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The Solanaceae is comprised of some 2500 species of cosmopolitan plants, especially native to the American continent. They 
have great value as food, like the well-known potato, tomato and eggplants, and medicines, like species of Atropa, Withania 
and Physalis, but many plants of this family are toxic, and sometimes lethal to mammals, in particular to man. Some of them 
also produce hallucinations and perceptual changes. The toxic species of this family are characterized by the occurrence of a 
variety of chemical compounds, some of which are responsible for the toxicity and lethality observed after ingestion, while 
others are suspected to be toxic. In this review, the following toxic compounds belonging to different members of the 
Solanaceae family are described: Tropane alkaloids (Atropa, Datura, Hyoscyamus, Mandragora); pyrrolidine and pyrrolic 
alkaloids (Nierembergia, Physalis, Solanum); protoalkaloids (Nierembergia); glycoalkaloids (Lycopersicon, Solanum); nicotine 
(Nicotiana); cardenolides (Cestrum, Nierembergia); capsaicinoids (Capsicum); kaurene-type tetracyclic diterpenes (Cestrum); 
steroidal glycosides (Cestrum, Solanum); 1,25-dihydroxyvitamin D3 and vitamin D3 (Cestrum, Solanum, Nierembergia); and 
withasteroids, withanolides (Withania), and physalins (Physalis). Other bioactive chemical constituents of members of this 
family are sugar esters and lectins. Phenylpropanoids are not included in this paper. 
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The Solanaceae contains some 2500 species of 
cosmopolitan plants, which are shrubs, vines, trees 
and bushes, especially native to the American 
continent. Many plants of this family have great 
value for man as food (for example potatoes, 
tomatoes, eggplants, and peppers), some of which 
were introduced into Europe after the conquest of 
America [1]. Many others are ornamental plants, 
while a great number are toxic, and sometimes lethal 
to mammals, in particular to man [2-4]. Furthermore, 
a group of Solanaceae is known to produce 
hallucinations and perceptual changes. 
 
This family is characterized by the occurrence of a 
variety of chemical compounds [5-7]. Some of them 
are responsible for the toxicity and lethality in 
mammals after ingestion of solanaceous plants, while 
others are suspected to be toxic. There are also 

compounds that have been earlier reported as 
showing some extent of toxicity, but their beneficial 
biological activities encouraged research in this latter 
sense. 
 
The toxic solanaceous compounds are:  
(1) Tropane alkaloids: Genera: Atropa; Datura; 
Hyoscyamus; Mandragora. 
(2) Pyrrolidine and pyrrolic alkaloids: Genera: 
Nierembergia (example, N. hippomanica); Physalis 
spp; Solanum (example, S. sturtianum). 
(3) Protoalkaloids: Phenethylamines: Genus: 
Nierembergia. 
(4) Glycoalkaloids: Genera: Lycopersicon; Solanum. 
(5) Nicotine: Genus: Nicotiana (example, N. 
tabacum).  
(6) Cardenolides: Genera Cestrum (example, C. 
parqui); Nierembergia (example, N. aristata).  
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(7) Capsaicinoids: Genus: Capsicum.  
(8) Kaurene-type tetracyclic diterpenes: Genus 
Cestrum (example, C. parqui). 
(9) Steroidal glycosides (neutral saponins): Genera: 
Cestrum (example, C. parqui); Solanum (example,   
S. nigrum).  
(10) 1,25-Dihydroxyvitamin D3 and vitamin D3: 
Genera: Cestrum (example, C. diurnum); Solanum 
(example, S. glaucophylum, also called S. 
malacoxylum); Nierembergia (example, N. veitchii).  
(11) Withasteroids: (a) Withanolides: Genus: 
Withania. (b) Physalins: Genus: Physalis. 
(12) Other bioactive chemical constituents:  
(a) Sugar esters. (b) Lectins. 
 
(1) Tropane alkaloids: Tropane alkaloids are 
distributed within the families Solanaceae, 
Erythroxylaceae, Proteaceae, Euphorbiaceae, 
Rhizophoraceae, Convolvulaceae and Cruciferae. 
These alkaloids are characteristic of the genera 
Datura, Brugmansia (tree datura) and Duboisia of 
the Solanaceae. However, the distribution is more 
widespread, with novel tropane derivatives in 
families not traditionally associated with these bases. 
The chemotaxonomy and geographical distribution of 
tropane alkaloids have been reviewed [8].  
 
The starting compound for the biosynthesis of the 
tropane alkaloids is ornithine and methylornithine    
is the first intermediate. Plants containing these 
alkaloids have been used throughout recorded history 
as poisons, but many of the alkaloids do   have 
valuable pharmaceutical properties. The 
biotechnological production of natural products of 
pharmaceutical value, based on genomic tools has 
been discussed [9].   
 
Several recipes for preparing ointments and 
beverages from medieval times used to include 
psychoactive Solanaceae plants [10]. In fact, these 
plants are drugs with a lot of tradition in the history 
of witchcraft [11], for example, the European plants 
known as 'the trio of the delirium': deadly nightshade 
(Atropa belladonna) [12], henbane (Hyoscyamus 
niger) [13], and mandrake (Mandragora officinarum) 
[14]; also some Datura species, for example,           
D. metel ('floripondio'), D. ferox ('chamico'), D. 
stramonium (‘stramon’; ‘devil's fig’), which is related 
to the Mexican 'toloache' (D. innoxia) that was used 
by the famous sorcerers of Catemaco in Veracruz and 
in other regions of Mexico, and Datura (Brugmansia) 
insignis, D. suaveolens, D. aurea and D. arborea (the 
last three species known as 'floripondios' in Mexico, 

'yas' or 'borrachero' in some regions of Central 
America, and 'estramonios' in Spain). All these 
Datura species are biologically complex, and have 
been used as hallucinogens from very ancient times, 
mainly in the Andes and in the Amazon region, 
where they are called 'toá' [15,16]. These species 
contain atropine, scopolamine and hyoscyamine as 
active principles. Different analytical methods have 
been reported for the analysis and separation of these 
toxic alkaloids. Recently, high performance capillary 
electrophoresis was successfully used [17]. 
 
Unlike other hallucinogens, these tropane alkaloids 
do not increase the sensorial perception, although 
their effects take place at very diverse levels: mouth 
dryness, tachycardia, body temperature increase, 
pupil enlargement, mental confusion, conscience 
obnubilation, and loss of recent memory. Drowsiness, 
delirium and coma are shown with high doses [18].  
 
When the Spaniards arrived in America, they found 
that the aborigines not only had surprising herbalist 
knowledge, but also they used plants for transforming 
their consciousness to other realities. In spite of the 
American Inquisition, the traditions and secrets of the 
herbs have survived in this continent, blended with 
tradition and European religion, leading to the 
phenomenon of witchcraft-chamanism that is still 
present in many towns of the American continent 
[19].  
 
D. innoxia ('toloache'), native to America, has been 
used for therapeutical and ritual purposes since 
before the arrival of the Spaniards to the continent. 
The ‘yaquis’ and the ‘zuni’ ethnic groups attributed 
to the drug the power of flying or transporting the 
soul toward the infinite. The ‘navajos’ used it to 
induce visions, to diagnose illnesses and to heal. 
Some North American tribes also used this Datura 
species for some adolescence initiation rites, in which 
the symbolic transit between death and rebirth 
justified the potent preparations. In Mexico, the use 
of this drug has not diminished either in the religious 
magic ceremonies or as a therapeutic agent.  
 
The main alkaloid of D. innoxia is scopolamine 
(Figure 1), and in lesser proportion, atropine. 
Atropine is the racemic form of hyoscyamine  
(Figure 2), and is used to dilate the pupils of the eye. 
Atropine is also a central nervous system (CNS) 
stimulant, and is used for the treatment of nerve gas 
poisoning. It is known that scopolamine is an 
authentic hallucinogen.  
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Figure 1: (-)-Scopolamine (hyoscine). 

 
Hallucinations are not only visual, as with LSD or 
mescalin, but also auditory and even tactile. Often, 
contact with reality is completely lost, and an 
external observer can see the intoxicated subject 
sustaining incoherent talk with nonexistent people or 
behaving out of context [19,20]. 
 
D. stramonium, also referred to as jimsonweed,   
thorn apple, stramon, and Jamestown weed, is           
a hallucinogenic plant that causes severe 
anticholinergic toxicity after accidental, recreational 
or intentional consumption of any part of the plant 
[21]. All parts of the plant, especially the seeds, 
contain hyoscyamine and scopolamine as toxic 
principles. Clinical symptoms are those of atropinic 
poisoning, particularly dryness of mouth, mydriasis, 
flushing, tachycardia, and agitation, as well as visual 
and auditory hallucinations [22,23]. Severe and even 
fatal complications (coma, respiratory distress, and 
death in more than 5% of cases) are not rare since the 
lethal concentration of hyoscyamine and scopolamine 
is close to the level at which delirium occurs        
[24]. The presence of tropane alkaloids in urine     
was demonstrated by gas chromatography-mass 
spectrometry (GC-MS) [22]. Blood samples taken 
twelve hours after D. stramonium ingestion were 
analyzed by liquid chromatography and mass 
spectrometry (LC-MS/MS) [24]. D. stramonium 
poisoning of horses has also been reported [25,26]. 
The outbreak was characterized by protracted and 
repeated colic attacks due to impaction of the large 
colon and/or caecum without any other anti-
muscarinic signs. D. stramonium seed extract has a 
rapid onset of effects and was shown to be useful for 
treatment of organophosphate poisoning [27].  
 
D. ferox ('chamico') is also a very toxic plant, which 
causes important cattle losses. We have studied the 
poisoning of farm animals in Argentina due to the 
accidental ingestion of chamico seeds mixed with the 
animals' food, and further isolated the lethal tropane 
alkaloids [28].  
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Figure 2: Hyoscyamine derivatives. 
 
Recently, the genes involved in tropane alkaloid 
biosynthesis have been reported and an unusual 
cytochrome P450 (CYP80F1) has been identified using 
a combined EST and virus-induced gene silencing 
(VIGS) approach [29]. 
 
(-)-Scopolamine is a (-)-(1S,3S,5R,6R,7S,8S)-6,7-
epoxy-3-[(S)-tropoiloxy]tropane, also known as 
hyoscine (Figure 1). The difference from atropine 
(racemic form of hyoscyamine) (Figure 2) is an 
oxygen bridge between C-6 and C-7. 
 
Atropine, hyoscyamine, scopolamine and hyoscine 
are parasympatholytic compounds. Atropine and 
scopolamine cause a central and peripheral 
anticholinergic blockade of the muscarine     
receptors located in the CNS, heart, intestine and 
other tissues. Psychiatric symptoms include 
restlessness, excitement, hallucinations, euphoria, 
and disorientation, but also stupor, coma and 
respiratory depression [30]. 
 
As result of the parasympathic system inhibition, 
salivary and stomach secretions diminish, thus giving 
rise to mouth dryness [31]. The symptoms also 
include mydriasis with slow reaction to light, blurred 
vision for near objects with occasional transitory 
blindness [31]; tachycardia, sometimes accompanied 
by hypertension, skin blushing due to skin 
vasodilation, sweat decrease, and hyperthermia that 
can reach 42°C [12].  
 
Like atropine, and hyoscyamine, scopolamine is an 
anticholinergic agent that in low doses blocks the 
cholinergic receptors of the brain, depressing the 
impulses of the nervous terminals, while in high 
doses, these compounds cause stimulation before 
depression [32,33]. In doses of more than 10 mg      
in children and more than 100 mg in adults, 
scopolamine  causes  convulsions,  severe depression,  
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Figure 3 
 

heart arrhythmias, severe tachycardia, fibrillation, 
breathing disturbances, vascular collapse, and death 
[12,34]. The maximum effect is reached after 1 to     
2 hours and then it diminishes very slowly. 
Scopolamine has a mean life of two and a half hours, 
and it is metabolized in the liver, giving tropic acid 
and scopine. Only 10% is excreted by the kidneys 
without being metabolized. Traces appear in the 
sweat and maternal milk. It crosses the placental 
barrier and acts on the fetus [12].  
 
Scopolamine is still widely used in anaesthetic 
practice and in other medical fields [35], such as 
treatment of motion sickness, depression [36], 
abdominal pain associated with cramps induced by 
gastrointestinal spasms [37], and for the prevention 
of brain damage and cognitive dysfunction induced 
by toxic organophosphate nerve agents, which cause 
severe adverse effects and long term changes in the 
peripheral and central nervous systems [38-40]. The 
antiemetic efficacy of transdermal scopolamine has 
also been reported [31]. 
 
