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Abstract. If a and b are trace-class operators, and if u is a partial isometry, then ku | ab∗|u∗k1 ≤
k 1

p
|a|p + 1

q
|b|qk1, where k · k1 denotes the norm in the trace class. The present paper characte-

rises the cases of equality in this Young inequality, and the characterisation is examined in the
context of both the operator and the Hilbert–Schmidt forms of Young’s inequality.

Mathematics Subject Classification (2000): 47A63, 15A60

1. Introduction

Building on the work by T. Ando [A], it was shown in [EFZ] that for each pair of
compact operators a and b, and for each p, q ∈ R

+ for which 1/p + 1/q = 1,
there exists a partial isometry u such that u∗u = 1− [ker |ab∗|] (where [ker |ab∗|]
denotes the projection onto ker |ab∗|) and

u|ab∗|u∗ ≤ 1

p
|a|p + 1

q
|b|q . (1.1)

The case p = q = 2 is the arithmetic-geometric mean inequality, which was first
uncovered in [BK]. In finite dimensions, the operator u in (1.1) can always be
required to be a unitary.

The problem of characterising the cases of equality in the operator Young
inequality (1.1) was settled by O. Hirzallah and F. Kittaneh in [HK] for Hilbert–
Schmidt operators. A very surprising feature of Hirzallah and Kittaneh’s proof
is that the analysis of the cases of equality in the operator inequality (1.1) oc-
curs through a much weaker assumption. Specifically, the fact that the operators
u|ab∗|u∗ and 1

p
|a|p+ 1

p
|b|q are equal has no role in the proof; rather, one need only

know that the Hilbert–Schmidt norms of the operators u|ab∗|u∗ and 1
p
|a|p + 1

p
|b|q

are equal.
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In this paper we prove that for trace-class operators the Hilbert–Schmidt con-
dition can replaced by equality in trace norm (Theorems 2.1 and 2.2). Moreover,
in Theorem 4.1 we show that

k u|ab∗|u∗ k1 =





1

p
|a|p + 1

q
|b|q






1

if and only if

k u|ab∗|u∗ k2 =





1

p
|a|p + 1

q
|b|q






2

,

but neither of these equalities imply operator equality in (1.1).
Motivated by the operator Young inequality (1.1), our results incorporate the

use of partial isometries as an added feature. Our computations rely on a careful
analysis of the eigenvalues of the operators, and also on some convexity arguments
about perturbations by unitaries.

We now introduce some notation and conventions. Suppose that H is a com-
plex, separable Hilbert space and that B(H) is the algebra of bounded linear
operators acting on H. For x ∈ B(H), we denote by R[x] the projection of H
onto the closed range ran x of x. For any operator z, |z| shall denote (z∗z)1/2, the
positive square root of z∗z. If z ∈ B(H) is compact, then the nonnegative real
number sk(z), for every k ∈ Z

+, denotes the k-th singular value of z, namely

sk(z) = λk(|z|),
where

λk(|z|) = min
�

max{h|z|ξ, ξi : ξ ∈ M⊥, kξk = 1} :
M ⊂ H, dim M = k − 1

	

.

Trace-class and Hilbert–Schmidt operators are defined via the sequence of
singular values. An operator x is of trace class if {sk(x)}k∈Z+ ∈ `1(Z+), and
x is a Hilbert–Schmidt operator if {sk(x)}k∈Z+ ∈ `2(Z+). Thus, the trace norm
k · k1 and Hilbert–Schmidt norm k · k2 on the ideals of trace-class operators and
Hilbert–Schmidt operators, respectively, are:

kxk1 =
∞
X

k=1

sk(x) (1.2)

and

kxk2 =
 ∞
X

k=1

sk(x)2

!1/2

. (1.3)

The trace tr (x) of a trace-class operator x is defined to be

tr (x) =
∞
X

k=1

hxφk, φki , (1.4)
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where {φk}k∈Z+ is any orthonormal basis of H. It is well known that the trace
is independent of the choice of orthonormal basis and that tr (xg) = tr (gx) if
x ∈ B(H) is of trace class and g ∈ B(H) is arbitrary.

If z is a positive compact operator, then the singular values of z are simply the
eigenvalues of z and the list {λk(z)}k∈Z+ accounts for all the nonzero eigenvalues
of z (of which there may be finitely or infinitely many). Hence, equations (1.2)
and (1.4) become, for positive trace-class operators z,

kzk1 = tr z =
∞
X

k=1

λk(z) .

Finally, we will also make use of some basic facts from the theory of majori-
sation, for which our main reference is the book of Bhatia [Ba].

