminated aquatic environments, at least when
employing the fish C. decemmaculatus.
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