Psychopharmacological studies in humans and 
animals have shown that a systemic cholinergic 
blockade may induce deficits in learning and 
memory. Tan et al. [41] examined the effects of 
scopolamine on morphine-induced conditioned place 
preference (CPP), thus showing that the effects of the 
systemic cholinergic blockade on morphine-induced 
CPP depended on the morphine exposure time. 
Furthermore, scopolamine induced disruption of 
latent inhibition that was prevented by antipsychotic 
drugs and an acetylcholinesterase inhibitor [42].  
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Figure 4 
 
Tropane alkaloids are chemical plant defenses. 
Scopolamine, the most abundant tropane alkaloid of 
Brugmansia suaveolens, in an artificial diet, 
increased mortality and prolonged the developmental 
time of the larvae of the generalist noctuid moth 
Spodoptera frugiperda [43].  
 
D. (Brugmansia) candida also contains the ester of  
3-phenyllacetic acid and teloidine (Figure 3) [44]. 
Aposcopolamine, and dimeric aposcopolamine, 
which contains two scopine rests as substituents, 
were isolated from Duboisia leichhardtii [45,46].    
α- and β-Scopodonnine were obtained by dimeri-
zation of aposcopolamine [47], and were also isolated 
from Datura innoxia seeds [48] (Figure 3). Several 
quaternary alkyl halides were synthesized from these 
scopodonnines and were shown to be myorelaxants 
[49]. Two stereospecific oxidoreductases constitute a 
branch point in tropane alkaloid metabolism [50].  
 
Aerial parts and roots of Schizanthus grahamii,        
S. hookeri, S. porrigens and S. pinnatus contain 
tropane alkaloids and in particular the ditropinesters 
called schizanthines A to M, and X to Z [51-53] 
(Figure 4). The separation of isomeric tropane 
alkaloids from S. grahamii was performed by       
non-aqueous capillary electrophoresis [54]. These 
alkaloids were further analysed by very fast gas 
chromatography [55], as well as being isolated and 
identified by two fully automated HPLC-NMR 
methods [56]. Recently, a rapid in vitro propagation 
system leading to formation of shoots from callus, 
roots, and plantlets was developed for S. hookeri 
[57]. 
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Physoperuvine, which is a quaternary 5-hydroxy-
tropanium chloride, was obtained from leaves and 
roots of Physalis peruviana (Figure 5) [44,58,59], 
which inhibited growth and induced apoptosis of 
human Hep G2 cells in culture [60].  
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Figure 6 
 
Scopolamine and tigloidine (3-β-tigloyloxytropane; 
Figure 6) were present in most Physalis and 
Nierembergia species [61,62].  
 
(2) Pyrrolidine and pyrrolic alkaloids: Pyrrolidine 
alkaloids are also found in solanaceous plants, for 
example, hygrine and anaferine, and others in      
most Physalis species, the methyl ester of 
homohygrinic acid in Solanum sturtiatum, and        
N-methylpyrrolidinylhygrines A and B (both 
epimers) in Datura innoxia (Figure 7).  
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Figure 8 
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Hygrine and norhygrine (Figure 8), together with 
other alkaloids, steroids, and the dihydroecdysteroid 
7,8-dihydroajugasterone C were isolated from 
Nierembergia hippomanica in our laboratories 
[61,62]. Hygrine and derivatives are also ornithine-
derivatives. 
 
The toxic principle of N. hippomanica was isolated 
and identified as pyrrole 3-carbamidine in our 
laboratories [63] (Figure 9).  It is worth mentioning 
that a variety of non-toxic, acylated O-glycosides      
of flavonoids have also been isolated from               
N. hippomanica [64-66]. 
 
(3) Protoalkaloids (phenethylamines): Phenethyl-
amines are not usual compounds of the Solanaceae, 
and they are found in other families, such as   
Poaceae and Cactaceae. β-Phenylethylamine,           
N-methyltyramine, tyramine, and hordenine have 
been isolated by us from N. hippomanica [61,62] 
(Figure 10). 
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These protoalkaloids contributed to the toxicity of 
this solanaceous plant with peripheric nervous signs, 
because of being sympathomimetic agents. 
Phenethylamines also showed central nervous signs 
due to crossing the blood brain barrier, as we have 
demonstrated by Tc-99m labeling [67]. 
 
(4) Glycoalkaloids: The Solanaceae is characterized 
by the occurrence of glycoalkaloids, which are basic 
saponins. Since these glycoalkaloids are widely 
distributed in Solanum species, they used to be called 
Solanum-alkaloids, and also alkaloid glycosides, in 
which the aglycone is a steroid alkaloid, and the 
sugar moiety is a branched trisaccharide (triose) or 
tetrasaccharide (tetraose) bonded to the C-3 hydroxy 
group of the steroid. According to the chemical 
skeleton of the aglycone (C27-steroid alkaloids = 
alkamines), the steroid alkaloids of the Solanaceae 
can have the basic structure of spirosolanols (Figure 
11), solanidanes (Figure 12), 22,26-iminocholestanes 
(Figure 12), 3-amino-spirostanes (Figure 13), and 
solanocapsine/ solanopubamines (Figure 13). The last 
group has an amino group at C-3, and a nitrogenous 
function in the E/F-rings. 
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Figure 11: Spirosolanols (aglycones of the glycoalkaloids). 
 
Solanum, Lycopersicon and Physalis species contain 
these toxic glycoalkaloids. Solanidine is the steroidal  
aglycone of some potato glycoalkaloids and a very 
important precursor for the synthesis of hormones 
and some pharmacologically active compounds    
[68-71]. 
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Figure 12: Solanidanes and 22,26-iminocholestanes. 
 
Recently, a new chemistry model within Density 
Functional Theory, called CHIH-DFT, was used to 
calculate the molecular structure of the aglycone 
solanidine, as well as to predict its IR and UV spectra 
[72]. Likewise, the molecular structure of the 
glycoside γ-solanine (Figure 12) was calculated and 
its IR and UV-vis spectra, and some other electronic 
parameters were predicted [73]. 
 
Glycoalkaloids are involved in plant defenses against 
insects and other pests, and have a variety of adverse 
as well as beneficial effects in cells, animals, and 
humans [74,75]. The two major glycoalkaloids 
present in tubers of S. tuberosum are α-solanine and 
α-chaconine, which together account for 95% or 
more of the glycoalkaloid content. The pharmacology 
and toxicology of the potato glycoalkaloids, as well 
as the anticarcinogenic and other beneficial effects 
have been recently reviewed [76].  
 
Both solanidine glycosides, α-solanine and               
α-chaconine, induced craniofacial malformations, 
whereas the spirosolanes tomatidine and tomatine 
were non-teratogenic, even at high dosage. 
Solasodine (Figure 11) was teratogenic, although at   
a dosage nearly ten-fold that required for terata 
induction by cyclopamine. Conformational analysis 
was used to relate induced teratogenicity to a 
negatively charged center accessible to the α-side of 
the steroidal plane. This correlation was based     
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upon two comparisons, that of the spirosolanes 
solasodine vs tomatidine and of 22S,25R-solanidine 
vs 22R,25S-dihydrosolanidine (demissidine) [77]. 
 
The steroidal glycoalkaloids are degradated once 
inside the organism to the aglycone, for example, 
solasodine, which may penetrate, by simple diffusion, 
the placental barrier and/or the brain blood barrier 
and impact the fetuses. S. lycocarpum fruit may act as 
a phytohormone, promoting perhaps some neural 
alterations that at the adult age may impair the sexual 
behavior of the experimental female without 
impairing the fertility and sexual hormone synthesis. 
These observed changes can be the direct 
consequence of the toxic actions of the steroidal 
alkaloid on the female offspring during fetal 
development [78]. 
 
Recently, the efficacy and mechanisms of                 
α-solasonine and α-solamargine-induced cytolysis on 
two strains of T. cruzi were reported [79]. 
 
The ethanol extract of potato has shown 
antinociceptive and anti-inflammatory activities in 
mice [80]. Solasodine, and the methanol extract of S. 
trilobatum also showed significant antiinflammatory 
activity [81]. 
 
The antiproliferative activities against human colon 
(HT29) and liver (HepG2) cancer cells of a series    
of structurally related compounds were        
examined. Evaluations were carried out with the 
potato trisaccharide glycoalkaloids α-chaconine      
and α-solanine; the disaccharides β1-chaconine,      
β2-chaconine, and β2-solanine; the monosaccharide  
γ-chaconine and their common aglycone solanidine; 
the tetrasaccharide potato glycoalkaloid dehydro-
commersonine; the potato aglycone demissidine; the 
tetrasaccharide tomato glycoalkaloid α-tomatine,     
the trisaccharide β1-tomatine, the disaccharide          
γ-tomatine, the monosaccharide δ-tomatine, and their 
common aglycone tomatidine; the eggplant 
glycoalkaloids solamargine and solasonine and their 
common aglycone solasodine; and the nonsteroidal 
alkaloid jervine [82]. All compounds were active in 
the assay, with the glycoalkaloids being more active 
than their hydrolysis products. The effectiveness 
against liver cells was greater than that against the 
colon cells. Potencies of α-tomatine and α-chaconine 
at a concentration of 1 μg/mL against the liver 
carcinoma cells were higher than those observed with 
the anticancer drugs doxorubicin and camptothecin. 
Since α-chaconine, α-solanine, and α-tomatine also 

inhibited normal human liver HeLa (Chang) cells, 
these compounds were proposed for either 
preventative or therapeutic treatments against 
carcinomas [82]. 
 
Five saponins, two steroidal alkaloids (solasodine, 
solanidine), and one sterol (stigmasterol) have been 
tested for their biological activities on human 1547 
osteosarcoma cells. Differences in activity were 
studied in terms of proliferation rate, cell cycle 
distribution and apoptosis induction. By using 
molecular modeling, spatial conformation and 
electron transfer capacity were calculated. The 
second property has been investigated by the HOMO 
repartition and the corresponding energy. Correlation 
between the experimental and the theoretical data 
showed the importance of the hetero-sugar moiety 
and the 5,6-double bond in the biological activity 
(apoptosis and cell cycle arrest) on the human 1547 
cell line. The importance of conformation at C-5 and 
C-25 carbon atoms was also discussed [83]. 
 
Glycoalkaloids have been reported to inactivate the 
Herpes simplex, H. zoster and H. genitalis viruses in 
humans, while the aglycones, including solasodine, 
might protect against skin cancer. Extracts of 
glycoalkaloids or solanidine were used to obtain a 
potential skin cancer preparation for clinical research 
[71]. Dried potato sprouts were used to obtain 
glycoalkaloids and solanidine. The yield of 
solanidine in a liquid-liquid system for the hydrolysis 
of glycoalkaloids was higher than that obtained using 
solid-liquid-liquid systems for glycoalkaloid 
hydrolysis from potato vines [71]. 
 
A cream formulation containing purified 
glycoalkaloids from the fruits of Solanum 
sodomaeum was effective in the treatment of 
malignant human skin tumors, basal cell carcinomas, 
squamous cell carcinomas and benign tumors, 
keratoses and keratoacanthomas. Steroidal  
glycosides were isolated from the underground parts 
of S. sodomaeum, and their antiproliferative activity 
against human promyelocytic leukemia (HL-60) cells 
was reported. Five compounds exhibited stronger 
activity than cisplatin [84]. 
 
The mixture of solasodine glycosides, called BEC, of 
the fruits of S. linnaeanum  (devil’s apple), which 
consisted of the triglycosides solasonine, solamargine 
and di- and mono-glycosides, retarded the progress of 
ocular squamous cell carcinoma in Hereford cattle. 
BEC had antineoplastic properties against a wide 
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variety of human cancers in cell culture, tissue 
culture, and was very effective against terminal 
tumors in animals [85].  
 
Toxic ornamental Solanum species used in gardening 
are: S. jazminoides or S. aviculare ('solano'),             
S. crispum ('tomatillo' or 'natre'; South American 
plant with white fruits), S. pseudocapsicum 
('Jerusalem cherry' bush, with small star-shaped 
white flowers, and red berries with many white   
seeds when ripening); S. pyracanthum (African 
species with violet flowers and thorny leaves), S. 
seaforthianum ('tears of San Pedro' or 'hiedro'; South 
American perennial vine, which can reach 6 m high, 
with beautiful scarlet-colored fruits), S. woodlands 
(native to Costa Rica; a climbing bush that can reach 
6 m high, with very showy hanging flowers).    
 