2. Equality in Young’s inequality

We begin by mentioning the trivial fact that if p, q ∈ R
+ and 1/p + 1/q = 1,

then p > 1, q > 1. Thus, if a, b ∈ B(H) are positive trace-class operators, then
both ap and bq are positive trace-class operators.

The following theorem is the main result of the present paper.

Theorem 2.1. Let a, b ∈ B(H) be positive trace-class operators, and suppose
that u ∈ B(H) is a partial isometry. Assume that p, q ∈ R

+ are such that
1
p

+ 1
q

= 1. Then

tr (u|ab|u∗) = tr

�
1

p
ap + 1

q
bq

�

if and only if
bq = ap, and R[u∗] ≥ R[b].

Proof. Assume first that bq = ap, and R[u∗] ≥ R[b]. This last condition can be
stated as u∗ub = b. Note that

ab = bq/p +1 = bq.

Then,
tr (u|ab|u∗) = tr (u|bq |u∗) = tr (ubqu∗)

= tr (u∗ubq) = tr (bq)

= tr

�
1

p
ap + 1

q
bq

�

,

which proves the “if” part.
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Now we assume that a, b are positive trace-class operators satisfying

tr (u|ab|u∗) = 1

p
tr (ap) + 1

q
tr (bq), (2.1)

for some partial isometry u. In order to prove that ap = bq , we can assume without
loss of generality that u = 1. Indeed, since u is a partial isometry we have that
both u∗u and uu∗ are projections, so

1

p
tr (ap) + 1

q
tr (bq) = tr (u|ab|u∗) = tr (|ab|1/2u∗u|ab|1/2)

≤ tr (|ab|) ≤ 1

p
tr (ap) + 1

q
tr (bq) , (2.2)

the last inequality being derived from Proposition 3.3 of [EFZ] (Young’s inequality
in eigenvalues). Then, equations (2.1) and (2.2) imply

tr (|ab|) = 1

p
tr (ap) + 1

q
tr (bq). (2.3)

Equation (2.3) leads to the following inequalities (noted in [Z]):

1

p

∞
X

j=1

λj (a)p + 1

q

∞
X

j=1

λj (b)q = 1

p

∞
X

j=1

λj (a
p) + 1

q

∞
X

j=1

λj (b
q)

(using (2.3)) =
∞
X

j=1

λj (|ab|) =
∞
X

j=1

sj (|ab|)

=
∞
X

j=1

sj (ab)

≤
∞
X

j=1

sj (a)sj (b) =
∞
X

j=1

λj (a)λj (b)

≤
∞
X

j=1

�
1

p
λj (a)p + 1

q
λj (b)q

�

= 1

p

∞
X

j=1

λj (a)p + 1

q

∞
X

j=1

λj (b)q .
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In the above we have used [GK, page 63] and the scalar Young inequality for the
first and second inequalities respectively. The inequalities above imply that

∞
X

j=1

λj (a)λj (b) = 1

p

∞
X

j=1

λj (a)p + 1

q

∞
X

j=1

λj (b)q.

Moreover, we know for each j that λj (a)λj (b) ≤ 1

p
λj (a)p + 1

q
λj (b)q , and so

the equality obtained above implies that λj (a)λj (b) = 1

p
λj (a)p + 1

q
λj (b)q for

every j ∈ Z
+. Since these are cases of equality in the scalar Young inequality, we

have that λj (a)p = λj (b)q for every j ∈ Z
+.

Now we express H as two direct sums:

H = ran a ⊕ ker a = ran b ⊕ ker b.

Since the sequences {λk(a)}k∈Z+ and {λk(b)}k∈Z+ capture all the nonzero eigen-
values of a and b, with multiplicities counted, we deduce that the Hilbert spaces
ran a and ran b are isomorphic. Let w0 be a unitary implementing this isomor-
phism; it can be viewed as a partial isometry in B(H) with initial space ran a and
final space ran b. The computations we have done to this stage do not give us any
information about the relation between ker a and ker b; in particular, there is no
reason why ker a and ker b should be isomorphic. To address this difficulty, we
consider new operators ã and b̃ on H ⊕ H, namely ã = a ⊕ 0 and b̃ = b ⊕ 0.
Notice that, if we consider H embedded as the “first coordinate” of H ⊕ H, we
have that ran ã = ran a and ran b̃ = ran b. The benefit of this situation is that we
now can say that ker ã and ker b̃ have the same (infinite) dimension, and there-
fore the partial isometry w0 extends to a unitary w acting on H ⊕ H such that
b̃q = wãpw∗.

