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Abstract—It has been recently pointed out by Caves, Fuchs, and Rungta [1] that real quantum mechanics (that
is, quantum mechanics defined over real vector spaces [2–5]) provides an interesting foil theory whose study
may shed some light on just which particular aspects of quantum entanglement are unique to standard quantum
theory and which are more generic over other physical theories endowed with this phenomenon. Following this
work, some entanglement properties of two-rebit systems are discussed and a comparison with the basic prop-
erties of two-qubit systems, i.e., the systems described by standard complex quantum mechanics, is made.
The use of quaternionic quantum mechanics as applied to the phenomenon of entanglement is also discussed.
© 2003 MAIK “Nauka/Interperiodica”.
12 1. INTRODUCTION

The phenomenon of entanglement is one of the most
characteristic nonclassical features exhibited by quan-
tum systems [6]. Quantum entanglement is the basic
source of several quantum processes, such as super-
dense coding [7], quantum teleportation [8] and quan-
tum computation [6, 9], studied by quantum informa-
tion theory [10–13]. A state of a composite quantum
system constituted by subsystems A and B is called
“entangled” if it cannot be represented as a mixture of
factorizable pure states.

The simplest systems exhibiting the phenomenon of
entanglement are two-qubit systems. For these systems,
an explicit expression of the entanglement of forma-
tion, which is a natural quantitative measure of entan-
glement [14], has been found by Wootters [15]. The
corresponding space of mixed two-qubit states in stan-
dard quantum mechanics is 15-dimensional. The
amount of entanglement in this space has been estab-
lished in [16–19].

For quantum mechanics defined over real vector
spaces, the simplest composite systems are two-rebit
systems. An explicit expression for the entanglement of
formation of arbitrary states of two rebits has been
obtained by Caves, Fuchs, and Rungta [1]. Pure states
of rebit systems are described by normalized vectors in
a two-dimensional real vector space. The correspond-
1 This article was submitted by the authors in English.
2 Corresponding author.
0030-400X/03/9405- $24.00 © 20700
ing space of mixed two-rebit states is 9-dimensional
(versus 15 for two-qubit states).

The aim of the present work is to explore numeri-
cally and conceptually the entanglement properties of
two-rebit systems [20] as compared to the usual two-
qubit states, so as to detect the differences between the
two types of systems. We pay particular attention to the
distribution of states according to their degree of entan-
glement. We obtain, analytically, the probability densi-
ties for finding pure states with a given amount of
entanglement E (or with fixed values of the so-called
concurrence squared C2). The same is done for mixed
states in numerical fashion.

The paper is organized as follows. In Section 2, we
review the general properties of two-qubit systems.
Several quantities related to the entanglement of forma-
tion are investigated for both rebits and qubits in Sec-
tion 3, with an emphasis on the differences and similar-
ities between both formalisms. In section 4, we discuss
how to follow a quaternionic approach to quantum
entanglement. Finally, some conclusions are drawn in
Section 5.

2. ENTANGLEMENT OF TWO-QUBIT SYSTEMS
As already stressed in the Introduction, the two-

qubit system is the simplest quantum mechanical sys-
tem that exhibits between the two parties the sort of
“extra correlation” referred to as entanglement. A rep-
resentation of a qubit is given by the Bloch sphere. The
poles correspond to the classical bits |0〉, |1〉, while any
003 MAIK “Nauka/Interperiodica”
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point on this unit sphere, given by a pair of angles φ, ψ,
represents a general qubit cosφ|0〉 + eiψsinφ|1〉. Qubits
constitute essential new elements in the switch from
classical to quantum information theory and entangle-
ment the basic ingredient of many striking processes
now under active investigation.

Here, we use the concurrence C[ ] and the entan-
glement of formation E[ ] as quantitative measures of
the amount of entanglement. Wootters’ formula for the
entanglement of formation of a two-qubit state  reads
[15]

(1)

where
(2)

and the concurrence C is given by C = max(0, λ1 – λ2 –
λ3 – λ4), with λi  (i = 1, …, 4) being the square roots, in
decreasing order, of the eigenvalues of the matrix ,
with

(3)

The above expression has to be evaluated by recourse to
the matrix elements of , computed with respect to the
conventional product basis.

In this work, we have generated all pure and mixed
states of a two-qubit system according to the measure
defined in [16, 17, 21].