The invasive Solanum species that are toxic are:       
S. dulcamara ('European bittersweet', 'dulcamara'), a 
shrub with red fruits when ripening that contain 
solanine, thus being very dangerous, even lethal if 
ingested by small children; S. sodomeum ('devil's 
tomatera'), a South African bush with thorny stems 
and leaves that can reach 3 m high and which shows 
a 2 cm yellow fruit. This plant is widely distributed in 
the Mediterranean area; S. viarium ('apple of tropical 
soda', native to Brazil and Argentina), an invasive 
species in many countries of America, characterized 
by its white-spotted clear green fruits, which become 
greenish-yellow when ripening; S. eleagnifolium 
('silverleaf nightshade'); S. carolinense ('horsenettle'), 
a perennial plant  with thorny stems and leaves, clear 
violet to white flowers, and a green fruit; S. nigrum 
('black nightshade' or 'devil's tomatillo'), which is 
very similar to dulcamara, but with greenish-yellow 
fruits that become black when ripening, and not red 
as those of dulcamara. Because of its higher content 
of glycoalkaloids, for example solanine, chaconine, 
and solasodine, this species is even more dangerous 
than the sweet nightshade. The other nightshades 
have as their toxic principle solanine, usually in 
leaves, sprouts, and unripe berries. The ingestion 
results in acute hemorrhagic gastroenteritis, 
weakness, excessive salivation, dyspnea, tremors, 
progressive paralysis, prostration, and death [86]. 
Treatment  is  based  on  pilocarpine,  physostigmine, 
and gastrointestinal protectors. The seeds can 
contaminate grain, and recently, the toxicity of         
S. bonariense ("Naranjillo") to cattle has been 
reported in western Uruguay [87]. 
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Figure 13: 3-Aminospirostanes, solanocapsine/solanopubamines. 
 
Of the edible Solanum species, the eggplant            
(S. melongea) contains solanine, even in the fruits, 
but once cooked, it loses the toxicity, and is edible. 
The potato plant (S. tuberosum) and the new buds are 
toxic because they contain α-solanine (Figure 14) and 
α-chaconine (Figure 15), concentrated mainly in the 
flowers and sprouts (200 to 500 mg/100 g) [88]. 
These glycoalkaloids have the same aglycone, 
solanidine, but a different sugar moiety.  
 
Immuno-capillary electrophoresis with laser-induced 
fluorescence (CE-LIF) detection was used for the 
determination of total glycoalkaloids in potatoes 
[89,90] and was shown to be a rapid alternative to 
traditional  ELISA  and  HPLC methods. Nonaqueous 
capillary electrophoresis coupled with electrospray 
ionization-ion trap mass spectrometry (MS and 
MS/MS) detection was used for the identification  
and  quantification  of potato glycoalkaloids and their 
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relative aglycones [91]. Also, α-solanine and            
α-chaconine have been recently determined by 
HPLC, based on the chemiluminescent reaction of 
tris(2,2'-bipyridine)ruthenium(III) [92]. The detection 
limits of α-solanine and α-chaconine were 1.2 and 1.3 
ng/mL, respectively. The solanidine hydrolytic 
extraction in different solid-liquid-liquid systems was 
reported [69], which combined three different 
processes: extraction of glycoalkaloids from potato 
vines, their hydrolysis to solanidine, and the 
extraction of solanidine, in a single step. The IR and 
MS spectra of isolated solanidine were recorded. 
 
The occurrence of these glycoalkaloids in potatoes 
gives a bitter taste above 14 mg/100g, and a burning 
sensation to the mouth and throat above 20 mg/100g 
[93]. At these concentrations solanine and other 
potato glycoalkaloids are toxic [1]. They are not 
destroyed during normal cooking because the 

decomposition temperature of solanine is about 
243oC. 
 
Potatoes also contain proteinase inhibitors, which act 
as effective defenses against insects and micro-
organisms, but are not toxic to humans because of 
being destroyed by heat. Lectins or hemagglutinins 
are also present in potatoes, but are destroyed by 
heat, and potatoes are usually cooked before being 
eaten (see section 12.b. of this paper).  
 
Other toxic genera are Lycopersicon ('tomato'), for 
example L. esculentum, and Physalis ('ground 
cherry'), for example, P. viscosa. 
 
Tomatoes accumulate a variety of secondary 
metabolites, including phytoalexins, protease 
inhibitors, and glycoalkaloids as protection against 
adverse effects of hosts of predators, such as fungi, 
bacteria, viruses, and insects. Tomato glycoalkaloids 
are mainly α-tomatine and dehydrotomatine [94]. A 
new α-tomatine isomer, named filotomatine        
(MW 1033), has been reported, which shares a 
common tetrasaccharide structure (i.e., lycotetraose) 
(Figure 15) with α-tomatine and dehydrotomatine, 
and with soladulcidine as aglycone [95]. RP-HPLC 
with electrospray ionization (ESI) and ion trap mass 
spectrometry (ITMS) were used.  
 
Many of the glycoalkaloids found in nightshades 
have pharmacological and toxicological effects on 
humans due to their significant anticholinesterase 
activity and disruption of cell membranes [91]. When 
the activity of cholinesterase is strongly inhibited, the 
nervous system control of muscle movement is 
disrupted, resulting in muscle twitching, tremors, 
paralyzed breathing, and convulsions [96]. Upon 
ingestion of glycoalkaloids, it is considered that 
joints are damaged due to inflammation and altered 
mineral status, although this is not clear enough. 
However, Solanaceae glycoalkaloids can contribute 
to excessive loss of calcium from bone and excessive 
deposits of calcium in soft tissues.  
 
Mechanism of action: The glucoalkaloid, solanine is 
a direct irritant of the esophagic and gastric mucosa. 
Solanine inhibits acetylcholinesterase (AchE), as do 
most glycoalkaloids. Some of them, in addition, are 
atropine-type anticholinergic agents [88].  
 
Generally, leaves (especially withered) and green 
fruits are the toxic parts of Solanum plants, except for 
S. eleagnifolium, whose ripe fruits are more toxic 
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than the green ones. The toxic components are 
usually labile to heat, except for S. tuberosum 
(potato) [86]. 
 
Poisoning due to ingestion of glycoalkaloids has 
variable indications. However, in most cases, 
gastrointestinal problems (abdominal pain, vomiting, 
hemorrhagic diarrhea), and CNS signs (apathy, 
drowsiness, salivation, progressive weakness or 
paralysis, dyspnea, bradycardia, circulatory collapse, 
dilated pupils, tremors, incoordination and 
convulsions) can be distinguished. All these 
symptoms lead to paralysis, loss of consciousness, 
shock, coma, breathing depression, and death. Usual 
injuries include erythema and ulceration of the 
esophagic and gastric mucosa [88].  
 
(5) Nicotine: The pyridine alkaloids nicotine, 
nornicotine, anabasine and anatabine are 
characteristic of Nicotiana spp. (Figure 16), which 
include cultivated (N. tabacum), wild (N. attenuata 
and N. trigonophylla), and tree tobacco (N. glauca). 
Ornithine is the biosynthetic precursor of the 
pyrrolidine that occurs in the alkaloids of tobacco 
(nicotine, nornicotine), and other Solanaceae. 
Nicotine is a starting compound of numerous further 
tobacco alkaloids. Anabasine is a teratogenic agent, 
but nicotine is not. Wild and cultivated tobaccos 
contain some anabasine. Anabasine is the main 
alkaloid of the leaves of N. debneyi (ca. 50%)  
However, 85-99% of the total alkaloid content of tree 
tobacco, N. glauca, is anabasine. Anatabine is the   
main alkaloid of N. otophora (60%) [6]. 
 
Nicotine is a pyridine alkaloid with an asymmetric 
carbon, which occurs in high concentration in the 
leaves of the tobacco plant (N. tabacum). It accounts 
for nearly 5% of the weight of the plant. Of both 
isomers, L-nicotine [(S)-3-(1-methylpyrrolidin-2-yl) 
pyridine] is the active form, and it is found in tobacco 
(Figure 16). 
 
Poisoning due to consumption of tobacco leaves and 
stems has been reported in cattle, horses, sheep, and 
swine, as well as dogs and even humans (after 
consuming the leaves as boiled greens). 
 
Livestock progress from: excitement, shaking and 
twitching, rapid breathing, staggering, weakness and 
prostration,  coma, descending paralysis of the central 
nervous system, to death by respiratory failure. 
Recently, nicotine exposure and bronchial epithelial 
cell nicotinic acetylcholine receptor expression in the 
pathogenesis of lung cancer have been reported [97]. 
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Figure 16 
 
Deformed offspring due to ingestion of anabasine in 
tobacco has been documented in cattle, sheep, and 
swine. These deformities are clinically the same as 
those caused by maternal consumption of either 
lupine or poison hemlock: carpal flexure, cleft 
palates, arthrogryposis of the forelimbs and curvature 
of the spine [98,99].  
 
Smoking exerts complex central and peripheral 
nervous system, behavioral, cardiovascular, and 
endocrine effects in humans and is a primary risk 
factor for various cancers. Nicotine, a major 
constituent of tobacco, is the compound that is 
responsible for the development and maintenance of 
tobacco dependence. The balance between nicotine 
neuroprotection and toxicity depends on dose, 
developmental stage and regimen of administration 
[100].  The absorbed nicotine is rapidly metabolized 
to inactive cotinine by CYP2A6 in the human liver 
[101]. Genetic variation in the CYP2A6 gene can 
increase or decrease enzyme activity through altering 
either the protein's expression level or its structure 
and function. CYP2A6 genetic variation has been 
recently reviewed [102] taking into account its 
impact on in vivo nicotine kinetics, different 
phenotyping approaches for assessing in vivo 
CYP2A6 activity, and other sources of variation in 
nicotine metabolism, such as gender. There are large 
interindividual variations in the rate of nicotine 
metabolism within groups of individuals having the 
same CYP2A6 genotype. CYP2B6 genetic variation is 
associated with the metabolism of nicotine and 
cotinine among individuals with decreased CYP2A6 
activity [103]. The relationships between smoking 
behavior and the risk of cancer have been reported 
[101].  
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NO-synthase (NOS) is a heme-containing enzyme 
that catalyzes the oxidation of l-arginine to nitric 
oxide, an important cellular signaling molecule. 
Recently, it was found that aqueous extracts of 
tobacco cigarettes caused the inactivation of the 
neuronal isoform of NOS (nNOS) and that this might 
explain some of the toxicological effects of smoking. 
The exact identity of the chemical inactivator(s) is 
not known. Lowe et al. [104] recently analyzed  
extracts prepared from a variety of plants looking for 
nNOS inactivation. They found 18 plants that 
contained a chemical inactivator(s) of nNOS, 6 of 
which were members of the Solanaceae. Probably, 
the same or related chemical inactivators are 
involved.  
 
(6) Cardenolides: Cardenolides are characteristic    
3-O-glycosides (triosides or tetraosides) with an   
α,β-unsaturated γ-lactone at C-17, and a β-HO-14, 
which are responsible for the toxicity and lethality of 
some solanaceous plants. They are well-known 
components of the heart drug digitalis, for example, 
digitoxin (Figure 17), and which in Solanaceae 
produce similar heart effects, besides gastrointestinal 
disturbances.  
 
The mechanism of action of the cardiac glycosides 
consists of inhibition of the Na/K-ATPase enzyme 
system, which results in increased intracellular Na 
and decreased K. The poisoning due to cardiac 
glycosides is acute and characterized by 
gastrointestinal (abdominal pain, vomiting, diarrhea) 
and cardiovascular signs (bradycardia, arrhythmias, 
heart block, asystole). The lesions account for severe 
gastroenteritis, and agonal hemorrhages in the heart, 
and serous and mucous membranes.  
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Figure 17: The cardiac glycoside, digitoxin. 
 

Few cardenolides have been isolated from the 
Solanaceae. The toxic Cestrum parqui contains 
gitoxigenin glycosides (Figure 18) as cardenolides, 
which were isolated and identified in early studies. 
Later studies were performed on the toxic tetracyclic 
diterpenes [105-107]. 
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Figure 18: Aglycones of cardiac glycosides. 
 