For these extended operators we still have equality (2.3), which becomes

tr (|ãwãp/qw∗|) = tr (ãp) (2.4)

when we take into account that now w is a unitary. Our aim now is to prove that the
unitary w commutes with ã. To achieve that, it is enough, by functional calculus,
to show that w commutes with ãp. So in our formulas we can replace ã by ã1/p

without loss of generality: we will prove then that w commutes with ãp, which is
equivalent to w commuting with ã. Therefore, the equality that we now analyse
is

tr (|ã1/pwã1/qw∗|) = tr (ã), (2.5)

where we have renamed ãp as ã.
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Equation (2.5) can also be written as tr (|ã1/qw1ã
1/pw∗

1 |) = tr (ã), where w1

is the unitary w1 = w∗. To see why, note that if y = ã1/pwã1/q , then

tr (|ã1/pwã1/qw∗|) = tr ((wy∗yw∗)1/2) = tr (w(y∗y)1/2w∗) = tr ((y∗y)1/2),

the middle equality being valid because w is unitary. Because ker(y∗y − λ1)

and ker(yy∗ − λ1) have the same (finite) dimension for all nonzero λ, it
follows that tr ((y∗y)1/2) = tr ((yy∗)1/2) = tr ((w∗yy∗w)1/2) = tr (|y∗w|) =
tr (|ã1/qw1ã

1/pw∗
1 |).

Therefore, we assume henceforth that p ≥ 2, for otherwise we could simply
exchange q for p and w1 for w before continuing with the arguments that now
follow.

The space H ⊕ H has an orthonormal basis {φk}k∈Z+ of eigenvectors of ã

(infinitely many of them belonging to ker ã). Let {dk}k∈Z+ ⊂ R
+
0 be such that

ãφk = dkφk for every k ∈ Z
+, and set wij = hwφj , φii, for all i, j ∈ Z

+. Then,
from w∗w = ww∗ = 1,

∞
X

i=1

|wij |2 =
∞
X

j=1

|wij |2 = 1 (2.6)

and, for every j ,

w∗φj =
∞
X

k=1

hw∗φj , φkiφk =
∞
X

k=1

wjkφk.

Using the equations above, the terms in equation (2.5) become

tr (ã) =
∞
X

j=1

hãφj , φj i =
∞
X

j=1

dj , (2.7)

and

tr (|ã1/pwã1/qw∗|) = tr ((wã1/qw∗ã2/pwã1/qw∗)1/2)

= tr (w(ã1/qw∗ã2/pwã1/q)1/2w∗)

= tr ((ã1/qw∗ã2/pwã1/q)1/2). (2.8)

If ξ ∈ H is a unit vector and x ∈ B(H)+, then

hx1/2ξ, ξi ≤ kx1/2ξk kξk = hxξ, ξi1/2 . (2.9)
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Thus, using equations (2.7), (2.8), and (2.9), we obtain from (2.5)

∞
X

j=1

dj = tr ((ã1/qwã2/pw∗ã1/q)1/2) =
∞
X

j=1

h(ã1/qwã2/pw∗ã1/q)1/2φj , φj i

≤
∞
X

j=1

h(ã1/qwã2/pw∗ã1/q)φj , φj i1/2

=
∞
X

j=1

�

d
2/q

j hwã2/pw∗φj , φj i
�1/2

=
∞
X

j=1

 

d
2/q

j

∞
X

k,h=1

wjkwjhhã2/pφk, φhi
!1/2

=
∞
X

j=1

 ∞
X

k=1

d
2/q

j d
2/p

k |wjk|2
!1/2

=
∞
X

j=1

d
1/q

j

 ∞
X

k=1

d
2/p

k |wjk|2
!1/2

≤




∞
X

j=1

dj





1/q 



∞
X

j=1

 ∞
X

k=1

d
2/p

k |wjk|2
!p/2





1/p

,

where we have used Hölder’s Inequality in the last step.
Consider now the vectors

x = (dj )j , y =
 ∞
X

k=1

d
2/p

k |wjk|2
!

j

.

Note that from equations (2.6), the matrix A = {|wjk|2}jk is doubly stochastic, so
y = A x2/p is majorised by x2/p. If we consider the vectors x(n) = (x

↓
1 , . . . , x

↓
n ),

y(n) = (y
↓
1 , . . . , y

↓
n ), where as usual the arrow means that we are considering

the entries of x and y in decreasing order, then y(n) is weakly majorised by
(x(n))2/p. Therefore, f (y(n)) is weakly majorised by f (x(n)), for every convex
monotone function f (see Corollary II.3.4 of [Ba]), and in particular for the
function f (x) = xp/2 (recall that p ≥ 2). Thus,

tr (y(n)p/2
) ≤ tr (x(n)) for every n .