The distribution of two-qubit states according to
their degree of mixture can be obtained analytically by
adopting a geometric representation [22] for the eigen-
values of  as a regular tetrahedron T∆ of side length 1,
in 53, centered at the origin. There exists a mapping
connecting these eigenvalues (p1, …, p4) with the points
r of the tetrahedron, so that we can relate the participa-
tion ratio R( ) = 1/Tr( ) to the radius r = |r | of a
sphere embedded within the tetrahedron T∆ according
to

(4)

Thus, the states with a given degree of mixture lie on
the surface of a sphere of radius r concentric with the
tetrahedron T∆ (for a complete description, see [22]). It
is then easy to find out just how our states are so distrib-
uted, according to the degree of mixture R. This distri-
bution is depicted in Fig. 1. The dualistic nature of the
concepts of entanglement and mixedness becomes
apparent. For two-qubit systems, one would expect that
the states will tend to become less entangled as the
degree of mixture increases. In fact, for R ≥ 3 (vertical
line in Fig. 1), all states are separable. It is important to
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stress here that this curve is the same no matter what
quantities (rebits, qubits, or even quaterbits) are
involved, although their respective entanglement prop-
erties are different.

3. ENTANGLEMENT PROPERTIES 
OF TWO-REBIT SYSTEMS: A COMPARISON
In the space of real quantum mechanics, we can rep-

resent rebits on the Bloch sphere. The poles correspond
to the classical bits |0〉, |1〉, but the sphere reduces itself
now to a maximum unit circle, described by just one
parameter φ. We have cosφ|0〉 + eiψsinφ|1〉  cosφ|0〉 +
sinφ|1〉. Entanglement can also be described in such a
context with suitable modifications. The Caves–Fuchs–
Rungta (CFR) formula for the entanglement of forma-
tion of a two-rebit state ρ is given by (1), (2) with the
concurrence C[ρ] = |Tr(τ)| = |Tr(ρσy ⊗ σy)|, which has
to be evaluated using the matrix elements of ρ com-
puted with respect to the product basis, |i, j〉 = |i〉| j〉, i,
j = 0, 1.

For a two-rebit state, the entanglement of formation
is completely determined by the expectation value of
one single observable, namely, σy ⊗ σy. On the contrary,
it has recently been proved that there is no observable
(not even for pure states) whose sole expectation value
will yield enough information to determine the entan-
glement of a two-qubit state [23]. As shown in [20],
there are mixed states of two rebits with maximum
entanglement (that is, with C2 = 1) within the range 1 ≤
R ≤ 2. This is clearly in contrast to what happens with
two-qubit states, because only pure states (R = 1) have
maximum entanglement.

The measure of mixedness R introduced above can
be used in the description of the entanglement phenom-
enon for two-rebit systems. Also, in order to explore
numerically the properties of arbitrary two-rebit states,
it is necessary to introduce an appropriate measure µ on

1 2
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P[1/Tr(ρ2)]

Fig. 1. Probability (density) distribution for finding a state
 with a given participation ratio R. States (two-qubit) with

R ≥ 3 are always separable.
ρ̂
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Fig. 2. Probability (density) distributions for finding a state  with a given amount of entanglement E: (a) for qubits; (b) for rebits.ρ̂
the space 6R of general two-rebit states. Such a mea-
sure is needed to compute volumes within the space 6R,
as well as to determine what is to be understood by a
uniform distribution of states on 6R [16, 17].

An arbitrary (pure and mixed) state ρ of a (real)
quantum system described by an N-dimensional real
Hilbert space can always be expressed as the product of
three matrices,

(5)

Here, R is an N × N orthogonal matrix and D[{λi}] is an
N × N diagonal matrix whose diagonal elements are
{λ1, …, λN}, with 0 ≤ λi ≤ 1, and  = 1. The group
of orthogonal matrices O(N) is endowed with a unique,
uniform measure ν [21]. At the same time, the simplex
∆, consisting of all the real N-uples {λ1, …, λN} appear-
ing in (5), is a subset of an (N – 1)-dimensional hyper-
plane of 5N. Consequently, the standard normalized
Lebesgue measure +N – 1 on 5N – 1 provides a natural
measure for ∆. The aforementioned measures on O(N)
and ∆ lead then to a natural measure µ = ν+N – 1 on the
set 6R of all the states of our (real) quantum system.