The toxic Nierembergia aristata contains three 
cardenolides, 17-epi-11α-hydroxy-6,7-dehydrostro- 
phanthidin 3-O-β-boivinopyranoside, 6,7-dehydro-
strophanthidin 3-O-β-boivinopyranoside, and 6,7-
dehydrostrophanthidin 3-O-β-oleandro- pyranoside, 
of which the last one showed  a significant 
cytotoxicity towards eleven cancer cell lines [108].  
 
(7) Capsaicinoids: Capsicum includes many species 
of sweet and hot peppers, and chili peppers, such as 
Tabasco peppers and ‘habaneros’. In the spice 
category, paprika is derived from C. annum,           
the common red pepper, and cayenne pepper from   
C. frutescens. Tabasco sauce contains high amounts 
of C. annuum, and is also considered a nightshade 
food. According to Dewit and Bosland [109], there 
are five species of Capsicum peppers native to the 
American continent: C. pubescens, C. baccatum,     
C. annuum, C. frutescens and C. chinense. The 
hottest chili peppers belong to the C. chinense group, 
including the notorious 'habanero'. This species is 
native to the Amazon Basin of South America.  
 
Capsicum species contain members of the vanilloid 
family, currently known as capsaicinoids [110]. The 
extracts contain at least five capsaicinoids of       
well-known pungency, of which three are 
predominant: capsaicin (8-methyl-N-vanillil-6-
nonenamide), dihydrocapsaicin and nordihydro-
capsaicin (Figure 19). Capsaicinoids are produced in 
the plant probably as a defense against herbivore 
animals. Birds in general are not sensitive to 
capsaicinoids, and thus serve to disperse the seeds. 
Capsicum extract and capsaicin modulate T cell-
immune responses, and their immunomodulatory 
effects on murine Peyer's patch (PP) cells are partly 
due to both transient receptor potential vanilloid 1 
(TRPV1)-dependent and -independent pathways 
[111]. 
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Recently, two glucosides, capsaicin-β-D-gluco-
pyranoside and dihydrocapsaicin-β-D-glucopyrano-
side have been isolated from the fruit of C. annuum 
cultivar 'High Heat' [112]. They were sequentially 
purified by acetone, n-hexane, and acetonitrile 
extractions, followed by medium-pressure liquid 
chromatography and RP-HPLC. Their chemical 
structures were elucidated by 1H- and 13C NMR 
spectroscopy, and hydrolysis with α- and                  
β-glucosidases. The glucosides were also detected    
in various pungent cultivars of C. annuum,               
C. frutescens, and C. chinense by liquid 
chromatography-mass spectrometry (LC-MS) [112]. 
However, these glucosides were not detected in 
nonpungent cultivars of C. annuum. Furthermore, a 
positive correlation was observed between the 
quantity of the capsaicinoids, capsaicin, and 
dihydrocapsaicin, and their glucosides. 
 
Capsaicin is also used as medication and as tear gas. 
In high quantities it can be very toxic. The poisoning 
symptoms are difficulty to breathe, blue skin and 
convulsions. However, accidental poisoning due to 
chili consumption is rare.  
 
In fact, capsaicin is a neurotoxin [113], which has 
been studied in diverse pain anomalies because, after 
causing an initial irritation, it produces analgesic 
effects, and substantial relief to the pain associated 
with osteoarthritis, rheumatic arthritis, Herpes and 
diabetic neuropathy. The effects on the nervous 
system of chili peppers have been recently reported 
[113]; nerve regeneration and a clinical trial design 
are included. 
 
Capsaicin is used in urology for the treatment of 
dysfunctions, like vesical hyperactivity, detrusor 
hyperreflexia and vesical pain. Capsaicin activates 
the sensorial nervous fibers by binding to the 
vanilloid subtype 1-receptor (vanilloid-1 receptor), a 
non-selective cationic channel, present in the 
peripheral terminals of the nociceptive neurons 
[114,115]. After activation of the vanilloid-1 
receptor, capsaicin and other vanilloids desensitize 
the sensorial neurons, turning them refractory           
to  subsequent  stimuli that cause pain [116].  Besides 
desensitizing the type-C afferent neurons, capsaicin 
also alters the release, from the peripheral    
terminals, of substance P, neurocinine A, a peptide 
related to the gene of calcitonin and other 
neurotransmittors/neuropeptides, which act in the 
inflammation response. 
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Figure 19 
 
It is thought that the effect of capsaicin on pain is 
mediated by its action on the sensory neurons with 
amielinic type-C axons, which take part in the 
transmission of nociceptive information toward the 
CNS. They also release different proinflammatory 
mediators that participate in fibers of the bladder, 
which transmit nociceptive signs to the CNS, and are 
those that seem to play a role in the sign transmission 
that gives rise to detrusor hyperactivity [117,118]. It 
is probable that an identical or similar mechanism 
accounts for the effects of capsaicin in the bladder.  
 
Recently, Soontrapa et al. [119] evaluated the 
effectiveness of capsaicin in 25 patients with either 
hyperactive or hypersensitive bladder with primary 
detrusor instability. These investigators graded as 
very high the effectiveness of capsaicin for 
hyperactive and hypersensitive bladder and for 
primary detrusor instability.  
 
In most studies there were no complications due to 
the treatment with capsaicin. However, the initial 
disturbance (suprapubic ardour sensation or pain), 
associated with capsaicin instillation is an important 
dissuasive factor for the most widespread use of 
treatment with capsaicin [117].  
 
Recently, Takahashi et al. [120] reported that 
capsaicin inhibited catecholamine secretion and 
synthesis via suppression of Na+ and Ca2+ influx 
through a vanilloid receptor-independent pathway. 
These authors studied the effects of capsaicin on 
catecholamine secretion and synthesis in cultured 
bovine adrenal medullary cells. 
 
Capsaicinoids showed antitumor activity. These 
compounds adhered to the proteins in the 
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mitochondria of the cancerous cells giving rise to 
apoptosis, without damaging the surrounding healthy 
cells, because the mitochondrial biochemistry of the 
cancerous cells is very different from that of the 
normal cells. However, capsaicin also exhibited a 
carcinogenic potential. To clarify the mechanism for 
expression of the potential carcinogenicity of 
capsaicin, Oikawa et al. [121] examined DNA 
damage induced by capsaicin in the presence of a 
metal ion and several kinds of cytochrome P450 
(CYP) using 32P-5'-end-labeled DNA fragments. 
Capsaicin induced Cu(II)-mediated DNA damage 
efficiently in the presence of CYP1A2 and partially in 
the presence of 2D6. DNA damage was inhibited by 
catalase and bathocuproine, a Cu(I) chelator, 
suggesting that reactive species derived from the 
reaction of H2O2 with Cu(I) participate in DNA 
damage. Formation of 8-oxo-7,8-dihydro-2'-
deoxyguanosine was significantly increased by 
CYP1A2-treated capsaicin in the presence of Cu(II). 
Therefore, Cu(II)-mediated oxidative DNA damage 
by CYP-treated capsaicin seemed to be relevant for 
the expression of its carcinogenicity [121]. 
 
Various procedures for the extraction of 
capsaicinoids have been assessed as an alternative to 
conventional Soxhlet and sonication methods. 
Analysis of the capsaicinoids was also performed in 
order to improve the obtention and quantitation of 
these compounds. Recently, capsaicinoids were 
extracted from peppers by pressurized liquid 
extraction (PLE) [122]. These compounds were 
determined by RP-HPLC, with detection by 
fluorescence spectrophotometry and MS. The 
stability of capsaicin and dihydrocapsaicin has been 
studied at different temperatures (50-200oC), and 
several extraction variables have been assayed. 
Finally, the PLE method developed has been applied 
to quantify the capsaicinoids present in three varieties 
of hot peppers cultivated in Spain, quantifying      
five capsaicinoids: nordihydrocapsaicin, capsaicin, 
dihydrocapsaicin, an isomer of dihydrocapsaicin, and 
homodihydrocapsaicin [122]. 
 
A microwave-assisted extraction (MAE) procedure 
combined with 1H-NMR spectroscopy was reported 
[123], and optimized for the extraction and 
quantitative determination of capsaicin in C. 
frutescens. The optimized MAE method provided 
extracts that were analyzed quantitatively using       
1H NMR spectroscopy without either any preliminary 
clean-up or derivatization steps. In the 1H NMR 
spectrum of the crude extracts, the doublet at δ 4.349-

4.360 was well separated from other resonances in 
deuterated chloroform. The quantity of the compound 
was calculated from the relative ratio of the integral 
value of the target peak to that of a known amount of 
dimethylformamide as internal standard.  
 
The morphology, productive yield, main quality 
parameters and genetic variability of eight landraces 
of hot pepper (C. annuum ssp.) from Southern Italy 
have been recently reported [124]. Chemical and 
genetic investigations were performed by HPLC    
and random amplified polymorphic DNA (RAPD)-
PCR, respectively. In particular, carotenoid and 
capsaicinoid (pungency) contents were considered as 
the main quality parameters of hot pepper. For the 
eight selected samples, genetic similarity values were 
calculated from the generated RAPD fragments and a 
dendrogram of genetic similarity was constructed. All 
eight landraces exhibited characteristic RAPD 
patterns that allowed their characterization. The 
results led to the identification of three noteworthy 
populations, suitable for processing, which fitted into 
different clusters of the dendrogram [124]. 
 
A liquid chromatography-electrospray ionization/ 
time-of-flight mass spectrometry (LC-ESI/TOF-MS) 
method has been developed for the direct and 
simultaneous determination of capsaicin and 
dihydrocapsaicin in fruit extracts from different 
Capsicum genotypes [125]. Chromatographic 
separation of capsaicin and dihydrocapsaicin was 
achieved with a RP chromatography column, using a 
gradient of methanol and water. Quantification was 
achieved using as internal standard (4,5-dimethoxy- 
benzyl)-4-methyloctamide, a synthetic capsaicin 
analogue not found in nature. Analytes were base-
peak resolved in less than 16 min, and limits of 
detection were 20 pmol for capsaicin and 4 pmol for 
dihydrocapsaicin [125].  
 
Capsaicinoids were determined in habanero pepper 
extracts by a chemometric analysis of UV spectral 
data [126]. The method consisted of partial-least-
squares (PLS-1) multivariate regression modeling 
techniques in conjunction with UV spectral data 
obtained  on  alcoholic  extracts  of  habanero peppers  
(C. chinense). The PLS-1 regression models were 
developed by correlating the known total 
concentration of the two major capsaicinoids 
(capsaicin and dihydrocapsaicin) in the extracts, as 
determined by HPLC, with spectral data. The 
regression models were subsequently validated with 
laboratory-prepared test sets [126].  
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 (8) Kaurene-type tetracyclic diterpenes: Cestrum 
parqui L'Hérit. (common name, 'green cestrum', 
'duraznillo negro', 'palqui') is a perennial plant, 1 to   
2 m high, native to the south of South America, 
especially Argentina and Chile. It is also found in 
Australia where it was introduced as an ornamental 
plant [127] because of the clusters of yellow flowers, 
and the violet to black berries. The bush has a 
characteristic, unpleasant scent, which is rejected by 
livestock. However, the plant can be consumed by 
animals recently arrived to the sector or when it is the 
only green forage, thus causing accidental poisonings 
[128,129].  
 
The compounds responsible for the toxicity to cattle 
are diterpenoid (kaurene) glycosides, which are 
mitochondrial poisons [130]. Parquin and 
carboxyparquin (Figure 20) are toxic kaurenoid 
glycosides very similar to the diterpenoid 
atractyloside, which has been isolated from Wedelia 
glauca (Asteraceae) in our laboratories [131], 
together with other tetracyclic diterpenes [132]. In 
particular, carboxyparquin, fed to mice at doses of 
approximately 4 mg/kg, led to severe liver damage 
and signs of kidney damage. Carboxyparquin is    
also present in Cestrum elegans and C. tomentosum. 
ent-Kaurene tetracyclic diterpenes have shown 
antimicrobial activity [133,134], and ent-kaur-16-en-
19-oic acid cytotoxic activity against KB cells [135]. 
 
Injuries were found first in the liver. Together with 
this liver damage, hemorrhages were observed as 
petechias and ecchymosis in the heart (epi, peri and 
endocardium); hemorrhages were also seen in the gall 
bladder and in the bowel serous. The hemorrhagic 
lesions would be due to a decrease of clotting factors 
due to hepatic dysfunction [136]. The hepatic damage 
resulted in an increase of aspartate-aminotransferase 
and the prothrombine time. These values were used 
for diagnosis and prognosis in the non-fatal 
intoxications. A microhistological technique was 

used to confirm the diagnosis of ruminant 
intoxication by C. parqui [137]. 
 