Hence,
tr (yp/2) ≤ tr (x) ;
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that is,
∞
X

j=1

 ∞
X

k=1

d
2/p

k |wjk|2
!p/2

≤
∞
X

j=1

dj .

Taking into account this inequality and the previous computations, we get

∞
X

j=1

dj ≤
∞
X

j=1

d
1/q

j

 ∞
X

k=1

d
2/p

k |wjk|2
!1/2

≤




∞
X

j=1

dj





1/q 



∞
X

j=1

 ∞
X

k=1

d
2/p

k |wjk|2
!p/2





1/p

≤




∞
X

j=1

dj





1/q 



∞
X

j=1

dj





1/p

=
∞
X

j=1

dj .

So in particular

∞
X

j=1

d
1/q

j

 ∞
X

k=1

d
2/p

k |wjk|2
!1/2

=




∞
X

j=1

dj





1/q 



∞
X

j=1

 ∞
X

k=1

d
2/p

k |wjk|2
!p/2





1/p

Since this is equality in the Hölder inequality, we conclude that, for every j ,

dj =
 ∞
X

k=1

d
2/p

k |wjk|2
!p/2

,

which we may write as

d
2/p

j =
∞
X

k=1

d
2/p

k |wjk|2 . (2.10)

The sequence {dk}k consists of eigenvalues of ã, repeated according to multi-
plicity. Every nonzero eigenvalue of a (and hence of ã) is repeated at most finitely
many times, since a is compact; the eigenvalue zero appears infinitely many times.
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Now assume that λ1 is the largest positive eigenvalue of a, and that m1 =
dim ker(a − λ1 1). Then there exists a permutation τ of Z

+ for which dτ(k) = λ1

for k = 1, . . . , m1. Use this permutation to rewrite (2.10) as

d
2/p

τ(j) =
∞
X

k=1

d
2/p

τ(k)|wτ(j)τ(k)|2, for all j ∈ Z
+,

and to reorder the orthonormal basis of eigenvectors as {φτ(k)}k. Thus, without
loss of generality, we may assume that the sequence {dk}k is already ordered in
such a way that

λ1 = d1 = d2 = · · · = dm1 > dk for every k ≥ m1 + 1 .

Therefore, we still work with equation (2.10). For every j = 1, . . . , m1, we have
that d

2/p

j is an extremal point of the interval [0, λ
2/p

1 ]. Because equation (2.10)

represents, for 1 ≤ j ≤ m1, λ
2/p

1 = d
2/p

j as a convex combination of points from

the sequence {d2/p

k }k, equality in (2.10) can hold for each 1 ≤ j ≤ m1 only if

|wjk|2 = 0 for all k ≥ m1 + 1, 1 ≤ j ≤ m1. (2.11)

Thus, the matrix representation for the unitary w with respect to the ortho-
normal basis {φk}k has the form

w =
�

w1 0
x w2

�

,

where w1 ∈ Mm1(C) is unitary. The condition ww∗ = 1 implies that w1x
∗ = 0,

and so x∗ = w∗
1(w1x

∗) = 0, whence x = 0. Therefore,

wst = 0, for every 1 ≤ t ≤ m1, s ≥ m1 + 1 , (2.12)

and so ker(ã − λ1 1) = Span{φ1, . . . , φm1} is invariant under w and w∗. Thus
wp1 = p1w, where p1 is the projection of H ⊕ H onto ker(ã − λ1 1).

Now consider the next largest positive eigenvalue λ2 of ã. Let m2 =
dim ker(ã − λ2 1); then there exists a reordering of the sequence {dk}k so that
λ1 = dk for k = 1, . . . , m1, and λ2 = dk for k = m1 + 1, . . . , m1 + m2, and
λ2 > dj if j ≥ m1 + m2 + 1. In this reordering, equation (2.10) becomes

m1X

k=1

d
2/p

k |wjk|2 +
∞
X

k=m1+1

d
2/p

k |wjk|2 = d
2/p

j ,

which by conditions (2.11) and (2.12) specialises to

∞
X

k=m1+1

d
2/p

k |wjk|2 = d
2/p

j , for all m1 + 1 ≤ j ≤ m1 + m2 . (2.13)
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Now, because d
2/p

m1+1, . . . , d
2/p
m1+m2

> d
2/p
t for all t ≥ m1 + m2 + 1, the arguments

that were used above prove that equation (2.13) is possible only if |wjk| = 0
for all k ≥ m1 + m2 + 1 and m1 + 1 ≤ j ≤ m2. Thus, as argued above,
ker(ã − λ2 1) = Span{φm1+1, . . . , φm1+m2} is invariant under w and w∗. Hence,
wp2 = p2w, where p2 is the projection of H ⊕ H onto ker(ã − λ2 1).