Clearly, our system will have N = 4 again, and in our
numerical computations we are going to randomly gen-
erate states of a two-rebit system according to the mea-
sure µ.

The relationship between the amount of entangle-
ment and the purity of quantum states of composite sys-
tems has recently been discussed in the literature [16–
19]. The amount of entanglement and the purity of
quantum states of composite systems exhibit a dualistic
relationship. As the degree of mixture increases, quan-
tum states tend to have a smaller amount of entangle-
ment. In the case of two-qubit systems, states with a

ρ RD λi{ }[ ]RT .=

λii∑
large enough degree of mixture are always separable
[16]. To study the relationship between entanglement
and mixture in real quantum mechanics, we compute
numerically the probability P(E) of finding a two-rebit
state endowed with an amount of entanglement E. In
Fig. 2, we compare (i) the distribution associated with
two-rebit states with (ii) that associated with two-qubit
states recently obtained by Zyczkowski et al. [16, 24].
Figure 2a depicts the probability P(E) of finding two-
qubit states endowed with a given entanglement E (as
computed with Wootters’ expression). In a similar way,
Fig. 2b exhibits a plot of the probability P(E) of finding
two-rebit states endowed with a given entanglement E
(as computed with the CFR formula). Comparing
Figs. 2a and 2b, we find that the distributions P(E)
describing arbitrary states (that is, both pure and mixed
states) exhibit the same qualitative shape for both two-
qubit and two-rebit states: in both cases, the distribution
P(E) is a decreasing function of E.

The distribution P(E) or P(C2) for pure two-rebit
states can be obtained analytically. Let us write a pure
two-rebit state in the form

(6)

where

(7)

The states (|φi〉, i = 1, …, 4) are the eigenstates of the
operator σy ⊗ σy . The four real numbers ci constitute
the coordinates of a point lying on the three-dimen-
sional unitary hypersphere S3 (which is embedded in

Ψ| 〉 ci φi| 〉,
i 1=

4

∑=

ci
2

i 1=

4

∑ 1, ci 5.∈=
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Fig. 3. Probability distributions for finding a state  with a given concurrence squared C2: (a) for qubits; (b) for rebits.ρ̂
54). We now introduce on S3 three angular coordinates,
φ1, φ2, and θ, defined by

(8)

In terms of the above angular coordinates, the concur-
rence of the pure state |Ψ〉 is given by

(9)

Using (8) and (9), one deduces that the probability
density P(C2) of finding a pure two-rebit state with a
squared concurrence C2 is given by

(10)

The distribution is to be compared with the one
obtained for pure states of two-qubit systems, which is
(analytically) found to be [24]

(11)

Both distributions are compared in Fig. 3. Figure 3a
depicts the one for qubits, while Fig. 3b shows the dis-
tribution for rebits. The distribution remains finite, in
the case of qubits, for all C2. In the case of rebits, it pre-
sents a sharp peak at the origin and then levels off at 1/2
at C2 = 1. The general conclusion that one can draw
from Figs. 2 and 3 is that the curves representing the
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distributions P(E) and P(C2) associated with (i) pure
states and (ii) arbitrary states do not differ, in the case
of two-rebit states, as much as they do in the case of
two-qubit states.

We can determine analytically which is the maxi-
mum entanglement Em of a two-rebit state compatible
with a given participation ratio R. Since E is a mono-
tonic increasing function of the concurrence C, we shall
find the maximum value of C compatible with a given
value of R. In order to solve the ensuing variational
problem (and bearing in mind that C = |〈σy ⊗ σy〉|), let
us first find the state that extremizes Tr(ρ2) under the
constraints associated with a given value of 〈σy ⊗ σy〉
and the normalization of ρ. This variational problem
can be cast in the fashion

(12)

where α and β are appropriate Lagrange multipliers.
After some algebra and expressing the expectation

value of 〈σy ⊗ σy〉 in terms of the parameter β, one finds
that the maximum value of C2 compatible with a given
value of R is given by

(13)

4. THE QUATERNIONIC APPROACH
TO QUANTUM ENTANGLEMENT

The quaternionic space * constitutes a generaliza-
tion of the complex space #, which, in turn, generalizes
the real space 5. Each step of this chain is made possi-
ble by introducing new quantities: i2 = –1 from 5 to #

δ Tr ρ2( ) β σy σy⊗〈 〉 α Tr ρ( )–+[ ] 0,=

Cm
2 1, 1 R 2≤ ≤

4/R 1, 2– R 4.≤ ≤
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Fig. 4. Plot of the entanglement of pure states in the framework of real quantum mechanics (RQM), standard quantum mechanics
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and j 2 = k2 = –1 from # to *, with suitable commuta-
tion laws for the three quantities i, j, k.