The clinical signs in the intoxicated animals appeared 
abruptly as prevailing excitement, incoordination, 
muscular tremors, sweat, abdominal pain, anorexy 
and dyspnea. Death occurred 4 to 8 hours after the 
beginning of the clinical signs, although longer 
evolution is known [107,127,128]. The mortality was 
about 80 to 100%. The lethal dose for bovines was  
10 g dry matter/kg body weight [128], with variations 
throughout the year. 
 
(9) Steroidal saponins: Saponins can be divided into 
steroidal saponins, triterpene saponins and 
glycoalkaloids (basic saponins). Steroidal saponins 
(steroidal glycosides) are widespread in the 
Solanaceae. The steroidal sapogenins of this family 
are usually spirostanes, but a few spirofuranes are 
known (Figure 21). 
 
The properties of the saponins are the formation of 
stable foams when agitated in water, the formation of 
oil-in-water emulsions, hemolytic activity, hormonal 
modulation, antiinflammatory, hypocholesterolemic, 
diuretic, antimicrobial and inhibition of cancer cell 
growth, stimulation of the immune system, and 
protection against bone loss. Sapogenins have a 
direct antioxidant activity, which may results in other 
benefits, such as reduced risk of cancer and heart 
diseases [138]. The compounds have a variety of 
applications  in the pharmaceutical, cosmetics, food, 
detergents and mining industries, for example ore 
separation in industrial and mining operations, and 
products such as photographic emulsions and films, 
creams, shampoos, and adjuvants in animal vaccines 
[138]. Not only their detergent properties have led to 
their cosmetic use, but also the antifungal, 
antibacterial, antiinflammatory and vasoprotecting 
properties, in addition to their emollient effects, for 
example occlusion, humectant and lubrication 
[139,140]. Saponins are used in cosmetics and for the 
manufacture of pharmaceutical compositions for 
treating the skin in order to increase the amount of 
collagen IV in the dermo-epidermal junction [141].  
 
The antimycotic activity of Solanum chrysotrichum is 
useful for the treatment of fungal foot infections, 
extracts being applied externally in the treatment of 
the superficial mycosis due to Tinea pedis, without 
producing secondary effects [142]. The extract of     
S. chrysotrichum showed  biological  activity  against 
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Figure 21 
 
dermatophytes and yeasts.  A shampoo containing a 
standardized extract of S. chrysotrichum showed 
therapeutic effectiveness for the topical treatment of 
Pityriasis capitis (dandruff), which is a seborrhoeic 
dermatitis of the scalp, associated with the yeast 
genus Malassezia [143]. 
 
An example of a saponin is dioscine (Figure 22). The 
sugar moiety, bonded to HO-3 of the sapogenin, is 
usually a branched trisaccharide or tetrasaccharide. In 
this example, it is a branched trisaccharide called 
chacotriose.  
 
Saponins occur in plants as a multi-component 
mixture of compounds of very similar polarities. 
Therefore, the separation of each component requires 
a combination of different chromatographic 
techniques, for example, first separation of the 
mixture on C18 columns, followed by further 
purification on a normal phase silica gel column. 
Especially difficult is the determination of saponins 
in plant material, as these compounds do not possess 
chromophores  and their profiles cannot be registered 
by UV. The techniques for quantification of saponins 
in plant material have been recently reviewed [144]. 
These include the application of evaporative Light 
scattering detection (ELSD) for saponin profiling and 
quantification; liquid chromatography-electrospray 
mass spectrometry (LC/ESI/MS) for saponin  
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determination; and sensitive and compound specific 
ELISA tests for some saponins. 
 
Saponins, if swallowed, may be poisonous, when they 
are called sapotoxins, and may cause urticaria (skin 
rash) in humans. Cestrum parqui, which is a toxic 
species of Argentina and Chile, is one of the examples 
of a solanaceous plant that contains toxic tetracyclic 
diterpenes, and also toxic saponins, which have the 
spirostanols gitogenin, digitogenin, and tigogenin as 
sapogenins (Figure 21) [105-107,145]. The saponins 
showed a strong irritating action on the digestive 
mucous membrane, and also produced degeneration of 
the hepatic tissues [106]. Saponins were considered 
responsible for the liver necrosis. The occurrence of 
cardiotonic glycosides caused stimulus of the vagus 
action on the heart, leading to bradycardia, 
atrioventricular blockade and death by heart failure 
[106].  
 
Two steroidal glycosides, parquisoside A and B were 
also isolated from the aerial parts of C. parqui. The 
common aglycone was a steroid of the spirostane 
series, named parquigenin [146], which had the 
structure (3β,24S,25S)-spirost-5-ene-3,24-diol, i.e. a 
(24S,25S)-24-hydroxydiosgenin. On the basis of 
detailed spectroscopic studies and chemical analysis, 
the structures of parquisosides A and B were 
elucidated as (3β,24S,25S)-spirost-5-ene-3,24-diol 3-
O-{[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyrano-
syl-(1→4)-α-L-rhamnopyranosyl-(1→4)}-β-D-gluco-
pyranoside and (3β,24S,25S)-spirost-5-ene-3,24-diol 
3-O-{[α-L-rhamnopyranosyl)-(1→4)-α-L-rhamnopyr-
anosyl-(1→2)]-β-D-glucopyranosyl-(1→4)-α-L-rha-
mnopyranosyl-(1→4)}-β-D-glucopyranoside, respect-
tively [146].  
 
Recently, two steroidal saponins were purified from 
cayenne pepper (Capsicum frutescens) [147]. Both 
contained the same aglycone, but differed in the 
number of glucose moieties: the first saponin had 
four (MW 1081) and the second had three (MW 919). 
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The larger saponin was slightly fungicidal against the 
nongerminated and germinating conidia of 
Aspergillus flavus, A. niger, A. parasiticus, A. 
fumigatus, Fusarium oxysporum, F. moniliforme and 
F. graminearum, whereas, the second saponin    
(MW 919) was inactive against these fungi. The 
results indicated that the absence of one glucose 
molecule affected the fungicidal and aqueous 
solubility properties of these similar molecules [147]. 
 
Six steroidal saponins, solanigrosides C-H, and the 
saponin degalactotigonin were recently isolated from 
the toxic plant Solanum nigrum [148]. Their chemical 
structures were elucidated by spectroscopic analysis, 
chemical degradation, and derivatization. All seven 
compounds were tested for their cytotoxicity        
using four human tumor cell lines (HepG2, NCI-
H460, MCF-7, SF-268). Only degalactotigonin was 
cytotoxic, with IC50 values of 0.25-4.49 μM [148]. 
 
(10) 1,25-Dihydroxyvitamin D3 and Vitamin D3: 
Cholecalciferol (vitamin D3) and its metabolites are 
responsible, together with other conduction 
regulators, of the complex homeostasis pathways of 
calcium and phosphorus in vertebrates. These 
minerals are used in many biological processes, such 
as the regulation of muscular and nervous functions, 
and the development and maintenance of bone 
structure.  
 
Vitamin D3, previtamin D3, and other metabolites, 
previously known to be synthesized only in mammals 
and birds, have been detected also in the so-called 
calcinogenic plants. The intermediate is formed by a 
photoreaction at a wavelength of 250-310 nm from 
the 7-dehydro derivative (Figure 23).  
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Figure 23 
 

Secosteroids, such as previtamin D3, show cis-trans 
isomerism in an equilibrium shifted toward the S-
trans, S-cis contribution (Figure 24). 
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Figure 24 
 
The intermediates and enzymes of the vitamin D3 
pathway have been detected in plant, cell and tissue 
cultures [149]. Studies with in vitro plant systems 
revealed a functional role of vitamin D3 compounds 
[150]. 
 
On the basis of cladistic analysis the presence of 
these compounds was predicted to be a characteristic 
of Angiosperms [149]. Both plants and animals 
seemed to possess a similar synthetic route to    
1α,25-(OH)2D3. The 1α,25-(OH)2D3 was shown to 
behave in plant systems in the same way as in   
animal systems through binding to a specific  
receptor (vitamin D receptor, VDR) [151]. Recently, 
competition assays allowed the detection of     
binding sites for [3H]-1α,25-(OH)2D3 in cultured S. 
glaucophyllum cells [151]. The data demonstrated 
that S. glaucophyllum cells, which produced 1α,25-
(OH)2D3, also expressed a cognate binding protein(s) 
and were able to respond to 1α,25-(OH)2D3 [151].  
 
Vitamin D3, applied exogenously in solution, 
stimulated 45Ca2+ uptake into the shoots of potato 
plantlets of micropropagated potato (S. tuberosum) 
cultivars [152,153]. Therefore, the vitamin D group 
apparently played a similar role in both plants and 
animals by affecting Ca absorption and Ca-mediated 
cellular functions. 
 
1 ,25-(OH)2D3, the hormonally active form of 
vitamin D3, has been shown to be a potent negative 
growth regulator of breast cancer cells both in vitro 
and in vivo. In addition to regulating gene 
transcription via the specific intracellular VDR, 
1α,25-(OH)2D3 induced rapid, non-transcriptional 
responses   involving   activation  of   transmembrane 
signal transduction pathways, like growth factors and 
peptide hormones [154]. 
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1α,25-(OH)2D3 was shown to inhibit serum induced 
activation of ERK-1 and ERK-2 mitogen-activated 
protein kinases (MAPKs) [155]. The non-receptor 
tyrosine kinase Src was involved in the pathway 
leading to activation of ERK 1/2 by serum. Capiati et 
al. [154] showed that 1 ,25-(OH)2D3 inhibited the 
MAPK cascade by inactivating Src tyrosine kinase 
through a mechanism mediated by the VDR and 
tyrosine phosphatases. 
 
Enzootic calcinosis or metastasic calcification is 
produced in mammals by ingestion of the following 
solanaceous calcinogenic plants, Solanum 
glaucophyllum (native to South America), 
Nierembergia veitchii (native to South America), and 
Cestrum diurnum (native to southern USA,  
particularly Florida). Another non-solanaceous 
calcinogenic plant is Trisetum flavescens, which is 
native to southern Germany. Spontaneous calcinoses 
of animals are chronic debilitating diseases 
characterized by mineralization of the soft        
tissues, especially in the cardiovascular system      
and lungs. Most of these diseases are associated to 
1,25-(OH)2D3 (Figure 25) present in the calcinogenic 
plants [156]. 
 

Solanum glaucophyllum Desf. (syn., S. malacoxylum 
Sendtn.) (c.n., ‘duraznillo blanco’) is responsible for 
an enzootic calcinosis in cattle, horses, and sheep in 
Argentina, Brazil, Paraguay and Uruguay [157]. 
 
Toxicity has also been induced in rabbits, mice and 
rats. This disease, called ‘enteque seco’, is 
characterized by the calcification of the soft tissues, 
especially aorta, heart, lungs and kidneys [158,159]. 
Although excess ingestion of S. malacoxylon can 
cause hypercalcemia, hyperphosphatemia, sometimes 
hypomagnesemia and soft tissue calcification, 
controlled administration has useful therapeutic 
applications [160]. 
 
S. glaucophyllum contains high levels of the 
previtamin D3, cholecalciferol (1,25-dihydroxy-
vitamin D3; 1,25-(OH)2D3), as a glycoside [161], and 
other metabolites, such as vitamin D3 and 25-(OH)D3 
[162] (Figure 25), and diosgenin, as well as enzymes 
(cholecalciferol-25-hydroxylase and 25-hydroxy-
cholecalciferol-hydroxylase) that are able to 
hydroxylate cholecalciferol to active metabolites. 
Glycoalkaloids are also present, for example            
α-solanine and α-solamargine.  
 
The occurrence of 7-dehydrocholesterol, vitamin   
D3, 25-(OH)D3  and/or 1α,25-(OH)2D3 in S. 
glaucophyllum [163,164], Lycopersicon esculentum 
(tomato), S. tuberosum (potato), Cucurbita pepo 
(zucchini) [165], Nicotiana glauca [166] and other 
species has been demonstrated, involving a light-
dependent pathway in the formation of vitamin D3 in 
plants similar to that of vertebrates. However, other 
evidence supported the operation of a non-photolytic 
reaction for vitamin D3 synthesis [150].  
 