Now continue inductively and conclude that if λ1 > λ2 > · · · > 0 are the
positive eigenvalues of ã, and if p1, p2, . . . are the corresponding projections onto
the eigenspaces ker(ã−λn 1), then wpn = pnw, for each n. Hence, if k·k denotes
the norm in B(H ⊕ H), we obtain from the compactness of ã that

lim
n

kã −
n
X

j=1

λjpjk = 0,

and so

kwã − ãwk = kwã −
n
X

j=1

λjwpj +
n
X

j=1

λjpjw − ãwk

≤







w



ã −
n
X

j=1

λjpj












+









ã −
n
X

j=1

λjpj



w








for every n, which implies that ãw − wã = 0. Therefore, b̃q = wãpw∗ =
ãpww∗ = ãp. But ãp = b̃q if and only if ap = bq .

To finish the proof, we need to verify that u∗ub = b. We return to equation
(2.1) to obtain

tr (ubqu∗) = tr (bq),

which we write as
tr (bq/2u∗ubq/2) = tr (bq),

or equivalently as
tr (bq/2(1 − u∗u)bq/2) = 0.

Because 1 − u∗u is a projection, we can rewrite the equation above as

tr ([(1 − u∗u)bq/2]∗[(1 − u∗u)bq/2]) = 0.

By faithfulness of the trace we conclude that (1−u∗u)bq/2 = bq/2(1−u∗u) = 0.
Thus, using functional calculus, we obtain bu∗u = u∗ub = b, implying that
R[u∗] = u∗u ≥ R[b], which completes the proof. ut

Note that in Theorem 2.1, the condition ap = bq implies that R[a] = R[b].
But this is not the case when a, b are not positive, and indeed it is the projec-
tion R[b] that is of interest in the extension below of Theorem 2.1 to arbitrary
trace-class operators.



Young’s inequality in trace-class operators 737

Theorem 2.2. Let a, b ∈ B(H) be trace-class operators and u ∈ B(H) be a
partial isometry. Suppose p, q ∈ R

+ are such that 1
p

+ 1
q

= 1. Then

tr (u|ab∗|u∗) = tr

�
1

p
|a|p + 1

q
|b|q

�

(2.14)

if and only if
|b|q = |a|p, and R[u∗] ≥ R[b].

Proof. Note that if we consider the polar decomposition v|b| of b, then from the
proof of Proposition 4.1 in [EFZ] we have

|ab∗| = v

�
�
�
�
|a||b|

�
�
�
�
v∗ .

Note also that v∗v is the projection onto the range of b∗.
To prove the sufficiency, assume that |b|q = |a|p and R[u∗] ≥ R[b]. Thus,

(b∗b)q = (a∗a)p and u∗ub = b, and therefore

tr (u|ab∗|u∗) = tr (uv

�
�
�
�
|a||b|

�
�
�
�
v∗u∗) = tr (uv|b|qv∗u∗)

= tr (u∗ub|b|q−1v∗) = tr (b|b|q−1v∗) = tr (v|b|qv∗)

= tr (v∗v|b|q) = tr (|b|q)

= 1

p
tr (|a|p) + 1

q
tr (|b|q).

To prove the necessity, assume that equation (2.14) holds. Using twice the
same idea as in (2.2), we obtain

tr (u|ab∗|u∗) = tr

�

uv

�
�
�
�
|a||b|

�
�
�
�
v∗u∗

�

≤ tr

��
�
�
�
|a||b|

�
�
�
�

�

.

The tracial Young inequality is

tr

��
�
�
�
|a||b|

�
�
�
�

�

≤ tr

�
1

p
|a|p + 1

q
|b|q

�

,

(again from Proposition 3.3 of [EFZ]) and therefore

tr

��
�
�
�
|a||b|

�
�
�
�

�

= tr

�
1

p
|a|p + 1

q
|b|q

�

.