A general quaternion φ and its associated commuta-
tion algebra are written in the following fashion:

(14)

with φi ∈ 5 and ij = –ji = k, jk = –kj = i, ki = –ik = j.
This “natural extension” of complex numbers that

yields quaternions cannot be generalized any further.
Thus, if we give up the property of commutativity, the
most general algebra that can be used in quantum
mechanics is the quaternionic one [25].

Entanglement for Pure States of Two-“Quaterbit” 
Systems

The definition of entanglement in quaternionic
quantum mechanics (QQM) for pure states does not
differ from the standard one. Given a pure state |ψ〉 of a
composite bipartite system, the entanglement is
obtained via the von Neumann entropy of the marginal
density matrix associated with the subsystem A by trac-
ing over the subsystem B:  = TrB |ψ〉AB〈ψ| of the total
density matrix  = |ψ〉AB〈ψ| or, vice versa,  =
TrA |ψ〉AB〈ψ|. Thus, E( ) = S( ) = S( ).

In the case of quaternions, we face a higher dimen-
sionality and, therefore, we need more parameters to
describe the state . Additionally, in using the kets and
bras notation of Dirac, we must keep in mind the non-

φ φ0 iφ1 jφ2 kφ3,+ + +=

ρ̂A

ρ̂ ρ̂B

ρ̂ ρ̂A ρ̂B

ρ̂

commutativity rules of quaternions. For the sake of
simplicity, let us suppose that a pure state is written as

(15)

The statistical matrix  = |ψ〉AB〈ψ| reads

(16)

with  =  since  =  = . Entanglement

then is only a function of N(C1)2 =  +  +  + .

Identifying x ≡  +  and y ≡  + , we plot
E( ) in Fig. 4, together with E( ) for the three ver-
sions of quantum mechanics we are dealing with here.

Extension to General Mixed States
The full analytical study of entanglement in the

framework of quaternionic quantum mechanics
requires careful consideration of the algebra of states
and operators for these “hypernumbers.” If one wishes
to discuss how to carry out statistical studies and how
entanglement-related properties are distributed over the
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space of all (pure and mixed) states, one notices that, in
this case, the dimensionality of the problem for a gen-
eral 4 × 4 matrix is substantially higher (3 + 4 × 6 = 27)
than for the complex (3 + 2 × 6 = 15) or real (3 + 1 ×
6 = 9) cases. The ensuing statistical properties become
clearly nontrivial, and some substantial effort is
required.

Let us merely list here the basic ingredients needed
for a complete description of the statistical properties of
quaternionic states : (i) building and correctly param-
etrizing the unitary transformations, defined over the
quaternionic Hilbert space; (ii) specifying the form of
the Haar measure for the concomitant space of unitary
transformations. Notice that the measure on the sim-
plex is exactly the same as for complex or real systems.
For mixed states , the distributions associated with
quantities that depend only on the eigenvalues of a sta-
tistical operator do have the same form in the real or the
complex cases, for they depend only on the simplex.
The results of the corresponding numerical study will
be published elsewhere.

5. CONCLUSIONS

We have explored numerically the entanglement
properties of two-rebit systems. A systematic compari-
son has been established between many statistical prop-
erties of two-qubit and two-rebit systems. We paid par-
ticular attention to the relationship between entangle-
ment and purity in both quantum mechanical
frameworks. We have also determined numerically the
probability densities P(E) of finding (i) pure two-rebit
states and (ii) arbitrary two-rebit states endowed with a
given amount of entanglement E or concurrence
squared C2. In particular, we determined analytically
the maximum possible value of the concurrence
squared C2 of two-rebit states compatible with a given
value of mixedness R. As for the probability of finding
states with a given amount of entanglement, the differ-
ence between mixed and pure states is much larger for
qubits than for rebits. Also, we have sketched the man-
ner in which quaternionic formalism could be applied
to the study of quantum entanglement.
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