Solanum glaucophyllum callus cultures were found to 
contain 17β-estradiol, estrone, and also abundant 
estrogen binding sites [167]. The results provided the 
first evidence for the existence of estrogen binding 
proteins structurally related to the mammalian ER α 
subtype in a higher plant system. The action of 
estrogen might be mediated by the classical nuclear 
estrogen receptor or through putative receptors with 
non-classical localization. There was evidence 
showing antiapoptotic effects of estradiol in various 
cell types. Recently, Vasconsuelo et al. [168] showed 
that 17β-estradiol, at physiological concentrations, 
abrogated DNA damage, PARP cleavage and 
mitochondrial cytochrome c release induced by H2O2 
or etoposide in mouse skeletal muscle C2C12 cells. 
This protective action, which involved PI3K/Akt 
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activation and BAD phosphorylation, was inhibited 
by antibodies against the estrogen receptor (ER) α or 
β isoforms, or transfecting siRNA specific for each 
isoform. 
 
The influence of UV light (6 h radiation with 254 
nm) in the calcinogenic activity of T. flavescens and 
N. veitchii has been tested [169]. Mello and 
Habermehl [170] also reported the incubation effects 
of rumen fluid on aqueous extracts of T. flavescens, 
S. glaucophyllum, N. veitchii, and Cestrum 
laevigatum. The rachitic chicken test was performed, 
and the serum levels of Ca, P, and alkaline 
phosphatase were determined. Extracts of S. 
glaucophyllum, and C. diurnum, as well as          
1,25-(OH)2vitD3-25-O-glucoside, gave (without 
incubation) an increased activity, while with 
incubation a small additional effect was        
observed. Comparable effects were obtained with 
1,25-(OH)2vitD3-1-O-glucoside, as well as 1,25-
(OH)2vitD3-3-O-glucoside [170]. 
 
Cell differentiation damage induced by calcinogenic 
plants has been analyzed in skin, aorta and lungs 
[171]. Aguirre et al. [172] reported the bone and 
growth cartilage changes after subacute poisoning of 
rabbits with S. glaucophyllum. Recently, Gil et al. 
[173] validated a method to estimate the amounts of 
1,25-(OH)2D3 in S. glaucophyllum leaves, based on a 
purification using C18 minicolumns, and RIA assays 
with an antibody raised in rabbits by injection of the 
acid-C22, 1α-(OH)vitamin D3. Data were expressed  
as glycoside equivalent to 1,25-(OH)2D3 in ng/g       
of dry leaves, and further compared with those of 
1,25-(OH)2D3 levels [μg of 1,25-(OH)2D3/g dry 
leaves] measured, in the same samples, by HPLC 
with UV detection, after enzyme cleavage. Then,     
S. glaucophyllum leaves were first incubated with 
rumen fluid, followed by C18-OH solid phase 
extraction, and HPLC analysis. 
 
The calcinogenic annual plant Nierembergia veitchii 
is widely distributed in Rio Grande do Sul, Brazil 
[174], and in northern Argentina [175]. Arterial 
lesions consisted of diffuse calcification of the media 
with areas of cartilage and bone metaplasia and 
infiltration of macrophages and occasionally 
multinucleated giant cells. Diffuse intimal thickening 
(DIT) was very prominent and, in some areas, 
reached several times the thickness of the media 
[174]. 
 

Oliveira Vasconcelos et al. [176] described the cells 
and extracellular matrix of DIT in spontaneous 
calcinosis of sheep induced by N. veitchii. 
Morphometric, immunohistochemical and ultra-
structural studies were carried out on the DIT in 
arteries of seven sheep with clinical signs of naturally 
occurring enzootic calcinosis due to the ingestion of 
this plant. By immunohistochemistry α-actin was 
detected in cells of the media and in cells forming the 
intimal thickening. Receptors for 1,25-(OH)2vitamin 
D3 were detected in nuclei of intimal, medial and 
endothelial cells [176].  
 
Stimulation of these receptors induced cell 
proliferation and differentiation in several tissues 
[177,178], and there was an increase in DNA 
synthesis and a decrease in heparan sulfate, a 
glycosaminoglycan responsible for the inhibition of 
the proliferation of these cells, allowing 
multiplication of the smooth muscle cells [179]. 
 
DIT is a consistent component of arteriosclerotic 
lesions in N. veitchii induced calcinosis of sheep, and 
the predominant cells in this process are the smooth 
muscle cells originating from the predecessors of the 
media. It is suggested that the inducing factor for the 
arterial changes is 1,25-(OH)2D3 present in N. veitchii 
[176]. 
 
Similar observations were reported in experimental 
poisoning by vitamin D in rabbits, and in enzootic 
calcinosis in sheep [174]. DIT was described in 
calcinosis of cattle [180] and of sheep [174] as an 
increase of elastic and collagen fibers or 
subendothelial cell proliferation without a definitive 
identification of the cell types involved.  
 
Most experiments indicated that the active 
component of calcinogenic plants most probably 
should be a glycoside of the metabolite                
1,25-(OH)2D3. The vitamin D-like activity of the 
calcinogenic plants S. glaucophyllum, C. diurnum, T. 
flavescens and N. veitchii was evaluated by testing 
different extracts by oral application to rachitic 
chicks [181]. The serum was analyzed to determine 
the level of calcium, phosphorus and alkaline 
phosphatase. The results demonstrated the presence 
of substances with vitamin D-like activity in the   
four plants. Only S. glaucophyllum and C. diurnum 
contained hydrosoluble substances with a high  
vitamin D-like  activity, which was indicated by the 
significant high levels of calcium and phosphorus 
combined   with  a  reduced   activity  of  the  alkaline 
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Figure 26 
 
phosphatase. The hydrosoluble activity of the active 
substance in both plants is most probably due to the 
presence of a glycoside of 1,25-(OH)2D3 in O-25.    
N. veitchii and T. flavescens contained only minor 
concentrations of these hydrosoluble substances.   
The four plants were evaluated quantitatively:          
S. glaucophyllum 82,800 IU of vit D/kg, C. diurnum 
63,200 IU of vit D/kg, N. veitchii 16,400 IU/kg and 
T. flavescens 12,000 vit D IU/kg. All concentrations 
were calcinogenic [181]. 
 
(11) Withasteroids: Withasteroids are 
polyoxygenated ergostane derivatives, which are 
mainly found in the Solanaceae. Withasteroids have a 
lactone group at C-26, and a variety of structures, 
which can be accordingly classified into eight groups: 
withanolides, two types of modified withanolides 
(aromatic A- and D-rings),   withaphysalins,  acnistins,  
ixocarpalactones, perulactones and physalins [182]. 
The skeletons of each group of compounds are shown 
in Figure 26.   These  eight  structural groups are found  
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Figure 27: Withaferin A and jaborosa-lactone A. 
 

in the following solanaceous genera: Acnistus, 
Datura, Deprea, Dunalia, Iochroma, Jaborosa, 
Lycium, Nicandra, Physalis, Salpichroa, 
Trechonates, Tubocapsicum, Withania, and 
Witheringia. A great diversification in ergostane 
structure is observed in two genera, Withania and 
Physalis,  which mainly produce withanolides and 
physalins, respectively.  
 
(a) Withanolides: Withanolides (steroidal lactones) 
are the most abundant withasteroids. These 
compounds are considered to be precursors of the 
withaphysalins and acnistins. Withanolides are 
subdivided into two main classes according to the 
orientation (α or β) of the lateral chain at C-17. The 
β-withanolides are the most frequent.  
 
Withania somnifera, whose leaves are used for the 
treatment of tumors, contains withanolides with 
antibiotic and mytosis inhibitory activity; these 
compounds are also found in species of Acnistus,  
Datura, Jaborosa, Physalis and Tubocapsicum. 
Examples of this group are withaferin A and 
jaborosa-lactone A (Figure 27).  
 
Withaferin A was the first withanolide isolated from 
W. somnifera. Thereafter, many other structures of 
this group of steroids were obtained from the 
Solanaceae. The antimicrobial activity of withaferin 
A was described in 1956, before the total 
identification of the chemical structure [6].  
 
Withanolides, such as daturalactone, were isolated 
from Datura ferox, D. quercifolia and D. 
stramonium. Withametelin, isowithametelin (both 
C28-withanolides), and the glucosides daturametelin 
A and B (C34-withanolides) were obtained from     
D. metel (Figure 28). (+)-Jaborol, which has 
modified A/B rings with further aromatization in 
ring A, was obtained from Jaborosa magellanica 
(Figure 28 [6].  
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Some withanolides are chlorinated, such as 
physalolactone and 4-deoxyphysalolactone (both  
C28-withanolides) from Physalis peruviana (Figure 
29). Others contain sulphur, such as withaperuvin H   
(C30-withanolides) (Figure 29). 
 
Withanolides and related ergostane-type steroids 
have been reviewed [183]. Furthermore, the 
chemistry and bioactivity of the withanolides from 
South American Solanaceae have been recently 
reviewed [184]. 
 
Withanolides are not toxic and/or lethal to mammals, 
but some of them have shown insecticidal activity. 
Several ring D aromatic withanolides, for example 
salpichrolides, showed an antifeedant effect on           
larvae of Musca domestica [185] and Tribolium 
castaneum [186], delayed the development of 
Ceratitis capitata larvae to puparia, and were lethal 
to C. capitata adults [187]. The naturally occurring 
compounds, salpichrolide A [(20S,22R,24S,25S,26R)-
5α,6α:22,26:24,25-triepoxy-26-hydroxy-17(13→18)-
abeo-ergosta-2,13,15,17-tetraen-1-one], salpichrolide 
B [(20S,22R,24S,25S,26R)- 5α,6α:22,26:24,25-triepo-
xy-1,26-dihydroxy-17(13→18)-abeo-ergosta-2,13,15, 
17-tetraene], salpichrolide C [(20S,22R,24S,25S, 
26R)-22,26:24,25-diepoxy-5α,6β, 26-trihydroxy-17 
(13→18)-abeo-ergosta-2,13,15,17-tetraen-1-one], and 
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salpichrolide G [(20S,22R, 24S,25S,26R)-5 ,6α: 
22,26:24,25-triepoxy-15,26-dihydroxy-17(13→18)-
abeo-ergosta-2,13,15,17-tetraen-1-one], previously 
isolated from Salpichroa origanifolia, and other new 
synthetic analogues were tested [185-187].  
 
Some withanolides exhibited selective phytotoxicity. 
4,7,20-Oxowithanolides from Iochroma australe 
showed selective herbicidal activity against weed 
species. In fact, the extract and the major constituent 
(17S,20R,22R)-4β,7β,20α-trihydroxy-1-oxowitha-2,5, 
24-trienolide reduced growth of the radical of 
Sorghum halfpence (monocotyledon) and Chenopod 
album (dicotyledonous), but had no significant effect 
on either germination or radical length of the 
commercial crop species Lactic sativa [188]. 
Recently, four withanolides of the twelve new 
withanolides isolated from Jaborosa rotate [189] and 
three withanolides from J. calescent var. calescent 
and J. calescent var. bipinnatifida   [190] showed 
selective phytotoxicity toward monocotyledonous 
and dicotyledonous species. The new withanolide, 
jaborosalactone 43, with a spiranoid δ-lactone at     
C-22, was isolated from J. kurtzii, together with 
jaborosalactone 44, a 12-oxowithanolide, and showed 
selective phytotoxicity toward the dicotyledon 
species, Lactuca sativa (lettuce) [191]. 
 
Active secondary metabolites are usually 
biosynthesized in small quantities in the plant. An 
alternative technology could be the in vitro culture of 
desirable medicinal plants to increase the yield of 
specific drug components. The biotechnological 
approaches, such as shooty teratomas, tissue culture, 
and transformed cultures, were reported for the 
production of bioactive secondary plant metabolites, 
for example withanolides [192]. Successful micro-
propagation protocols for cloning of some medicinal 
plants have been developed. Regeneration occurred 
via organogenesis and embryogenesis in response to 
auxins and cytokinins [193].  
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Besides other techniques, genetic engineering of 
medicinal plants using Agrobacterium-mediated 
transformation has many advantages that include fast 
growth and high levels of stable production of 
secondary metabolites, making them commercially 
and economically feasible. Genetic fidelity of tissue 
culture raised plants can be ascertained by using 
molecular markers [194].  
 