Hence, by Theorem 2.1, we have that |a|p = |b|q . Therefore, the trace equation
(2.14) simplifies to

tr (uv|b|qv∗u∗) = tr (|b|q). (2.15)
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Recall that v|b| = b and |b|v∗ = b∗, and so v|b|2v∗ = bb∗. Using this,

tr (uv|b|qv∗u∗) = tr (u(bb∗)q/2u∗). (2.16)

Thus, noting that tr (|b|q) = tr ((bb∗)q/2), equation (2.15) becomes

tr ((bb∗)q/4(1 − u∗u)(bb∗)q/4) = 0.

This equation and the faithfulness of the trace yield, as before,

(1 − u∗u)(bb∗)q/4 = 0.

Because (bb∗)q/4 is positive, we apply functional calculus to get (1−u∗u)bb∗ =
0. Then (1 − u∗u)bb∗(1 − u∗u) = 0, which implies that (1 − u∗u)b = 0; that is,
u∗ub = b. ut

3. Equality in the operator Young inequality

To characterise cases of equality in the operator Young inequality ([EFZ])

u|ab∗|u∗ ≤ 1

p
|a|p + 1

q
|b|q , (3.1)

we shall employ the work in the previous section on the tracial inequality.
It is fairly easy to show that Young inequality in trace or Hilbert–Schmidt

norm is strictly weaker than the operator inequality. Indeed, let a be any nonzero
positive trace-class operator, let b = ap/q , and let u be any unitary operator such
that ua 6= au. Then u∗ua = a and

tr (u|ab∗|u∗) = 1

p
tr (ap) + 1

q
tr (bq);

but clearly

u|ab∗|u∗ 6= 1

p
ap + 1

q
bq ,

since the first term is uapu∗ and the second term is ap.
Furthermore, if a, b are trace-class operators and u is a unitary commuting

with |ab∗|, then

tr (u|ab∗|u∗) = tr (|ab∗|) ≤ 1

p
tr (|a|p) + 1

q
tr (|b|q),

but u|ab∗|u∗ = |ab∗| can fail to be dominated as an operator by
1

p
|a|p + 1

q
|b|q ,

even if the Hilbert space has finite dimension.
As before, we examine the case of positive operators first.
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Theorem 3.1. Let a, b ∈ B(H) be positive trace-class operators, and suppose
that u ∈ B(H) is a partial isometry. Let p, q ∈ R

+ such that 1
p

+ 1
q

= 1. Then
the following statements are equivalent:

1. u|ab|u∗ = 1

p
ap + 1

q
bq;

2. bq = ap, R[u∗] ≥ R[b], and ub = bu.

Proof. Write H = H+ ⊕ H0, where H0 = ker b = ker bq . Thus,

b =
�

b+ 0
0 0

�

and u =
�

u11 u12

u21 u22

�

, (3.2)

where ker b+ = ker b
q
+ = {0}.

To prove that (1) implies (2), assume that u|ab|u∗ = 1

p
ap + 1

q
bq . Then, of

course,

tr (u|ab|u∗) = 1

p
tr (ap) + 1

q
tr (bq),

which implies by Theorem 2.1 that bq = ap and R[u∗] ≥ R[b]. Thus, it remains
to show that u and b commute.

The operator equation u|ab|u∗ = 1

p
ap + 1

q
bq simplifies to

ubqu∗ = bq , (3.3)

which indicates that ker bq = ker b is invariant under u∗. Hence, u12 = 0. There-
fore, the matricial form of (3.3) is

�

b
q
+ 0
0 0

�

=
�

u11b
q
+u∗

11 u11b
q
+u∗

21
u12b

q
+u∗

11 u21b
q
+u∗

21

�

. (3.4)

The (2, 2)-entries in (3.4) show that hbq
+u∗

21ξ0, u
∗
21ξ0i = 0, for all ξ0 ∈ H0.

Hence, u∗
21 maps H0 into ker b

q
+ = {0}, implying that u21 = 0. So, u = u+ ⊕ u0,

where u+ = u11 and u0 = u22.
Now equating the (1, 1)-entries in (3.4), we have u+b

q
+u∗

+ = b
q
+. Thus,

ran u+ ⊇ ran b+ = H+, meaning that u+ has dense range. Furthermore, the con-
dition R[u∗] ≥ R[b] implies that R[u∗

+] ≥ R[b+] = 1H+ . Hence, u∗
+u+ = 1H+

and so u+ is a surjective isometry (i.e., a unitary). Therefore, u+ commutes with
b

q
+. Passing to the q-th root, u+ commutes with b+ and therefore u = u+ ⊕ u0

commutes with b = b+ ⊕ 0.
To prove that (2) implies (1), assume that bq = ap, R[u∗] ≥ R[b], and

ub = bu. The matrix forms (3.2) of b and u satisfy ub = bu only if b+u12 = 0
and u21b+ = 0. But ker b+ = {0} shows that b+u12 = 0 is possible only if
u12 = 0. Likewise, passing to the adjoint of u21b+ = 0, the equation b+u∗

21 = 0
holds only if u∗

21 = 0. Therefore, u = u+ ⊕ u0, where u+ = u11 and u0 = u22.
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As noted above, the assumption that R[u∗] ≥ R[b] implies R[u∗
+] ≥ R[b+] and,

hence, u+ is an isometry. But moreover, ub = bu implies that u+b+ = b+u+,
and so the range of the isometry u+ contains the closed range of b+, namely
H+. Thus, u+ is a unitary commuting with b+ and so u+b

q
+u∗

+ = b
q
+, which

clearly implies that ubqu∗ = bq . Now making use of bq = ap, we conclude that

u|ab|u∗ = 1

p
ap + 1

q
bq . ut

Now we extend Theorem 3.1 to arbitrary trace-class operators. To do so we
shall make repeated use of the equation

|ab∗| = v

�
�
�
�
|a||b|

�
�
�
�
v∗ ,

where b = v|b| is the polar decomposition of b.

Theorem 3.2. Let a, b ∈ B(H) be trace-class operators, and suppose that u ∈
B(H) is a partial isometry. Let p, q ∈ R

+ such that 1
p
+ 1

q
= 1. Then the following

statements are equivalent:

1. u|ab∗|u∗ = 1

p
|a|p + 1

q
|b|q;

2. |b|q = |a|p, R[u∗] ≥ R[b], and ub = v∗(bu)v,

where b = v|b| is the polar decomposition of b.

Proof. Assume first that |b|q = |a|p, R[u∗] ≥ R[b], and ub = v∗(bu)v. Note
that uv is a partial isometry. Indeed, since vv∗ = R[b], we have that u∗uv = v,
or equivalently v∗u∗u = v∗. So v∗u∗uv = v∗v is a projection, and this implies
that uv is a partial isometry.

The condition u∗ub = b can be written as u∗uv|b| = v|b|. If we apply v∗ to
this equality and take into account that v∗v|b| = |b|, then (uv)∗(uv)|b| = |b|.
The condition ub = v∗buv can be written as uv|b| = |b|uv. So we have shown
that the conditions (2) are equivalent to

|b|q = |a|p, R[(uv)∗] ≥ R[|b|], (uv)b = b(uv),

with uv a partial isometry. Then, from Theorem 3.1, we get that

uv

�
�
�
�
|a||b|

�
�
�
�
v∗u∗ = 1

p
|a|p + 1

q
|b|q,

that is

u|ab∗|u∗ = 1

p
|a|p + 1

q
|b|q .

Conversely, if we assume condition (1), we can write it as

uv

�
�
�
�
|a| |b|

�
�
�
�
v∗u∗ = 1

p
|a|p + 1

q
|b|q, (3.5)
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where b = v|b| is the polar decomposition of b. From Theorem 2.2 applied to
condition (1), we have that |b|q = |a|p, and R[u∗] ≥ R[b]. Then again we know
that u∗uv = v, and so uv is a partial isometry, as we proved in the first paragraph.
Now from equation (3.5) and Theorem 3.1, we have that R[(uv)∗] ≥ R[b] and
uv|b| = |b|uv. As in the first part of the proof, these relations are easily seen to
be equal to the ones in condition (2). ut

4. Remarks and applications

This work began with the goal of proving that equality in the operator Young
inequality

u|ab∗|u∗ ≤ 1

p
|a|p + 1

q
|b|q, (4.1)

implies that |a|p = |b|q . While this problem remains open for arbitrary compact
operators, it has been settled by Hirzallah and Kittaneh (in Remark 4, following
Corollary 3 of [HK]) for Hilbert–Schmidt operators by way of the remarkable
inequality

kab∗k2
2 + 1

r2
k |a|p − |b|qk2

2 ≤





1

p
|a|p + 1

q
|b|q






2

2

,

where r = max{p, q}. Apart from the fact that the inequality itself is notable,
there is something else that the inequality leads to: the surprising fact that to
consider the case of equality in the operator inequality (4.1), one need only as-
sume that there is equality in the Hilbert–Schmidt norm. Our results in the present
paper are in the same vein: it is sufficient to assume only that tr (u|ab∗|u∗) =
1

p
tr (|a|p) + 1

q
tr (|b|q).