Withania somnifera has been used in traditional 
Indian medicine as a tonic and antistress supplement. 
Pharmacological activities of W. somnifera include 
physiologic and metabolic restoration, antiarthritic, 
antiaging and immunomodulatory activities, use as a 
nerve tonic, for cognitive function improvement in 
geriatric states, and recovery from neurodegenerative 
disorders, such as convulsions and tardive  
dyskinesia, [195-198]. In vitro and in vivo molecular 
pharmacological investigations have elucidated the 
association of these activities with the withanolides 
present in the plant [199].   
 
Biogenesis of withanolides appeared to be highly 
restricted to a few genera [200], and W. somnifera 
produced the largest number of withanolides with 
diversified functional groups and regio/stereo-forms, 
some of which possess specific therapeutic 
significance [198,201]. Withaferin A and withanone 
were the major withanolides of the plant, whereas  
the amount of withanolide A (5α,20α-dihydroxy-
6α,7α-epoxy-1-oxowitha-2,24-dienolide) was usually 
very low [202]. Withanolide A induced nerve 
development and improved nervous system function, 
for example it showed strong neuropharmacological 
properties of promoting neurite outgrowth and 
synaptic reconstruction [203,204]. Therefore, it could 
be potentially useful in neurological disorders like 
Alzheimer’s and Parkinson’s diseases, convulsions, 
and cognitive function impairment. However, its 
usual very low levels in the plant and its occurrence 
mainly in the roots of W. somnifera led to exploration 
of its production in in vitro cultures.  
 
Withanolides like withanone, withaferin A, and 
withanolide D have been shown to be present in 
several organogenic cultures, including hairy roots 
[205,206]. Methanolic extracts of leaves from 
plantlets growing in tissue culture and those 
transferred to the greenhouse were evaluated for 
immunomodulatory activity. While the extract from 
greenhouse samples showed potent immuno-
suppressive activity, those from tissue cultured 
samples did not. Fractionation and characterization of 

withanolides revealed the presence of withaferin A in 
the greenhouse samples. Therefore, Withania species 
may require a longer time and better differentiation, 
and also a natural environment for the production of 
withaferin A [205]. Withanolide D-containing 
fractions were studied for their anti-metastatic 
activity using B16F-10 melanoma cells in C57BL/6 
mice.  
 
Because of the root specific production of 
withanolide A, root cultures, particularly hairy roots, 
that can grow rapidly in simple media and can be 
easily upscaled in a bioreactor were the first choice 
for production in vitro. However, despite several 
reports on withanolide profiles (withaferin A, 
withanolide D, etc.) of Agrobacterium rhizogene-
transformed hairy roots of W. somnifera, the presence 
of withanolide A has not been detected in those 
cultures [207,208]. Withanolides reported in these 
hairy root cultures were those mainly produced by 
the aerial parts.  
 
The production of withanolide A was recently 
reported for the first time in in vitro shoot cultures   
of two experimental lines of W. somnifera - RS 
Selection-1 (RS-Sel-1) and RS Selection-2 (RS-Sel-2) 
in the presence of different plant growth regulators 
on MS medium. RS-Sel-1 showed greater 
biogenesis/accumulation of withanolide A than      
RS-Sel-2 [198]. The presence of other withanolides 
(like withaferin A) observed in these cultures was 
similar to that previously reported [205,206].  
 
The enhanced de novo biogenesis of withanolide A in 
shoot cultures was corroborated by radiolabel 
incorporation studies using [2-14C] acetate as a 
precursor. The in vitro shoot cultures also produced 
withaferin A, the main withanolide of the aerial parts 
of W. somnifera [198], as previously reported [206]. 
This previous report suggested that its biogenesis in 
the cultures was strongly modulated by the hormonal 
balance/ratio in the media.  
 
Developmental variability was introduced into        
W. somnifera using genetic transformation by 
Agrobacterium rhizogenes, with the aim of changing 
withasteroid production. Inoculation of W. somnifera 
with A. rhizogenes strains LBA 9402 and A4 
produced typical transformed root lines, transformed 
callus lines, and rooty callus lines with simultaneous 
root dedifferentiation and redifferentiation [209]. 
These morphologically distinct transformed lines 
varied in T-DNA content, growth rates, and 
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withasteroid accumulation. Accumulation of 
withaferin A was greatest in the transformed root line 
WSKHRL-1, thus being the first detection of 
withaferin A in the roots of W. somnifera. All the 
rooty callus lines accumulated both withaferin A and 
withanolide D. Four of these callus lines produced 
both withaferin A and withanolide D, and they grew 
faster than the transformed root lines. The presence 
of withasteroids in undifferentiated callus cultures of 
W. somnifera was reported for the first time [209]. 
 
Lee et al. [210] studied whether the quantity          
and quality of light affected growth and   
development of W. somnifera plantlets. Growth     
and histophysiological parameters [stomatal 
characteristics, chloroplast pigment concentrations, 
photosynthesis, and transpiration] of W. somnifera 
plantlets regenerated under either various light 
intensities, or monochromatic light, or under a 
mixture of two colors of light in tissue culture 
conditions were analyzed. Chlorophylls and 
carotenoids, stomatal number, rate of photosynthesis 
and transpiration, stomatal conductance, and water 
use efficiency increased with increasing photon flux 
density up to 60 μmol/ m2 s. Light quality also 
affected plantlet growth and physiology. Highest 
growth was observed under fluorescent and in a 
mixture of blue and red light. Thus, both the quality 
and the quantity of light affected the growth of 
plantlets, development of stomata and physiological 
responses differently depending on the intensity and 
the wavelength of the light [210].  
 
Microemulsion electrokinetic chromatography 
(MEEKC) with a diode-array detector was  
developed for the simultaneous analysis of       
natural withanolides, including withaferin A, 
withacnistin and iochromolide [211]. A capillary 
electrochromatographic (CEC) method was 
developed to separate these withanolides, including 
the critical pair, withacnistin and iochromolide, 
which was achieved in less than 5 min. Further, CEC 
was interfaced with ESI-MS. Finally, the described 
methods were applied to the qualitative analysis of 
withanolides in Iochroma gesnerioides plant extract 
[211]. 
 
A variety of withanolides has also been isolated from  
W. coagulans, for example coagulin F and coagulin 
G [212], two withanolides, and a withacoagulin 
[213]. Four withanolides of W. somnifera were 
butyrylcholinesterase inhibitors, but only three 
compounds were active against acetylcholinesterase 

[214]. A dimeric withanolide, ashwagandhanolide, 
has recently been isolated from W. somnifera [215]. 
A detailed spectroscopic evaluation revealed its 
identity as a dimer with an unusual thioether linkage. 
This compound displayed growth inhibition against 
human gastric (AGS), breast (MCF-7), central 
nervous system (SF-268), colon (HCT-116), and lung 
(NCI H460) cancer cell lines. In addition, it inhibited 
lipid peroxidation and the activity of the enzyme 
cyclooxygenase-2 in vitro [215]. 
 
Physagulins L, M and N, together with physagulin D, 
were the withanolides isolated from Physalis 
angulata [216], all of which showed weak 
trypanocidal activity against trypomastigotes, an 
infectious form of Trypanosoma cruzi, the etiologic 
agent for Chagas' disease [216]. 
 
Fifteen new withanolides, and the known withanolide 
D and 17α-hydroxywithanolide D, were isolated from 
Tubocapsicum anomalum using bioassay-directed 
fractionation, eight of which showed significant 
cytotoxic activity against Hep G2, Hep 3B, A-549, 
MDA-MB-231, MCF-7, and MRC-5 cell lines [217]. 
The structures were determined by spectroscopic and 
chemical methods, and the absolute configurations 
were established by circular dichroism analysis and 
by the Mosher ester method. Two structures were 
further confirmed by X-ray crystallographic analysis 
[217].  
 
Withanolide glycosides named daturametelins H-J, 
together with daturataturin A and 7,27-dihydroxy-1-
oxowitha-2,5,24-trienolide, were recentlly isolated 
from Datura metel. The latter nonglycosidic 
compound showed the highest antiproliferative 
activity towards the human colorectal carcinoma 
(HCT-116) cell line [218]. The structures were 
determined mainly by spectroscopic techniques, 
including 2D-NMR (HMBC, HMQC, 1H,1H-COSY, 
NOESY), and MS [218]. Recently, from the flowers 
of D. metel, ten new withanolides were isolated: 
withametelins I-P, 1,10-seco-withametelin B, and 
12β-hydroxy-1,10-seco-withametelin B, together 
with seven known withanolides [219]. The structures 
were elucidated by spectral data, and the absolute 
stereochemistry was confirmed by single-crystal     
X-ray analysis. Withametelins I, K L, and N 
exhibited cytotoxic activities against A549 (lung), 
BGC-823 (gastric), and K562 (leukemia) cancer cell 
lines [219]. 
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(b) Physalins: The genus Physalis comprises 
herbaceous and perennial plants, distributed mainly 
in the temperate zones of Central and South America.  
Considering the level of biogenetic oxidation, the 
genus is the most evolved of the Solanaceae family. 
This position is evidenced by the presence of 
polyoxygenated ergostane-derivatives, withasteroids, 
having lactones, epoxides, and enone functions. The 
enzymatic system of Physalis species has the ability 
to oxidise the carbons of the steroidal nucleus and the 
lateral chain, except for C-8, C-9 and C-11, giving 
rise to a variety of chemical structures, for example, 
physalins, withaphysalins, ixocarpalactones, and 
acnistins (Figure 26). 
 
Physalins are C28-secosteroid, lactone-type 
constituents of Physalis spp. (steroid derivatives of 
the 13,14-seco-16,24-cycloergostane-type, with a 
keto function at C-15). The chemistry and spectral 
data of some withasteroids obtained from Physalis 
species have been recently reviewed [182].  
 
Physalins A to V have been obtained from Physalis 
species, for example P. alkekengi, P. alkekengi     
var. francheti, P. angulata,  P. ixocarpa, P. lanifolia, 
P. minima, P. peruviana, P. phyladelphia, P. 
pubescens, and P. viscosa. More than twenty 
physalins have been isolated from these species, and 
further structures are being obtained [220]. 
Moreover, a chlorinated physalin was recently 
isolated from P. minima, which consisted of eight 
fused rings involving three lactones [221].             
The structures were elucidated by 1D (1H NMR,     
13C NMR, DEPT-13C NMR) and 2D (COSY, HMQC, 
HMBC) NMR spectroscopic analysis, and the 
relative stereochemical assignments were based on 
1D NOESY correlations and analysis of coupling 
constants.  
 
Physalins have a carbonyl group at C-1, and differ in 
the oxygenated pattern of rings A and B, giving rise 
to nearly 9 types [182]; for example physalins K and 
O have a peroxide in the A-ring. There are also 
distinctions in other parts of each molecule.  
 
Physalin S is characterized by the absence of olefinic 
signals in the A-ring, but shows methyne proton 
signals at high field in the 1H-NMR spectrum, thus 
indicating the presence of a cyclopropane ring 
between C-3 and C-5.  
 
Withasteroids have shown antimicrobial, anti-
inflammatory,   immunomodulatory,   antitumor,  and 
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Figure 30 
 
trypanocidal activities. Physalins have shown 
biological activities in humans against 
immunodeficiency, inflammatory processes, and 
tropical endemic diseases. Withaphysalins from 
Acnistus arborescens also showed potent cytotoxic 
activity against a panel of human cancer cell lines 
[222].  
 
Some physalins have been described as having potent 
antimycobacterial and antitumor effects [223,224], 
and those obtained from Physalis minima, and         
P. minima var. indica showed a potent leishmanicidal 
activity against the promastigotes of Leishmania 
major [225,226].  Physalins from P. angulata also 
showed antiinflammatory activities [227]. The 
mechanisms of the anti-inflammatory effects of 
physalins B and F from P. angulata were studied in a 
model of intestinal ischaemia and reperfusion injury, 
showing similar effects to those of dexamethasone. 
Furthermore, the in vivo antiinflammatory actions of 
physalins B and F were mostly due to the activation 
of glucocorticoid receptors [228].  
 