Combining [HK] with Theorem 2.2, one has the following result, which shows
the surprising “rigidity” of the Young inequality.

Theorem 4.1. Suppose p, q ∈ R
+ are such that 1

p
+ 1

q
= 1. If a, b ∈ B(H) are

trace-class operators and if u ∈ B(H) is a partial isometry, then the following
conditions are equivalent:

1. ku|ab∗|u∗k1 =





1

p
|a|p + 1

q
|b|q






1

;

2. ku|ab∗|u∗k2 =





1

p
|a|p + 1

q
|b|q






2

;

3. |a|p = |b|q and R[u∗] ≥ R[b].

Proof. The only thing to be verified is that one can eliminate from consideration
the partial isometry u in (2). This can be done by using the arguments employed
in (2.2) and (2.3), but applying them to the Hilbert–Schmidt norm instead of the
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trace. And then apply twice a reasoning like the one at the end of the proof of
Theorem 2.2 to get that R[u∗] ≥ R[b]. ut

The rigidity condition mentioned in the Theorem 4.1 is in fact stronger than
the way it was stated. In particular, for matrices a rather complete statement can
be established:

Theorem 4.2. Suppose p, q ∈ R
+ are such that 1

p
+ 1

q
= 1. If a, b ∈ Mn(C) are

matrices and if u ∈ Mn(C) is a partial isometry, then the following conditions
are equivalent:

1. |||u|ab∗|u∗||| =
�
�
�
�

�
�
�
�

�
�
�
�

1

p
|a|p + 1

q
|b|q

�
�
�
�

�
�
�
�

�
�
�
�

for every unitarily invariant norm

||| · |||;
2. |a|p = |b|q and R[u∗] ≥ R[b].

Proof. The assertion (1) implies (2) is clear from Theorem 4.1, for the trace norm
is a unitarily invariant norm.

Conversely, if |a|p = |b|q , then sj (a)p = sj (b)q for every j = 1, . . . , n, where
sj denotes the j -th singluar value. We write b = v|b| the polar decomposition of
b and note, as in the proof of Theorem 3.2, that u∗uv = v and v∗v|b| = |b|. Then,
writing k · k(k) for the k-th Ky Fan norm, we have (using that sj (x

∗x) = sj (xx∗)
for every j )

ku|ab∗|u∗k(k) =
k
X

j=1

sj (u|ab∗|u∗) =
k
X

j=1

sj (uv|b|qv∗u∗)

=
k
X

j=1

sj (|b|q/2v∗u∗uv|b|q/2) =
k
X

j=1

sj (|b|q/2v∗v|b|q/2)

=
k
X

j=1

sj (|b|q) =
k
X

j=1

sj

�
1

p
|a|p + 1

q
|b|q

�

=





1

p
|a|p + 1

q
|b|q






(k)

.

(4.2)

Thus, we have equality for all the Ky Fan norms, and so we have equality for
every unitarily invariant norm (see Theorem IV.2.2 of [Ba]). ut

Let us also mention the fact that one cannot expect in general that equality in
just one unitarily invariant norm forces condition (2) in Theorem 4.2. For instance
one can consider the Ky Fan norm k · k(1) (that is, the operator norm). Let

a =
�

1 0
0 �

�

, b =
�

1 0
0 0

�

.
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Then clearly

k|ab|k = 1,






1

p
ap + 1

q
bq






= 1,

but ap 6= bq . With the same idea it is easy to build examples for all the k-th Ky
Fan norms, k < n. (However, the case k = n is the trace norm.)

While working on this paper, the authors frequently encountered problems
concerning where the involution ∗ ought to be placed in conditions like R[u∗] ≥
R[b]. This difficulty is an illustration of an insightful and eloquent comment of
R.C. Thompson (at the bottom of page 87 of [T]) on the challenges one faces in
formulating operator inequalities. With Young’s inequality, at least for positive
operators, in the end it so happens that the concern about where to place the ∗
really does not matter. Indeed, this is because the condition of equality is so strong:
if we have trace-class operators a, b ≥ 0 and a partial isometry u such that

u|ab|u∗ = 1

p
ap + 1

q
bq ,

then by Theorem 3.1 we know that ap = bq , R[u∗] ≥ R[b] and ub = bu. We
have that

ubqu∗ = bq.

But, since u∗ub = b, if we conjugate the above equation with u∗ and u, we get

bq = u∗bqu,

which implies that

u∗|ab|u = 1

p
ap + 1

q
bq.

That is, in the operator equality the roles of u and u∗ can be interchanged.
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