Physalin F from P. angulata exhibited in vitro and in 
vivo antitumor effects, whereas physalin B was 
inactive both in vitro and in vivo [223]. Further 
reports on other physalins from P. angulata showed 
strong cytotoxicity against multiple tumor cell lines, 
including KB, A431, HCT-8, PC-3, and ZR751, with 
EC50 values less than 4 μg/mL [229]. Magalhães et 
al. [230] reported considerable in vitro cytotoxicity 
against several cancer cell lines of physalin B and 
physalin D isolated from P. angulata, thus explaining 
the ethnopharmacological use. 
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Recently, the biological evaluation of withanolides, 
withangulatins, and a group of physalins from          
P. angulata against a panel of human cancer cell 
lines showed that withanolides and physalins with 
4β-hydroxy-2-en-1-one and 5β,6β-epoxy moieties are 
potential cytotoxic agents [231].  
 
(12) Other bioactive chemical constituents: The 
Solanaceae family contains other type of compounds 
that have shown a variety of bioactivities. Although 
they are not toxic to mammals, they have shown 
pesticide activity. These compounds are sugar esters 
and lectins. Phenylpropanoids are also present in the 
Solanaceae, but these compounds are not considered 
in this paper. 
 
(a) Sugar esters: Trichomes on the leaf surface of 
many Solanaceae produce and secrete exudates 
affecting insects, microbes, and herbivores. A variety 
of sugar esters, also known as acyl sugars or polyol 
esters, are contained in the exudates and natural wax 
of the leaves of tobacco [232,233], wild tobacco, 
Nicotiana gossei [234], and other Nicotiana species 
[235], wild tomato (Lycopersicon pennellii) [236], 
tomato [237] and potato species [238,239]. The 
primary insecticidal compounds within these 
glandular trichomes are sucrose esters, which were 
shown in several Nicotiana spp. to produce resistance 
to infestation by green peach aphids, two-spotted 
spider mites, tobacco hornworm, and greenhouse 
whitefly [240,241]. Acyl glucose esters isolated from 
Datura wrightii glandular trichomes showed 
bioactivity against three native insect herbivores 
[242]. 
 
Sugar esters were capable of controlling arthropod 
plant pests, such as greenhouse whiteflies, sweet 
potato whiteflies, aphids, mites and psyllids 
[243,244]. Sucrose octanoate is now registered by the 
U.S. Environmental Protection Agency (EPA) for a 
wide variety of insect and mite pests for use on 
agricultural crops, such as apples, citrus, cotton, 
grapes, and pears, and to control pests in 
greenhouses, and of ornamental crops, household and 
garden plants [244-246]. These compounds are also 
used by the food industry.  
 
The sugar esters disrupt the physiological functions 
of the pest, but not the host. Although the mode of 
action is unknown, it has been suggested that the 
compounds, like sucrose laurate and sucrose octano-
ate, act as contact insecticides and behave as surfact-
ants to dewax the insect's outer protective coating 

causing death by rapid dehydration and/or attack by 
microbes [245]. The residual sugar esters, after 
application as insecticides, are biodegradable, and 
rapidly hydrolyze to harmless sugar and fatty acids.  
 
Metabolic engineering of gland exudation showed 
potential for improving pest/disease resistance, and 
for facilitating molecular farming. A cytochrome P450 
hydroxylase gene specific to the trichome gland    
was identified [247] and both antisense and sense   
co-suppression strategies were used to investigate its 
function.  
 
The acetone fraction of the tobacco leaf surface lipid 
containing glucose esters and sucrose esters inhibited 
both tumor necrosis factor-α (TNF-α) release from 
BALB/3T3 and KATO III cells induced by okadaic 
acid and tumor promotion by okadaic acid on mouse 
skin initiated with 7,12-dimethylbenz(a)anthracene 
(DMBA) [248]. The inhibition of TNF-α release with 
synthetic disaccharide esters was also reported, such 
as 4,4’- and 6,6'-diester-trehaloses, and 6,6'-diamide-
trehaloses. Since TNF-α is a proinflammatory 
cytokine playing a role in various pathological states, 
these non-toxic sugar esters, for example diester-
trehaloses of C8 to C12 fatty acids, and mimics of 
disaccharide monoesters, such as n-dodecyl-β-D-
maltoside, which are inhibitors of TNF-α release, 
appear to be promising cancer-preventive agents of a 
new type [248]. 
 
A novel acylated sucrose ester physaloside A        
was obtained from Physalis viscosa [249], and 
recently, three 2,3,1',3'-tetraacyl- and two 2,3,3'-
triacylsucroses, nicandroses A-E, were isolated from 
the fruits of P. nicandroides var. attenuata [250].  
 
Tobacco synthesizes unique proteins, called              
T-phylloplanins, only in the glands of a particular 
procumbent trichome type (short glandular trichome) 
that apparently does not secrete the well            
known diterpenes and sugar esters produced and 
secreted by tall glandular trichomes of tobacco 
[251,252]. T-phylloplanins are defensive proteins for 
tobacco plants.  
 
(b) Lectins: Plant lectins are considered a 
heterogeneous group of proteins with a variety of 
biological roles. The functions of plant lectins were 
divided into external activities, such as harmful 
effects on aggressors, and internal roles, for example 
in the transport and assembly of appropriate ligands, 
or in the targeting of enzymatic activities. Structural 
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and functional aspects of plant and animal lectins, as 
well as their application to crop protection and in 
tumor therapy by immunomodulation have been 
analyzed [253]. Most identified plant lectins can be 
classified into seven families of structurally and 
evolutionarily related proteins, each of which is 
characterized by its own typical sugar-binding motif 
[254].  
 
Solanaceae lectins comprise a group of unique 
chimeric plant proteins. Several species of the 
Solanaceae accumulate lectins in seeds and/or 
vegetative tissues [254]. These lectins include 
Solanum tuberosum agglutinin (STA) from potato, 
Lycopersicon esculentum agglutinin (LEA) from 
tomato and Datura stramonium agglutinin (DSA) 
from Datura. The molecular structure of the 
Solanaceae lectins can only be resolved by either 
determining the complete amino acid sequence of the 
proteins or cloning of the corresponding genes. 
 
Tubers of Solanum tuberosum contain a number of 
chitin-binding proteins, which have possible 
functions in defense against pathogens [255]. A 
major protein of the tuber is the chitin-binding 
hydroxyproline-rich lectin, which may be involved in 
the defense mechanism of the plant. This potato 
lectin (STA) is an unusual glycoprotein containing 
approximately 50% carbohydrate by weight. Of the 
total carbohydrates, 92% is contributed by L-
arabinose, which is O-linked to hydroxyproline 
residues. The ferric chloride-orcinol colorimetric 
assay (Bial's test), which is specific for pentoses, was 
developed for monitoring the presence and the 
purification of potato lectin [256].  
 
Van Damme et al. [257] reported a re-investigation 
of the potato tuber lectin and the molecular cloning of 
the corresponding gene. Evidence was presented that 
the classical potato lectin comprised two homologous 
modules of twin hevein domains, interspersed by an 
extensin-like domain of approximately 60 amino acid 
residues. The hevein domain was named after hevein, 
a small 43 amino acid residue, chitin-binding protein 
found in the latex of the rubber tree (Hevea 
brasiliensis). The revised structure of the potato 
lectin confirmed the canonical chimeric nature of the 
Solanaceae lectins, but also indicated that the 
physiological role of the chimeric lectin should be 
revised.  
 
The overall structure of the potato lectin was, to a 
certain extent, reminiscent of that of some animal 

collectins (collagen-like lectins), which play an 
important role in the recognition and binding of 
microorganisms [258]. Although the potato lectin 
differs from the collectins due to a double-headed 
rod-like structure, the extensin-like domain might 
similarly act as the collagen domain of the collectins. 
It might imply why the potato lectin specifically 
interacts with some strains of Pseudomonas 
solanacearum [259] and the Datura stramonium 
lectin interferes with bacterial motility [260]. 
 
As potato lectin activated and degranulated both mast 
cells and basophils by interacting with the chitobiose 
core of immunoglobulin E (IgE) glycans, a high 
intake of potato might increase the clinical symptoms 
as a result of non-allergic food hypersensitivity in 
atopic subjects [261]. 
 
The pattern of lectin binding in the cerebellum of 
calves poisoned with Solanum fastigiatum var. 
fastigiatum was studied [262]. The lectin-binding 
pattern was compatible with a glycolipid storage 
disease. 
 
Peumans et al. [263] reported the cDNA cloning of a 
putative tomato leaf lectin. This lectin consisted of 
two similar chitin-binding modules, each comprising 
two contiguous hevein domains, interspersed by a 
short proline-rich domain containing a single 
Ser[Pro]n repetitive motif. The elucidation of this 
structure confirmed the chimeric nature of the 
Solanaceae lectins, but indicated that the previously 
proposed model of the molecular structure of the 
tomato lectin needed to be revised. Oguri et al. [264] 
found a 2S storage albumin from the seed of tomato 
(Lycopersicon esculentum L. cv. Cherry) that cross-
reacted with antiserum to the fruit lectin, and named 
it Lec2SA. A sequence similarity was found between 
the large subunit of Lec2SA and the peptide sequence 
from tomato lectin. However, Lec2SA lacked the 
carbohydrate-binding domain. Thus, tomato lectin is 
a chimeric lectin sharing the seed storage protein-like 
domain that is incorporated into the gene encoding 
tomato lectin through gene fusion [264]. Sugar chain-
binding specificity of tomato lectin was analyzed 
using lectin blot, and high mannose-type N-glycans 
produced by plants and yeast were recognized [265]. 
 
A lectin, with a molecular mass of 79 kDa, and    
with specificity toward rhamnose and O-nitrophenyl-
β-D-galactopyranoside, was isolated from samta      
tomato fruits. The lectin stimulated the mitogenic 
response  in mouse splenocytes and inhibited human 



618  Natural Product Communications Vol. 3 (4) 2008 Pomilio et al. 

immunodeficiency virus-1 reverse transcriptase with 
an IC50 of 6.2 μM [266]. 
 
Tobacco (N. tabacum L. cv Samsun NN) leaves 
accumulated a cytoplasmic/nuclear lectin, called 
Nictaba, in response to methyl jasmonate [267]. To 
check whether, and if so to what extent, the specific 
induction of this lectin applied to related species, a 
collection of 19 Nicotiana species, covering 12 
Nicotiana sections and eight N. tabacum cultivars, 
was screened for their capability to synthesize the 
jasmonate-inducible lectin. Protein analyses 
confirmed that only nine out of the 19 species 
examined synthesized lectin after jasmonate treatment 
[268]. 
 
Jasmonic acid (JA) and its derivatives, commonly 
designated as jasmonates, are an important group of 
plant signalling molecules that play an important role 
in some reproductive processes, as well as in the 
regulation of plant metabolism and defense against  

pathogen and insect herbivores [269]. Although the 
effects of jasmonates on developmental and defense-
related processes are well understood, the exact 
mechanism(s) of the signalling cascades that relate 
the synthesis of jasmonates and the activation of 
target genes still remain to be fully elucidated. A 
mutant was isolated from tomato (called the 
jasmonate-insensitive-1 or jai1 mutant) [270] as in 
other plants, indicating that the mode of action of 
jasmonates might be the same in all plants. The 
heterogeneity in jasmonate-induced responses applies 
not only to the synthesis of species-specific 
secondary metabolites, but also to the accumulation 
of proteins. Numerous JA-responsive genes have 
been identified that are clearly upregulated and lead 

to the synthesis of jasmonate-inducible proteins 
(JIPs). Recently, the jasmonate-induced expression of 
the N. tabacum leaf lectin (Nictaba) was reported 
[271].  
 
Sasaki et al. [272] found that a lectin, Datura 
stramonium agglutinin (DSA), induced irreversible 
differentiation in C6 glioma cells. Proliferation of 
four human glial tumour cells was inhibited by DSA 
[272]. Further, these differentiated human glial tumor 
cells had long processes and a high content of glial 
fibrillary acidic protein similar to differentiated C6 
glioma cells. These observations suggested that DSA 
might be useful as a new therapy for treating glioma 
without side effects.  
 
A monomeric mannose/glucose-binding lectin, with a 
molecular mass of 29.5 kDa and an N-terminal 
sequence GQRELKL showing resemblance to that of 
the lectin-like, oxidized, low-density, lipoprotein 
receptor from the rabbit, were isolated from the seeds 
of red cluster pepper Capsicum frutescens var. 
fasciculatum [273]. The lectin showed strong 
mitogenic activity toward spleen cells isolated from 
Balb/c mice. The lectin also showed antifungal 
activity, thus inhibiting the germination of 
Aspergillus flavus and Fusarium moniliforme spores 
and hyphal growth in the two fungi [273]. 
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